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Abstract

We consider Laplace and Stokes operators in domains with rough
boundaries and search for an effective boundary condition. The method
of homogenization, coupled with the boundary layers, is used to obtain
it. In the case of the homogeneous Dirichlet condition at the rough
boundary, the effective law is Navier’s slip condition, used in the com-
putations of viscous flows in complex geometries. The corresponding
effective coefficient is determined by upscaling. It is given by solving
an appropriate boundary layer problem. Finally we address applica-
tion to the drag reduction. In this review article we will explain how
those results are obtained, give precise references for technical details
and present open problems.
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1 Introduction

Boundary value problems involving rough boundaries arise in many applica-
tions, like flows on surfaces with fine longitudinal ribs, rough periodic surface
diffraction, cracks for elastic bodies in such situations etc.

An important class of problems is modeling reinforcement by thin layers
with oscillating thickness (see e.g. Buttazzo and Kohn [25] and references
therein). Reinforcement is described by an important contrast in the coeffi-
cients and in the Γ-limit a Robin type boundary condition, with coefficients
of order 1, is obtained. Its value is calculated using finite cell auxiliary prob-
lems.

Next we can mention homogenization of elliptic problems with the Neu-
mann boundary conditions in domain with rapidly oscillating locally periodic
boundaries, depending on small parameter. For more details we refer to [27].

The main goal of this review is to discuss the effective boundary conditions
for the Laplace equation and the Stokes system with homogeneous Dirichlet
condition at the rough boundary.

In fluid mechanics the widely accepted boundary condition for viscous
flows is the no-slip condition, expressing that fluid velocity is zero at an
immobile solid boundary. It is only justified where the molecular viscosity
is concerned. Since the fluid cannot penetrate the solid, its normal velocity
is equal to zero. This is the condition of non-penetration. To the contrary,
the absence of slip is not very intuitive. For the Newtonian fluids, it was
established experimentally and contested even by Navier himself (see [44]).
He claimed that the slip velocity should be proportional to the shear stress.
The kinetic-theory calculations have confirmed Navier’s boundary condition,
but they give the slip length proportional to the mean free path divided by
the continuum length (see [47]). For practical purposes it means a zero slip
length, justifying the use of the no-slip condition.

In many cases of practical significance the boundary is rough. An example
is complex boundaries in the geophysical fluid dynamics. Compared with the
characteristic size of a computational domain, such boundaries could be con-
sidered as rough. Other examples involve sea bottoms of random roughness
and artificial bodies with periodic distribution of small bumps. A numerical
simulation of the flow problems in the presence of a rough boundary is very
difficult since it requires many mesh nodes and handling of many data. For
computational purposes, an artificial smooth boundary, close to the original
one, is taken and the equations are solved in the new domain. This way
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the rough boundary is avoided, but the boundary conditions at the artifi-
cial boundary are not given by the physical principles. It is clear that the
non-penetration condition v · n = 0 should be kept, but there are no rea-
sons to keep the full no-slip condition. Usually it is supposed that the shear
stress is a non-linear function F of the tangential velocity. F is determined
empirically and its form varies for different problems. Such relations are
called the wall laws and classical Navier’s condition is one example. Another
well-known example is modeling of the turbulent boundary layer close to the
rough surface by a logarithmic velocity profile
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ρ
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(1)

where vτ is the tangential velocity, y is the vertical coordinate and τw the
shear stress. ρ denotes the density and µ the viscosity. κ ≈ 0.41 is the von
Kármán’s constant and C+ is a function of the ratio k+

s of the roughness
height ks and the thin wall sublayer thickness δv = µ

vτ
. For more details we

refer to the book of Schlichting [49] .

Justifying the logarithmic velocity profile in the overlap layer is mathe-
matically out of reach for the moment. Nevertheless, after recent results [35]
and [37] we are able to justify the Navier’s condition for the laminar incom-
pressible viscous flows over periodic rough boundaries. In [37] the Navier law
was obtained for the Couette turbulent boundary layer. We note generaliza-
tion to random rough boundaries in [15].

In the text which follows, we are going to give a review of rigorous results
on Navier’s condition.

Somewhat related problem is the homogenization of the Poisson equation
in a domain with a periodic oscillating boundary and we start by discussing
that situation.

