
Isothermal Water Flows in Low Porosity Porous Media
in Presence of Vapor–Liquid Phase Change

A. Farinaa,1, J. Bodinb,2, T. Clopeaub,3, A. Fasanoa,4, L. Meaccia,1,
A. Mikelićb,3,∗

aDipartimento di Matematica “Ulisse Dini”, Viale Morgagni 67/A,
I-50134 Firenze, ITALIA

bUniversité de Lyon, Lyon, F-69003, FRANCE
Université Lyon 1, Institut Camille Jordan,

UMR 5208, Département de Mathématiques, 43 Bd du 11 novembre 1918,
69622 Villeurbanne Cedex, FRANCE

Abstract

In this article we consider a mathematical model for a low porosity porous
medium saturated by water, present both as the liquid and the vapor phase.
In the isothermal case we propose a new formulation using a single nonlinear
parabolic-hyperbolic equation for the fluid mixture density X. We present the
derivation of the unified model and a number of numerical simulations based on
regularization and Kirchhoff’s transform.

Keywords: degenerate parabolic equation, non-saturated flows, entropy
solutions, Kirchhoff’s transform

1. Introduction

We study the flow of a water-vapor mixture saturating low porosity rocks.
Such systems are present in many applications, particularly in geology. Assump-
tion of low porosity allows to consider the situation in which the temperature
field is constant, because it is stabilized by the dominating volume fraction of
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the rocks. Therefore, the isothermal configuration can be justified even in the
presence of phase change. In the classic approach, once the temperature is fixed,
the state of the water is determined by the pressure. Under the assumption of
thermodynamical equilibrium, by comparison with phase change pressure, cor-
responding to the given temperature, we find out whether the water is in the
liquid or in the vapor state, or both phases are simultaneously present. Accord-
ingly, mass balance is expressed by PDEs of different nature. The backdraw of
such an approach is that it involves the explicit analysis of the interfaces, which
is a hard task to achieve, especially in multidimensional problems.

There is a recent surge of interest for such questions in the case of multi-
phase multi-component flows through porous media. Contrary to case of two
immiscible incompressible phases, for which there is an extensive literature (see
e.g. [2], [14], [27] and references therein), the situation where we deal with at
least one compressible phase remains with incomplete mathematical theory. For
partial results we refer to [30]. In [21] constitutive laws for compressible phase
were adapted to Chavent’s global pressure.

One of the main difficulties is that in general we should deal with systems
of degenerate parabolic PDEs and it is not clear how to guarantee a priori that
saturations remain in the physical range. See [30] for remarks. Furthermore,
there is appearance of single-phase zones occupied by the fluid which is over- (or
under-) saturated. In an oversaturated zone the two-phase flow equations de-
generate and cannot be longer used, which provokes serious numerical problems.
Presence of several components clearly complicates the situation. Motivated by
recent applied needs, Panfilov introduced new formulation, extending the con-
cept of phase saturation so that it may be negative and larger than one. His
method allowed using the existing numerical simulators of two-phase flow for
modeling single-phase zones. For details we refer to [1] and [35]. A similar
approach, but extending different unknowns, was presented by Bourgeat et al
in [9].

Our situation is much simpler, since we consider water as the only com-
ponent and in isothermal conditions. Our aim is to describe the physical
model simply by a scalar degenerate parabolic equation for the liquid-
vapor mixture density, a quantity possessing a natural definition. Of course it
applies only to our particular situation, although some generalization may be
possible (for instance to non-isothermal cases).

The plan of the paper is the following: In Section 2 we present derivation of
the model. In the subsection 2.6 we define precisely the notion of the entropy
solution and the regularization procedure, allowing us to define the numerical
approximation. In Section 3, we present numerical simulations obtained by
using the Comsol Multiphysics and the Scilab based numerical code.

2. Mathematical Model

The purpose of this section is to present a mathematical model including
just one PDE for the liquid-vapor mixture density X. We will consider the two
cases: absence or presence of capillarity. We simplified the model by considering
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just isothermal conditions, but extension to other temperature distributions are
possible.

2.1. Basic notations and assumptions
We consider a porous medium saturated with pure H2O, present both in

the liquid phase and in the gaseous phase (vapor). The medium occupies some
domain Ω ⊂ R3 with smooth boundary.

So, from the macroscopic point of view, we deal with a mixture whose solid
component is the porous skeleton and the fluid component is constituted by
liquid and vapor. We thus denote by the suffix l the liquid phase of the fluid
and by the suffix g the gaseous phase (vapor).

Let us list the main physical assumptions that we consider:

A1. The porous matrix is rigid and possibly non-homogeneous. So, if we denote
by ϕ its porosity,

ϕ = ϕ (x) , x ∈ Ω.

A2. There is no mass exchange between the solid matrix and the fluid.
A3. The pores are filled by H2O, in either phase. Hence

Sl + Sg = 1, (1)

where Sβ , β = l, g, denotes the pores volume fraction occupied by the
corresponding phase.

A4. The porosity is so small that the amount of H2O present in either phase
has no influence on the thermal field which is a priori prescribed. For
the same reason we neglected the latent heat, possibly involved in the
process. Therefore we suppose that locally there is thermal equilibrium
between the phases and between them and the porous solid. Moreover, the
temperature T is uniform within the domain and constant in time.
Clearly, this is not only a strong constraint, but it may also represent a
severe physical limitation, since it requires that the latent heat absorbed
or released, due to the phase change, is effectively dispersed by the solid
matrix.

A5. The inertia of the fluid is negligible, i.e. the Reynolds number relative
to the flow within the pores is O (1) or less. Moreover, we assume that
Darcy’s law governs the flux of both phases5.

A6. The gaseous phase is modeled as a perfect gas, but more complicated
state equations can be considered.

A7. We introduce some mechanical compressibility of liquid water as a kind of
regularization, which is helpful for numerical simulations.

5According to such an approach we neglect any mechanical dispersion phenomena.
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We denote by Pβ , β = l, g, the H2O pressure in the β-th phase. Next, ρβ ,
β = l, g, denotes the density of the β-th phase. In particular, by assumption
A7, we have

ρl = ρo
l e

α(Pl−P o
l ), (2)

where ρo
l , P

o
l are reference values and α is the isothermal mechanical compress-

ibility factor (usually α (Pl − P o
l ) ≪ 1). From assumption A6 we derive

Pg

ρg
= R

MH2O
T = rT, where r = R

MH2O
, (3)

with R perfect gas constant, R = 8, 314 J/(mol oK), and MH2O = 18 g/mol,
water molar mass. Hence r = 461, 9J/(kg oK).