2 Wall law for Poisson’s equation with the

homogeneous Dirichlet condition at the rough

boundary

In our knowledge, mathematically rigorous investigations of the effective wall
laws started with the paper by Achdou and Pironneau [1]. They considered
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Poisson’s equation in a ring with many small holes close to the exterior
boundary. They create an oscillating perforated annular layer close to the
outer boundary. The amplitude and the period of the oscillations are of
order ε and the homogeneous Dirichlet condition is imposed on the solution.
In the paper by Achdou and Pironneau [1] the homogenized problem was
derived. The rough boundary was replaced by a smooth artificial one and the
corresponding wall law was the Robin boundary condition, saying that the
effective solution u was proportional to the characteristic roughness ε times
its normal derivative. The proportionality constant was calculated using
an auxiliary problem for Laplace’s operator in a finite cell. Nevertheless,
in [1] the conductivity of the thin layer close to the boundary is not small
and, contrary to [25], the homogenized boundary condition contains an ε.
Consequently, it is not clear that using the finite cell for the auxiliary problem
gives the the H1-error estimate from [1]. Despite this slight criticism, the
reference [1] is a pioneering work since it was first to point out that a) keeping
homogeneous Dirichlet boundary condition gives an approximation; b) the
wall law is a correction of the previous approximation and c) the wall laws
are valid for curved rough boundaries.

The readable error estimate for the wall laws, in the case of Poisson’s
equation and the flat rough boundary is in the paper by Allaire and Amar [4] .
They considered a rectangular domain having one face which was a periodic
repetition of εΓg and the same boundary value problem as in [1] except
periodic lateral conditions. Then they introduced the following auxiliary
boundary layer problem in the infinite strip Γg×]0, +∞[ :

Find a harmonic function ψ, ∇ψ ∈ L2, periodic in y′ = (y1, . . . , yn−1)
and having a value on Γg equal to its parametric form. The classical theory
(see e.g. [46] or [39]) gives existence of a unique solution which decays ex-
ponentially to a constant d. The conclusion of [4] was that the homogenized

solution ūε obeyed the wall law ūε = εd
∂ūε

∂xn

on the artificial boundary and

gave an interior H1-approximation of order ε3/2. We note the difference in
determination of the proportionality constant in the wall law between papers
[1] and [4].

It should be pointed out that there is a similarity between the homoge-
nization of Poisson’s equation in partially perforated domain and obtaining
wall laws for the same equations in presence of rough boundaries. In [30] an
effective Robin condition, analogous to one from [1] and [4] was obtained for
the artificial boundary in the case of partially perforated domain.
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Other important work on Laplace’s operator came from the team around
Y. Amirat and J. Simon. They were interested in the question if presence of
the roughness diminishes the hydrodynamical drag. We will be back to this
question in Sec. §4. In [7] and [8] they undertook study on the Couette flow
over a rough plate. For the special case of longitudinal grooves, the problem
is reduced to the Laplace operator. This research for the case of Laplace
operator and for complicated roughness was continued in the doctoral thesis
[28] and articles [11], [12] and [21].

Even if the homogeneous Dirichlet condition at the rough boundary is
meaningful mostly for flow problems, it makes sense to study the case of
Poisson equation. Following Bechert and Bartenwerfer [17] we can interpret
it as simplified Stokes system for longitudinal ribs at the outer boundary.
Mathematically, it is much easier to treat Laplace’s operator than technically
complicated Stokes system. We start with a simple problem, which would
serve us to present the main ideas.

2.1 The geometry and statement of the model problem

Figure 1: Domain Ωε with the rough boundary Bε

We consider the Poisson equation in a domain Ωε = P ∪ Σ ∪ Rε con-
sisting of the parallelepiped P = (0, L1) × (0, L2) × (0, L3), the interface

Σ = (0, L1)× (0, L2)× {0} and the layer of roughness Rε =

(
∪{k∈Z2}ε

(
Y +

(k1b1, k2b2,−b3)
)) ∩

(
(0, L1) × (0, L2) × (−εb3, 0)

)
. The canonical cell of
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roughness Y ⊂ (0, b1) × (0, b2) × (0, b3) is defined in Subsection §2.2. Let
Υ = ∂Y \ Σ. For simplicity we suppose that L1/(εb1) and L2/(εb2) are in-
tegers. Let I = { k ∈ Z2 : 0 ≤ k1 ≤ L1/b1; 0 ≤ k2 ≤ L2/b2 }. Then,
the rough boundary is Bε = ∪{k∈I}ε

(
Υ + (k1b1, k2b2,−b3)

)
. It consists of a

large number of periodically distributed humps of characteristic length and
amplitude ε, small compared with a characteristic length of the macroscopic
domain. Finally, let Σ2 = (0, L1)× (0, L2)× {L3}.