2.2. Momentum balance
Accordingly to the assumption A5, we will write for the liquid phase

ql = −K
kr, l(Sl)
µl

(∇Pl − ρlg) , (4)

and for the vapor phase

qg = −K
kr, g(Sg)
µg

(∇Pg − ρgg) , (5)

where:

• qβ , β = l, g, is the β-th phase volumetric macroscopic discharge within
the porous medium. Hence ρβqβ is the corresponding mass flux.

• g is the gravity acceleration.

• µβ , β = l, g, is the viscosity of the β-th phase.

• K is the intrinsic medium permeability tensor
[
L2]. We allow K to depend

on x, but not on time.

• kr, β(Sβ), β = l, g, is the relative permeability of the β-th phase.

We suppose that all the functions introduced above are smooth. Moreover, we
remark that in writing (4) and (5) we have implicitly assumed that the inter-
action between liquid and vapor is negligible with respect to the one with the
solid matrix. Such an assumption is reasonable when the vapor-liquid relative
velocity is small compared with the phases velocities, i.e. |ql − qg| ≪ |qg|, and
|ql − qg| ≪ |ql|.
We denote by P the H2O pressure. We have

Sl = 1 ⇔ Pl = P,

Sl = 0 ⇔ Pg = P.
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When 0 < Sl < 1, Pl and Pg need to be specified constitutively. In such a
case we treat the fluid (namely liquid and vapor) as a mixture and then P
represents the pressure of the mixture itself identifiable with the pressure of
phase equilibrium.

Finally, we denote by ρ̂β the mass of β-th phase per unit volume of porous
medium. Hence (see for instance [40])

ρ̂β = ϕSβρβ , with β = l, g.

2.3. Mass balance
Let us write down the global mass balance equation

∂ρ̂

∂t
+ ∇ · (ρlql + ρgqg) = 0, (6)

where6:

• ρ̂ = ρ̂l + ρ̂g = ϕ (Sρl + (1 − S) ρg), is the total mass of H2O per unit
volume of porous medium.

• (ρlql + ρgqg), is the total water flux. Hence, recalling (4) and (5)

ρlql + ρgqg= −K
[
ρl
kr, l(S)
µl

(∇Pl − ρlg) + ρg
kr, g(1 − S)

µg
(∇Pg − ρgg)

]
.

(7)

Using (1)-(7), we are in position to write the H2O mass balance equation

ϕ
∂

∂t
[S ρl + ρg (1 − S )] − ∇ ·

[
K
(
ρl
kr, l(S )
µl

(∇Pl − ρlg)

+ρg
kr,g(1 − S )

µg
(∇Pg − ρgg)

)]
= 0, (8)

with ρg given in terms of Pg by (3) and, according to A7, ρl expressed in terms
of Pl by (2).

Before proceeding further, some comments relative to (8) are in order. First,
if only the liquid phase is present, S = 1, then (8) reduces to

ϕ
∂ρl

∂t
= ∇ ·

[
K ρl

µl
(∇Pl − ρlg)

]
, (9)

which can be read as a parabolic equation whose unknown is Pl that, of course,
coincides with P

ϕαρl
∂Pl

∂t
= ∇ ·

[
K ρl (Pl)

µl
(∇Pl − ρlg)

]
. (10)

6For simplicity, here and in the sequel we put Sl = S, and Sg = 1 − S.

5



Equation (10) is the classical porous media equation when the fluid mechanical
compressibility is taken into account [8]. Once solved, with suitable boundary
conditions, equation (10) gives the pressure field in the liquid phase and, from
(4) it allows to evaluate the liquid flux. We finally remark that, by virtue of
(2), equation (10) can also be written in terms of ρl, getting

ϕ
∂ρl

∂t
= ∇ ·

[
K
µl

(
1
α

∇ρl − ρ2
l g
)]

. (11)

In any case we end up with a parabolic equation.
Let us now consider S = 0 . Equation (8) is then

∂

∂t
(ϕρg) + ∇ · (ρgqg) = 0, ⇒ ϕ

∂ Pg

∂t
− ∇ ·

[
Pg

µg
K
(

∇Pg − Pg

rT
g
)]

= 0,

where we have used (3) for expressing ρg in terms of Pg. Of course, one could
have also selected ρg as the primary variable, obtaining

ϕ
∂ρg

∂t
− ∇ ·

[
ρg

µg
K ( rT ∇ρg − ρgg)

]
= 0. (12)

When liquid and vapor are simultaneously present within the porous medium,
the unknowns are : S, Pl and Pg, and we need a constitutive relation to complete
the model. This issue will be analyzed in the following sections.

2.4. Mathematical model in absence of capillarity
The Clapeyron diagram in the (P, T ) plane provides the phase change curves,

separating the different phases. In particular, the so–called saturation pres-
sure curve or boiling pressure curve7

P = P ∗ (T ) ,

separates liquid and vapor phases. Hence, for fixed T , if P > P ∗, then the H2O
is in the liquid phase (Pl = P ). Conversely if P < P ∗ then the H2O is the
gaseous phase (Pg = P ).

When liquid and vapor coexist, Pl and Pg have to be specified constitutively.
If capillary effects are neglected8, the simplest constitutive assumption

(often used in the literature, see [20] for instance) is the following

Pg = Pl = P ∗. (13)

7 For pressure in the range 105 − 107 P a, a good approximation of P ∗ is the following [42],

P ∗ (T ) = Pa exp
{

A +
B

T

}
,

with Pa = 105P a, A = 12, 512, B = −4611, 73 oK.
8Capillarity will be dealt with in the next section.
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In such a case the primary variable becomes the liquid saturation S. Concerning
the densities, we introduce ρ∗

l and ρ∗
g, setting

ρ∗
l = ρl (Pl = P ∗) = ρo

l exp {α (P ∗ − P o
l )} , (14)

ρ∗
g = ρg (Pg = P ∗) = P ∗ (T )

rT
. (15)

Let us now denote by X the global density of the liquid-vapor mixture,
i.e. the mass of H2O per unit volume occupied by water, irrespectively of the
phase. When 0 < S < 1,

X = Sρ∗
l + (1 − S) ρ∗

g, (16)

while

X = ρl, (and X > ρ∗
l ) when S = 1,

X = ρg, (and X 6 ρ∗
g) when S = 0.

Next, we observe that

dX

dS
> 0, when 0 < S < 1,

provided ρ∗
l > ρ∗

g, (always fulfilled if we are far from the critical point). So

ρ∗
g = X (0) < X (S) < X (1) = ρ∗

l , for S ∈ (0, 1) . (17)

We thus may express S in terms of X defining the following function

S (X) =



0, if X 6 X (0) = ρ∗
g,

X − ρ∗
g

ρ∗
l − ρ∗

g

, if ρ∗
g < X < ρ∗

l ,

1 if X > X (1) = ρ∗
l .

Hence, recalling (2) and (3), we may give such general constitutive rela-
tions between Pβ , β = l, g, and X,

Pl (X) =


1
α

ln
(
X

ρo
l

)
+ P o

l , if X > X (1) = ρ∗
l ,

P ∗, if X 6 X (1) = ρ∗
l ,

(18)

Pg (X) =


P ∗, if X > X (0) = ρ∗

g,

rT X , if X 6 X (0) = ρ∗
g .

(19)

7



So, when capillary effects can be neglected, the H2O flow within the porous
medium is governed by the following equation

ϕ
∂X

∂t
− ∇ · [F (X,x) ∇X + G (X,x)] = 0, (20)

where:

• If X > ρ∗
l , 

F (X,x) = 1
αµl

K (x) ,

G (X,x) = −X2

µl
K (x)g.

(21)

• If ρ∗
g < X < ρ∗

l ,
F (X,x) = 0,

G (X,x) = −
(
ρ∗ 2

l

kr, l(S (X))
µl

+ ρ∗ 2
g

kr, g(1 − S (X))
µg

)
K (x) g.

• If X 6 ρ∗
g, 

F (X,x) = X rT

µg
K (x)

G (X,x) = −X2

µg
K (x) g.

(22)

Figure 1: Qualitative behavior of F (X) and G(X), where K = 10−13 m2, T = 553 oK,
g = 9.81 m.s−2, α = 7, 5.10−10 P a−1, P o

l = 7 MP a, ρo
l = 900 kg.m−3, µl = 10−3 P a.s,

µg = 1, 5.10−5 P a.s, kr, l (S) = S3 and kr, g (1 − S) = 1 − S3. Such values of parameters are
typical of geothermal basins at the depth of 2-3 km.

The qualitative behavior of F (X) and G(X) is shown in Figure 1. We remark
that, when ρ∗

g < X < ρ∗
l , (20) is a hyperbolic equation. Indeed, in the presence
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of mixed phases and neglecting (according to (13)) capillary effects, pressure is
just a function of temperature (which in our case is uniform and constant).

In the other cases, i.e. X 6 ρ∗
g, and X > ρ∗

l , (20) is parabolic and reduces
to (12) or to (11).

2.5. Mathematical model when capillary effects are non–negligible.
If capillary phenomena are non–negligible we introduce (when liquid and

vapor coexist) the so–called capillary pressure9

Pc = Pg − Pl, ⇔ Pl = Pg − Pc, (23)

with Pc given by the well known Laplace formula

Pc = 2γ ⟨κ⟩ , (24)

where:

• γ = γ(T ) surface tension (which in our case is constant).

• ⟨κ⟩ mean curvature of the vapor–liquid interface within the REV.

Equation (23) replaces (13). Next, we assume:

A8. The vapor pressure is given by

Pg = P ∗ exp
{

− Pc

rT ρo
l

}
, (25)

i.e. by the the well known Kelvin’s formula [16].

Formula (23) becomes

Pl = −Pc + P ∗ exp
{

− Pc

rT ρo
l

}
. (26)

Having introduced the additional unknown Pc, we need a constitutive rela-
tion linking it to some other variables. According to classical literature (see [7]
and [8], for instance), we assume:

A9. The capillary pressure Pc is an experimentally known function of the
liquid saturation S, i.e.

Pc = P̂c (S) ,

somehow expressing a relationship between ⟨κ⟩ and S. The function P̂c (S)
is usually referred to as saturation curve.

9Since the liquid phase is the wetting phase Pg > Pl, entailing Pc > 0.
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We make some hypotheses on P̂c. We start observing that, when S is small,
i.e. when the capillarity is expected to be important, Pg −Pl must approach its
maximum. On the other hand, when S → 1, i.e. when capillarity phenomena
become negligible, Pg and Pl must both tend to P ∗, in agreement with (13).
We thus suppose that P̂c(S) is bounded and non increasing, namely

0 ≤ Pm
c < P̂c(S) < PM

c , for 0 < S < 1, with Pm
c = P̂c (1) , PM

c = P̂c (0) ,
(27)

and
dP̂c(S)
dS

6 0, 0 6 S 6 1. (28)

The lower and upper bound of P̂c(S), i.e. Pm
c and PM

c , depend, in general, on
the particular structure of the porous matrix. The lower bound Pm

c (usually
referred to as entry pressure) and is very small, so that in many cases can be
considered 0.

We remark that the presence of capillarity diminishes the vapor pressure Pg.
However the amount of decrease of the vapor pressure curve in a geothermal
reservoir, is not completely understood [20].

Next, exploiting (3) and (25), we define

ρg (S) = P ∗

rT
exp

{
− P̂c(S)
rT ρo

l

}

= ρ∗
g exp

{
− P̂c(S)
rT ρo

l

}
, (29)

with ρ∗
g given by (15), and, exploiting (2) and (26),

ρl (S) = ρo
l exp

{
α

[
−P̂c(S) + P ∗ exp

{
− P̂c(S)
rT ρo

l

}
− P o

l

]}

= ρ∗
l exp

{
−α

[
P̂c(S) + P ∗

(
1 − exp

{
− P̂c(S)
rT ρo

l

})]}
, (30)

with ρ∗
l given by (14). We then introduce

ρ∗
g, c = lim

S→0+
ρg (S) , and ρ∗

l, c = lim
S→1−

ρl (S) .