We suppose that f ∈ C∞(Ωε), periodic in (x1, x2) with period (L1, L2),
and consider the following problem:

−4vε = f in Ωε, (2)

vε = 0 on Bε ∪ Σ2, (3)

vε is periodic in (x1, x2) with period (L1, L2). (4)

Obviously problem (2)-(4) admits a unique solution in H(Ωε), where

H(Ωε) = {ϕ ∈ H1(Ωε) : ϕ = 0 on Bε ∪ Σ2,

ϕ is periodic in x′ = (x1, x2) with period (L1, L2) }. (5)

By elliptic regularity, vε ∈ C∞(Ωε). Every element of H(Ωε) is extended by
zero to (0, L1)× (0, L2)× (−b3, 0) \Rε.

STEP1: ZERO ORDER APPROXIMATION.

We consider the problem

−4u0 = f in P, (6)

u0 = 0 on Σ ∪ Σ2, (7)

u0 is periodic in (x1, x2) with period (L1, L2). (8)

Obviously problem (6)-(8) admits a unique solution in H(P ) and, after ex-
tension by zero to (0, L1)× (0, L2)× (−b3, 0), it is also an element of H(Ωε).
Obviously

vε ⇀ u0, weakly in H(P ).

We wish to have an error estimate.
First we need estimates of the L2-norms of the function in a domain

and at a boundary using the L2-norm of the gradient. Here the geometrical
structure is used in essential way. We have:
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Proposition 1. Let ϕ ∈ H(Ωε). Then we have

‖ϕ‖L2(Σ) ≤ Cε1/2‖∇xϕ‖L2(Ωε\P )3 , (9)

‖ϕ‖L2(Ωε\P ) ≤ Cε‖∇xϕ‖L2(Ωε\P )3 . (10)

This result is well-known and we give its proof only for the comfort of the
reader.

Proof. Let ϕ̃(y) = ϕ(εy), y ∈ Y +(k1, k2,−b3). Then ϕ̃ ∈ H1(Y +(k1, k2,−b3)),∀k,
and ϕ = 0 on Υ + (k1, k2,−b3). Therefore by the trace theorem and the
Poincaré’s inequality

∫

{y3=0}∩Ȳ +(k1,k2)

| ϕ̃(ỹ, 0) |2 dỹ ≤ C

∫

Y +(k1,k2,−b3)

| ∇yϕ̃ |2 dy.

Change of variables and summation over k gives

(

∫

Σ

| ϕ(x̃, 0) |2 dx̃)1/2 ≤ Cε1/2(

∫

Rε

| ∇xϕ(x) |2 dx)1/2

and (9) is proved.
(10) is well-known (see e.g. Sanchez-Palencia [48] ).

Next we introduce w = vε − u0. Then we have

−∆w =

{
0, in P
f, in Rε,

(11)

and w ∈ H(Ωε) satisfies the variational equation

−
∫

Σ

∂u0

∂x3

ϕ dS +

∫

Ωε

∇w∇ϕ dx =

∫

Rε

fϕ dx, ∀ϕ ∈ H(Ωε). (12)

After testing (12) by ϕ = w, and using Proposition 1 we get

∫

Ωε

|∇w|2 dx ≤ |
∫

Rε

fw dx|+ |
∫

Σ

∂u0

∂x3

w dS| ≤ C
√

ε||w||L2(Rε). (13)

We conclude that
||∇(vε − u0)||L2(Ωε) ≤ C

√
ε. (14)

Could we get some more precise error estimates?
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Answer is positive. First, after recalling that the total variation of ∇w is
given by