Thus, recalling (27), by (29), we have

ρ∗
g, c = lim

S→0+
ρg (S) = ρ∗

g exp
{

− PM
c

rT ρo
l

}
, (31)

and by (30),

ρ∗
l, c = lim

S→1−
ρl (S) = ρ∗

l exp
{

−α
[
Pm

c + P ∗
(

1 − exp
{

− Pm
c

rT ρo
l

})]}
, (32)
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which, in case Pm
c = 0, gives ρ∗

l, c = ρ∗
l , as physically expected. It is simple to

prove that in the unsaturated zone (0 < S < 1), the densities ρg (S) and ρl (S)
are bounded both above and below

0 < ρ∗
g, c 6 ρg (S) 6 ρ∗

g, (33)

0 < ρo
l e

−α(P M
c +P o

l ) 6 ρl (S) 6 ρ∗
l, c 6 ρ∗

l . (34)

So, when capillarity is not neglected, exploiting (25), (26), (2), and (3) we have

Pl =



1
α

ln
(
ρl

ρo
l

)
+ P o

l , if ρl > ρ∗
l, c,

−P̂c (S) + P ∗ exp

{
− P̂c (S)

rT ρo
l

}
, if ρl < ρ∗

l, c,

(35)

Pg =


ρgrT, if ρg 6 ρ∗

g, c,

P ∗ exp

{
− P̂c (S)

rT ρo
l

}
, if ρg > ρ∗

g, c.
(36)

Recalling now the definition of the global water density (16), we have

X = S ρl (S) + (1 − S) ρg (S) , (37)

with ρg (S), ρl (S) given by (29) and (30), respectively. We require, for physical
coherence, that X (S) is strictly increasing for 0 < S < 1. By using (33) and
(34),

∂X

∂S
= ρl (S) − ρg (S) + S

∂ρl (S)
∂S

+ (1 − S) ∂ρg (S)
∂S

,

> ρl (S) − ρg (S) ,

> ρo
l e

−α(P M
c +P o

l ) − ρ∗
g.

Therefore it is enough that this lower bound function is strictly positive. Its be-
havior depends on the estimate for the maximum value of the capillary function
PM

c satisfying

PM
c <

1
α

ln
(
ρo

l

ρ∗
g

)
− P o

l .

Now using αP ∗ ≪ 1 we see that X (S) is strictly increasing for 0 < S < 1.
So,

X (0) < X (S) < X (1) , for S ∈ (0, 1) ,

where now X (0) = ρ∗
g,c, X (1) = ρ∗

l, c, with ρ∗
g, c, ρ∗

l, c given by (31), (32),
respectively.
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Now, proceeding as in section 2.4, we express S in terms of X setting10

S (X) =


0, if X 6 ρ∗

g, c,

inverse of (37), if ρ∗
g, c < X < ρ∗

l, c ,

1, if X > ρ∗
l, c .

(38)

So, remembering (35) and (36), we have

Pl (X) =



1
α

ln
(
X

ρo
l

)
+ P o

l , if X > ρ∗
l, c,

−P̂c (S (X)) + P ∗ exp

{
− P̂c (S (X))

rT ρo
l

}
, if X < ρ∗

l, c ,

(39)

Pg (X) =


P ∗ exp

{
− P̂c (S (X))

rT ρo
l

}
, if X > ρ∗

g, c ,

rT X , if X 6 ρ∗
g, c ,

(40)

which replace (18) and (19), respectively.
We thus end up again with equation (20), where now:

• If X 6 ρ∗
g, c, or X > ρ∗

l, c, (22) and (21) hold true, respectively.

• If ρ∗
g, c < X < ρ∗

l, c,

F (X,x) =
[
ρl (S (X))

µl
kr, l (S (X)) ∂Pl

∂S

+ρg (S (X))
µg

kr, g (1 − S (X)) ∂Pg

∂S

]
∂S

∂X
K(x), (41)

G (X,x) = −
[

(ρl (S (X)))2

µl
kr, l (S (X)) (42)

+(ρg (S (X)))2

µg
kr, g (1 − S (X))

]
K(x) g. (43)

Note that now, when ρ∗
g, c < X < ρ∗

l, c, (20) is a parabolic equation.

10The inversion of (37) has to be performed numerically.
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2.6. Some comments on the mathematical model
For the model where the capillary effects are taken into account, we will

consider two families of functions for P̂c, kr, l and kr, g (see Table 1). In the
first case the capillary pressure function is a linear function and the relative
permeability functions a cubic function of the saturation. In the second case
the capillary pressure function is given by the van Genuchten model (see [23])
and relative permeability functions by the van Genuchten-Mualem model (see
[32] and [23]).

P̂c (S) kr,l kr,g

Linear PM
c (1 − S) S3 1 − S3

Van G. M. Pr

[
(S)−1/m − 1

]1/n √
S
[
1 −

(
1 − S1/m

)m
]2

1 − kr,l(S)

Table 1: Families of capillary and relative permeability functions. n = 6.6 and m = 1 − 1/n.

When the van Genuchten model is considered, derivative of P̂c, has singu-
larities at S = 0 and S = 1. Therefore, we regularize this function in a small
neighborhood of 0 and 1 by a quadratic function. In particular, we impose the
continuity of P̂c and of its derivatives at S = ε and S = 1 − ε (ε = 10−4 for
example), and we close the system by imposing P̂c (0) = PM

c and P̂c (1) = 0.
We now assume that K = K I, with K uniform so that

F (X) = F (X) I.

Then using the results from the previous subsection, we have

H1 G is locally Lipschitz continuous.

H2
∫ s

0
F (η) dη is a nondecreasing Lipschitz continuous function.

Since, the equation (20) changes the type, we should define precisely the notion
of the variational solution.

A fairly complete theory of the degenerate parabolic equations on a bounded
domain is in the paper [29], generalizing the seminal paper of Carrillo [13]. We
consider the equation (20) in a smooth bounded domain Ω ⊂ Rn, with the
following boundary and initial conditions

X|∂Ω = XD, X|t=0 = X0. (44)

with

H3 X0 ∈ L∞(Ω).

H4 XD ∈ L∞((0, T ) × ∂Ω) and is a trace of a function XD ∈ L∞((0, T ) × Ω)

with
∫ XD

0
F (η) dη ∈ L2(0, T ;H1(Ω)).

13



H5 Let B be a cover for Ω such that, after a change of coordinates, the set
Ω ∩ B is epigraph of a C1,1−function representing the boundary. We
suppose XD ∈ W 1,1((0, T ) × B ∩Q) and ∆XD ∈ L1((0, T ) × B ∩Q), for
every such cover B.

H6 A = min{inf
Ω
X0, inf

Ω×(0,T )
XD} , B = max{sup

Ω
X0, sup

Ω×(0,T )
XD} and M =

max
s∈[A,B]

|dG
dX

(s)|.

Then we set

Definition 1. (see [29], page 2265) A function X ∈ L∞((0, T ) × Ω) is said to

be an entropy weak solution to problem (20), (44), that is, if
∫ X

XD

F (η) dη ∈

L2(0, T ;H1
0 (Ω)) and for every θ ∈ C∞

0 ([0, T ) × Ω),∫ T

0

∫
Ω

(
ϕX∂tθ + (G(X) − ∇

∫ X

0
F (η) dη) · ∇θ

)
dxdt+

∫
Ω
X0θ(0, x) dx = 0

(45)

and if it satisfies the following entropy inequalities for all s ∈ [A,B], for all

ψ ∈ C∞
0 ([0, T ) × Rn) such that ψ ≥ 0 and sign±(

∫ X

XD

F (η) dη)ψ = 0 a.e. on

(0, T ) × ∂Ω:∫ T

0

∫
Ω

{∇(
∫ X

s

F (η) dη)+ · ∇ψ − (G(max{X, s}) − G(s)) · ∇ψ−

ϕ(X − s)+∂tψ} dxdt−
∫

Ω
ϕ(X0 − s)+ψ|t=0 −M

∫ T

0

∫
∂Ω

(XD − s)+ψ dγ(x)dt ≤ 0,

(46)∫ T

0

∫
Ω

{∇(
∫ X

s

F (η) dη)− · ∇ψ + (G(min{X, s}) − G(s)) · ∇ψ−

ϕ(X − s)−∂tψ} dxdt−
∫

Ω
ϕ(X0 − s)−ψ|t=0 −M

∫ T

0

∫
∂Ω

(XD − s)−ψ dγ(x)dt ≤ 0

(47)

After [29], page 2267, Corollary 4.1, we know that under hypothesis (H1)-
(H6 ) there exists a unique weak entropy solution. For more results we refer to
[4], [3], [5] and [28].

In this article we are concerned with calculating the weak entropy solution.
A widely used approach is to perform the change of the unknown function,
using the Kirchhoff transform. It requires the strict positivity of F , which is

equivalent to the invertibility of
∫ X

0
F (η) dη. In our case,

∫ X

0
F (η) dη is

not continuously invertible. The practical remedy to this difficulty is to
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regularize F , in order to have it strictly positive. For such regularized problem,
we know after [13], page 331, that every weak solution is an entropy weak
solution and, consequently, unique.

For the case without capillary pressure, we will use two different regulariza-
tion approaches to determine the entropy solution. The first approach consists
in letting the parameter Pr in the van Genuchten expression (or PM

c for the
linear case) go to 0. The second one is achieved by regularizing the expression
of F (X) without introducing P̂c. In order to have a non-negative F (X) defined
everywhere, we extend it by continuity for the values X 6 0. The regularization
is given by

Fτ (X) =



rT K

µg
τ, if X < 0,

rT K

µg
(X + τ), if 0 6 X 6 ρ∗

g,

rT K

µg
(ρ∗

g + τ) +
rT Kρ∗

g

µg

ρ∗
g −X

τ
if ρ∗

g < X 6 ρ∗
g + τ,

rT K

µg
τ, if ρ∗

g + τ < X 6 ρ∗
l − τ,

( rT K
µg

− K

αµlτ
)(ρ∗

l −X) + K

αµl
, if ρ∗

l − τ < X < ρ∗
l ,

K

αµl
, if X > ρ∗

l ,

(48)
with τ > 0. This procedure can be justified using the results from [12], Theorem
1.1. The stiffness of the problem solved in the paper with respect to the small
parameter τ is discussed in Subsection 3.4. A direct approach to solve the non
regularized problem using a monotone Finite Volume scheme is in the articles
[19] and [29]. Concerning the situation with non-negligible capillary pressure,
there are many references when the diffusive F vanishes after a threshold valued.
We mention the reference [6, 17, 18, 22, 33, 36, 37, 38, 39]. In our approach we
allow both degenerate parabolic and hyperbolic situations.

In Figure 2 we depicted the qualitative behavior of F (X) and the capillary
pressure curves in various cases.

Finally, we regularize in both cases (with and without capillarity) F in a
neighborhood of X = 0.

The equation (20) is further transformed using the Kirchhoff transformation,
i.e. by introducing a nonlinear transformation (see also Figure 2)

Y : [0,+∞) → R, X → Y (X) =
∫ X

0
F (z) dz. (49)

15



Capillary Pressures Graphs of F (X)

Graphs of Y (X) Zoom on a part of Y (X)

Figure 2: Qualitative behaviors of the capillarity pressure functions, and the graphs of F (X)
and of Y (X).

Notice that, after considering F given by (48) (respectively by (41)) for ρ∗
g <

X < ρ∗
l (respectively ρ∗

g, c < X < ρ∗
l, c), we find out that Y (X) is invertible for

X ∈ R. Equation (20) becomes

ϕ
∂X (Y )
∂t

− ∆Y + ∇ · G(X(Y )) = 0. (50)

In both cases (with and without capillary effects), we have introduced a
global equation, formulated through a single variable X which physically rep-
resents the H2O density within the medium. In the zone ρ∗

g < X < ρ∗
l (or

ρ∗
g,c < X < ρ∗

l,c) liquid and vapor are simultaneously present in the porous
medium.

3. Numerical simulations

In this section we present the simulations for four test cases.
The first test case is performed in two independent ways, one using the

software COMSOL Multiphysics (in 1D) and the other using the numerical
model given in (52) and implemented under the MmodD-Scilab project [31]. For
all other tests the second approach was used. The first and second test cases are
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quite similar, in the first we have considered no flux boundary conditions and in
the second Dirichlet boundary conditions. The third test case aims to illustrate
the influence of the isothermal mechanical compressibility factor α. Finally, the
last test case consists in applying our scheme to a more realistic situation.

3.1. Discrete scheme used in the MmodD-Scilab implementation
Let Ω be a bounded domain in R2 with a Lipschitz continuous boundary

∂Ω. Let ΓD and ΓN be disjoint subsets of the boundary so that ∂Ω = ΓD ∪ ΓN .
We are interested in solving (50) with following initial and boundary condi-

tions

Y = YD on ΓD × (0, T ) ,
(∇Y + G(X(Y ))) · ν = g on ΓN × (0, T ) , (51)

Y|t=0 = Y0 (x) on Ω,

where (0, T ) is the time interval, T > 0, and ν is the outer normal of ∂Ω.
The numerical approach employs P1 finite elements in space and the Euler

semi-explicit scheme in time. We use mass lumping approach [33]–[34] with
weakly-acute mesh to garanty the monotonicity. For the diffusion part we use
the implicit scheme and for the non-linear term in the time derivative the explicit
scheme. With N > 0 integer, set δt = T/N and let Th be a decomposition of Ω
into a triangular mesh. h stands for the mesh size. Now the fully discrete P1
finite element approximation of problem (50), (51) reads as follows:

Y 0
h is given by Y 0

h := ΠhY0,
for n = 0, .., N − 1, find Y n+1

h − ΠhYD ∈ Vh such that for all vh ∈ Vh :∫
Ω

Πh

(
ϕ

F (X(Y n
h ))

Y n+1
h − Y n

h

δt
vh

)
dx+

∫
Ω

∇Y n+1
h ∇vh dx

+
∫

Ω
G
(
X
(
Y n+1

h

))
∇vh dx−

∫
ΓN

g vh dΓ = 0, (52)

where Πh is the Lagrange interpolation operator and Vh the P1 linear continuous
finite element space.

Concerning the time stepping, we consider an automatic time-step control
algorithm. Many papers describe the method for constructing adaptive time-
step, see for example [25]. We will use the error per unit step method, for which
we seek to control for a given error tolerance εT

∥Y n+1
h (δt = δtn) − Y n+1

h (δt = 0.5 δtn)∥L2(tn,tn+1;L2(Ω)) 6 ε
T
,

where Y n+1
h (δt = δtn) and Y n+1

h (δt = 0.5 δtn) are the solutions of (52) for δt =
δtn and δt = 0.5 δtn, respectively. More precisely, knowing δtn and two strictly
positive small parameters εsup and εinf , we calculate Y n+1

h for δt = δtn and
δt = 0.5 δtn and the error

εn =
∥Y n+1

h (δt = δtn) − Y n+1
h (δt = 0.5 δtn)∥L2(tn,tn+1;L2(Ω))

∥Y n+1
h (δt = 0.5 δtn)∥L2(tn,tn+1;L2(Ω))

.

17



Then

• if εn > εsup, we recalculate Y n+1
h with δtn = (2/3) δtn (εsup/εn),

• if εinf < εn 6 εsup, we proceed to the next step with δtn+1 = δtn,

• else (εn < εinf ), we proceed to the next step with δtn+1 = δtn (εinf/εn).

3.2. COMSOL Multiphysics
Other numerical method we used for (20) is based on the finite element

method (FEM) and the backward Euler method for the time stepping. To
implement these techniques we used the software COMSOL Multiphysics [15].
COMSOL Multiphysics is a software package for solving and analyzing physical
problems through the extensive and well organized interface of Matlab. The
input data are at Table 3, while Table 2 briefly summarizes the COMSOL
modules used for the simulation. The results, which concern the Test case 1,
are presented in Figure 3.

Numerical details
Finite element Lagrangian quadratic
Degrees of freedom 961
Linear solver PARDISO (direct)

Table 2: Numerical choices.

3.3. Test case 1 : no flux boundary conditions

Fluid and medium parameters Other parameters
Parameter Value Parameter Value
P o

l 7 MP a L 2 km
ρo

l 900 kg.m−3 g 9.81 m.s−2

µl 10−3 P a.s kr,l (S) S3

µg 1, 5.10−5 P a.s kr,g (1 − S) 1 − S3

α 7, 5.10−10 P a−1 P̂c (S) P M
c (1 − S)

T 553 K
r 461.89 J.kg−1.K−1

K 10−13 m2

ϕ 0.4

Table 3: Numerical parameters.

In addition to Comsol Multiphysics simulation, the 2D simulation using
MmodD [31] is performed. The spatial domain is the interval [−L, 0] × [0,H],
with L = 2000m. We suppose initial data depending only on the first vari-
able and the no-flux condition on lateral boundary. Consequently, the solution
depends only on the first variable and the problem is in fact 1D. This allow
comparison with the 1D case. The numerical parameters for this simulation
are given in the Table 3. Initially, the lower part of the domain was saturated
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P M
c (P a) ρ∗

g,c

(
kg.m−3

)
105 25.44
106 25.34
107 24.37
108 16.48

Table 4: Phase transition values with respect to P M
c .

P M
c = 108 P a (absence of gravity) P M

c = 108 P a (presence of gravity)

Figure 3: P M
c = P a, 108 P a. Spatial evolution of the density of water (X) at several times.

The left column corresponds to the case without gravity and the right column corresponds to
the case with gravity.

by liquid H2O, while the upper part contained only vapor. Consequently the
initial condition for X is the Heaviside function centered in x = −L/2. The
function is regularized by a cubic spline. This means that there is a zone at
the middle of the domain in which the fluid is a mixture of vapor and liquid.
The boundary conditions are the no-flux conditions and as initial conditions, we
consider different profiles of the density of water for the different values of PM

c

X0 (x) =


ρ∗

l,c + 1
(
ρ∗

l,c = ρ∗
l

)
, if x ∈ [−L,−1050 m] ,

regularization (cubic spline), if x ∈ [−1050 m,−950 m] ,

ρ∗
g,c −

ρ∗
g,c

ρ∗
l

, if x ∈ [−950 m, 0] .
(53)

Since P̂c (1) = 0, we have ρ∗
l,c = ρ∗

l ≈ 899.66 kg.m−3. The values of ρ∗
g,c,

corresponding to different values of PM
c , are given in the Table 4.

The results of the simulation using COMSOL and MmodD are impossible
to distinguish and they are depicted in Fig. 3-4. On the left part of this figure
we can see the simulation corresponding to the case with no gravity. We may
remark that reducing PM

c (see Figure 4), the gravitational force causes the clear
separation between the liquid and gaseous phases.
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P M
c = 107 P a (absence of gravity) P M

c = 107 P a (presence of gravity)

P M
c = 106 P a (absence of gravity) P M

c = 106 P a (presence of gravity)

P M
c = 105 P a (absence of gravity) P M

c = 105 P a (presence of gravity)

Figure 4: P M
c =

[
105 P a, 106 P a, 107 P a

]
. Spatial evolution of the density of water (X) at

several times. The left column corresponds to the case without gravity and the right column
corresponds to the case with gravity.

3.4. Test case 2 : Dirichlet boundary conditions
The spatial domain is Ω = [0, 1000] × [0, 100] meters, with a mesh size

h = 5/3 m. The initial configuration is the same as in the previous test case,
uniformly with respect to y. We neglect the gravitational effects. The numerical
parameters are given in the Table 5. For the time discretization, we choose an
initial time-step of δt0 = 0.1 s, and take εsup = 2 × 10−5, εinf = 10−5.

The aim of this test case is to show the influence of the capillary effects in

20



Fluid and medium parameters VG-Mualem parameters
Parameter Value Parameter Value
P o

l 7 MP a n 6.6 (see [41])
ρo

l 970 kg.m−3 m 1 − 1/n

µl 10−3 P a.s kr,l (S)
√

S
[
1 −
(

1 − S1/m
)m]2

µg 1, 5.10−5 P a.s kr,g (1 − S) 1 − kr,l (S)
α 7, 5.10−10 P a−1 P̂c (S) Pr

[
(S)−1/m − 1

]1/n

T 553 K
r 461.89 J.kg−1.K−1

K 10−12 m2

ϕ 0.4

Table 5: Numerical parameters.

Pr (P a) P M
c (P a) ρ∗

g,c

(
kg.m−3

)
1.26 × 104 105 25.44
1.26 × 105 106 25.38
6.3 × 105 5 × 106 24.94

Table 6: Phase transition values with respect to Pr and P M
c .

Conditions Domain, boundary regularized model model with capillarity

Initial
x ∈ [0, 450] ρ∗

l + 2/5 ρ∗
l, c + 2/5

x ∈ [450, 550] regularization by a cubic spline
x ∈ [550, 1000] ρ∗

g − 2/5 ρ∗
g, c − 2/5

Boundary

Γt = ]0, 1000[ × {100} no flux condition no flux condition
Γb = ]0, 1000[ × {0} no flux condition no flux condition
Γin = {0} × [0, 100] X = ρ∗

l + 2/5 X = ρ∗
l,c + 2/5

Γout = {1000} × [0, 100] X = ρ∗
g − 2/5 X = ρ∗

g,c − 2/5

Table 7: Initial and boundary conditions. Due to the symmetry, X0 (x, y) = X0 (x) for all
y ∈ [0, 100].

comparison with the regularized model (48). We will vary the values of the
parameter Pr in the regularized expression of van Genuchten and the values
of τ . Since P̂c (1) = 0, we have ρ∗

l,c = ρ∗
l ≈ 899.66 kg.m−3. For the phase

transition gas/liquid + gas, we have ρ∗
g = 25.45 kg.m−3, and the values of ρ∗

g,c,
corresponding to different values of Pr in the capillary pressure function with
PM

c = (10/1.26)Pr, are given in the Table 6.
As initial condition we consider different profiles of the density of water, and

we impose Dirichlet and Neumann boundary conditions, see Table 7.
Saturation S and water density X at various time-steps, for different values

of the regularization parameter τ and different values of Pr, are shown in Figures
5 and 6, respectively. Note that the different solutions converge to a stationary
solution. As can be seen in the figures, the saturation and density of water
have similar profiles from the qualitative point of view. On the other hand,
when the capillary effects in the unsaturated zone become negligible, then we
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τ = 5 × 10−4 kg.m−3, τ/ρo
l ≈ 5.15 × 10−7 Pr = 1.26 × 104 P a, P M

c = 105 P a

τ = 2 × 10−3 kg.m−3, τ/ρo
l ≈ 2.06 × 10−6 Pr = 1.26 × 105 P a, P M

c = 106 P a

τ = 8 × 10−3 kg.m−3, τ/ρo
l ≈ 8.25 × 10−6 Pr = 6.3 × 105 P a, P M

c = 5 × 106 P a

Figure 5: Effective saturation spatial evolution at y = 50 m for several
times. The left three figures correspond to the regularized problem with τ =[
5 × 10−4, 2 × 10−3, 8 × 10−3

]
kg.m−3. Whereas the right three figures correspond to

the model with capillarity for the capillary function given in Table 5 with Pr =[
1.26 × 104, 1.26 × 105, 6.3 × 105

]
P a.

observe the front propagation and a clear separation between the liquid and
gaseous phases. We note that the well-posedness frame for this kind of problem
(hyperbolic equations) is in [5] and [11].

The capillary effects can be finally interpreted as a regularization of the
model where capillary effect are neglected. To complete the discussion one
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τ = 5 × 10−4 kg.m−3, τ/ρo
l ≈ 5.15 × 10−7 Pr = 1.26 × 104 P a, P M

c = 105 P a

τ = 2 × 10−3 kg.m−3, τ/ρo
l ≈ 2.06 × 10−6 Pr = 1.26 × 105 P a, P M

c = 106 P a

τ = 8 × 10−3 kg.m−3, τ/ρo
l ≈ 8.25 × 10−6 Pr = 6.3 × 105 P a, P M

c = 5 × 106 P a

Figure 6: Water density spatial evolution at y = 50 m for several times. The left three figures
correspond to the regularized problem with τ =

[
5 × 10−4, 2 × 10−3, 8 × 10−3

]
kg.m−3.

Whereas the right three figures correspond to the model with capillarity for the capillary
function given in Table 5 with Pr =

[
1.26 × 104, 1.26 × 105, 6.3 × 105

]
P a.

would like to check numerically that the model with diffusion (τ > 0 or P̂c ̸= 0)
converges to the solution of the model whith no capillary effects. The Figure
7 illustrate this situation. Indeed, we represent on this figure the difference
between the approximate solutions of two consecutive elements of a sequence
that converges to 0, where the elements are: the regularization parameters τ or
PM

c . This figure is obtain with fixed dimensionless discretization parameters,
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δ̃t = δt/T ≈ 3.1 × 10−5 and h̃ = h/L ≈ 2 × 10−3 for a simulation time of 3
days and a domain length of 1 km. As expected, one observes a straight line
in logarithmic scale when τ or PM

c are sufficiently small. In the absence of the
benchmark, the observed results confirmed validity of the method.

Figure 7: Normalized L2(0, T, L2(Ω)) difference between consecutive solutions in log-scale

3.5. Influence of the isothermal mechanical compressibility factor
We consider now a smaller domain, given by Ω = [0, 100] × [0, 10] m, with

a mesh size h = 1/8 m. This test case is intended to show the small effect of
the mechanical compressibility factor α on the flow model, considering different
values of it. We will take an initial condition close to 1 for the saturation and
Neumann boundary conditions.

Concerning the time-step control algorithm, we consider an initial time-step
of δt0 = 10−2 s, and take εsup = 10−6, εinf = 10−7. As choice for initial
condition, we set X = 950 kgm−3, which corresponds to S between 0.98306
and 0.98405 for the different values of α. We use same material parameters as
in previous section, i.e., ϕ = 0.4 and K = 10−12 m2. Furthermore we consider
the presence of capillarity effects (see Table 5 with Pr = 1.26 × 106 Pa). We
impose the boundary conditions from Table 7 on Γt and Γb. On Γin, we impose
X = 950, and on Γout, we impose

F (X) ∇X · ν = −0.14 Pa.s.m−1.

Water density at the time t = 1 hour is depicted in Figure 8 for α ∈[
10−9, 5.10−10, 10−10, 10−16]. As physically expected, α has a negligible influ-

ence on the result of the simulation. Based on theses results and the values of α
found in the literature : α = 7, 5.10−10 Pa−1 (see [41]), α = 4.9.10−10 Pa−1 (see
[26]); one can consider that taking into account the mechanical compressibility
of the water in the model has little influence on the dynamics.
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Figure 8: Spatial evolution along the line [0, 100] × {5} of X and S at the time t = 1 hour for
α ∈

[
10−9, 5.10−10, 10−10, 10−16

]
P a−1; where X is the density of water and S the effective

liquid saturation.

Figure 9: Domain geometry.

Geometry parameters Medium parameters
Quantity Value Quantity Value Quantity Value Quantity Value
L1 1 km Rint 2 km K1 10−13 m2 ϕ1 0, 4
L2 1 km Rext 8 km K2 10−14 m2 ϕ2 0, 2

R0 200 m K3 10−18 m2 ϕ3 0, 1

Table 8: Geometry and medium parameters
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Figure 10: Time evolution at the points (100, −500) m, (1000, −500) m, and (1000, −1500) m
of the effective saturation and the liquid pressure.

T = 1 year T = 25 years T = 50 years

T = 100 years T = 500 years T = 1000 years T = 2500 years

Figure 11: Effective saturation at several times.

T = 1 month T = 2 months T = 3 months

T = 4 months T = 6 months T = 1 year T = 50 years

Figure 12: Liquid pressure (in MP a) at several times.

3.6. A 2D test case : “recovering the natural state”
The aim of this section is to apply our scheme to a dynamic outflow problem

in a fully 2D domain.
About the domain geometry, we refer to Figure 9. The domain is composed

by the following parts :
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• A inner right cylinder, which is composed of two zones (whose depths are
L1 and L2, with L = L1 +L2) having different values of permeability and
porosity, i.e. K1, ϕ1 and K2, ϕ2. The radius of such a cylinder is Rint.

• An external cylindrical ring, whose permeability is much smaller than the
previous ones. The external radius of this cylinder is Rext.

• On the top of the domain (i.e. at x = 0) close to the origin r = 0 there is
a portion of the boundary representing the zone from which the fluid can
exit. A specific Dirichlet boundary condition will be defined.

The fluid parameters are the same as in the second test case (see Section 3.4
and [41]). Furthermore we consider the presence of capillarity effects (see Table
5 with Pr = 1.26 × 106 Pa, [41]).
Concerning the initial and boundary conditions we set :

• No flux conditions on all the boundaries except on the lateral boundary
(r = Rext) and on the top boundary (x = 0, 0 6 r 6 R0). On the lateral
boundary we impose the Dirichlet condition X = 970 kg.m−3 and S = 1.
On the top boundary (x = 0, 0 6 r 6 R0), we impose the Dirichlet
condition X = 336.43 kg.m−3 and S = 0.329.

• As initial datum, we consider the porous media initially saturated and
X = 970 kg.m−3.

We refer to the Table 8 for the geometry and medium parameters.
In the Fig.10 the time evolution of effective saturation and the liquid pressure

is depicted at the middle point of the upper domain, the middle point of the
lower cylinder and the point (100,−500) m, which is a point under the zone
from which the fluid can exit from the domain. Figures 11 and 12 show the
saturation and the liquid pressure at several times.

The simulations refer to a simple case modeling “degassing” of a natural
basin. The result show that the saturation reduction is more important close
to the basin exit, which is expected from physical point of view.

4. Conclusions

In this paper we have presented an original approach for analyzing the flow
within low porosity porous media of water, which can be in the liquid and in the
vapor state. The study has been performed considering isothermal conditions.
The aim of the paper is to simulate liquid/vapor system using only one PDE.

We have described the state of system introducing a single variable X, repre-
senting the global liquid-vapor mixture density. The evolution of X is governed
by a PDE which, according to the importance of capillary phenomena, can
take different structures. Indeed, in case of non–negligible capillary effects, the
equation turns out to be a parabolic, which degenerates to a hyperbolic equation
when capillarity is ignored. The flow has been modeled by means of Darcy’s
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law, the vapor as a perfect gas and the liquid as a mechanically compressible
fluid.

We have performed numerical simulations considering different domains and
different sets of physical parameters.

We have performed also simulations considering different values of the liquid
mechanical compressibility factor, with the aim of showing that it has little
influence on the flow dynamics.
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