∫

Ωε

|∇w| dx = sup{
∫

Ωε

w div s dx : s ∈ C1
0(Ωε;R3), |s(x)| ≤ 1, ∀x ∈ Ωε},

we conclude that
||vε − u0||BV (Ωε) ≤ Cε. (15)

Next, we need the notion of the very weak solution of the Poisson equation:

Definition 2. Function B ∈ L2(P ) is called a very weak solution of the
problem




−∆B = G ∈ H−1(P ), inP
B = ξ ∈ L2(Σ ∪ Σ2), onΣ ∪ Σ2

B is periodic in (x1, x2) with period (L1, L2).
(16)

if

−
∫

P

B∆ϕ dx−
∫

Σ2

∂ϕ

∂x3

ξ dS+

∫

Σ

∂ϕ

∂x3

ξ dS =

∫

P

Gϕ dx, ∀ϕ ∈ H(P )∩C2(P̄ ).

We recall the following result on very weak solutions to Poisson equation,
which is easily proved using transposition:

Lemma 3. The problem (16) has a unique very weak solution such that

{ ||B||L2(Σ) ≤ C{||ξ||L2(Σ∪Σ2) + ||G||H−1(P )};
||B||L2(P ) ≤ C{||ξ||L2(Σ∪Σ2) + ||G||H−1(P )}. (17)

Direct consequence of Lemma 3 is the estimate

{ ||vε − u0||L2(Σ) ≤ Cε;
||vε − u0||L2(P ) ≤ Cε.

(18)

Now we see that if we want to have a better estimate, an additional correction
is needed.
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2.2 Laplace’s boundary layer

The effects of roughness occur in a thin layer surrounding the rough bound-
ary. In this subsection we construct the 3D boundary layer, which will be
used in taking into account the effects of roughness.

We start by prescribing the geometry of the layer. Let bj, j = 1, 2, 3
be 3 positive constants. Let Z = (0, b1) × (0, b2) × (0, b3) and let Υ be
a Lipschitz surface y3 = Υ(y1, y2), taking values between 0 and b3. We
suppose that the rough surface ∪k∈Z2

(
Υ + (k1b1, k2b2, 0)

)
is also a Lipschitz

surface. We introduce the canonical cell of roughness (the canonical hump)
by Y =

{
y ∈ Z : b3 > y3 > max{0, Υ(y1, y2)}

}
.

The crucial role is played by an auxiliary problem. It reads as follows:
Find β that solves

−4yβ = 0 in Z+ ∪ (Y − b3~e3) (19)

[
β
]
S
(·, 0) = 0 and

[ ∂β

∂y3

]S(·, 0) = 1 (20)

β = 0 on (Υ− b3~e3), β is y′ = (y1, y2)− periodic, (21)

where S = (0, b1) × (0, b2) × {0}, Z+ = (0, b1) × (0, b2) × (0, +∞), and
Zbl = Z+ ∪ S ∪ (Y − b3~e3).

Figure 2: Boundary layer containing the canonical roughness

Let V = {z ∈ L2
loc(Zbl) : ∇yz ∈ L2(Zbl)

3; z = 0 on (Υ − b3~e3); and z
is y′ = (y1, y2)-periodic }. Then, by Lax-Milgram lemma, there is a unique
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β ∈ V satisfying
∫

Zbl

∇β∇ϕ dy = −
∫

S

ϕ dy1dy2, ∀ϕ ∈ V. (22)

By the elliptic theory, any variational solution β to (19)-(21) satisfies β ∈
V ∩ C∞(Z+ ∪ (Y − b3~e3)) .

Lemma 4. For every y3 > 0 we have
∫ b1

0

∫ b2

0

β(y1, y2, y3) dy1dy2 = Cbl =

∫

S

β dy1dy2 = −
∫

Zbl

|∇β(y)|2 dy < 0.

(23)
Next, let a > 0 and let βa be the solution for (19)-(21) with S replaced by
Sa = (0, b1)× (0, b2)×{a} and Z+ by Z+

a = (0, b1)× (0, b2)× (a, +∞). Then
we have

Ca,bl =

∫ b1

0

∫ b2

0

βa(y1, y2, a) dy1 = Cbl − ab1b2. (24)

Proof. Integration of the equation (19) over the section, gives for any y3 > a

d2

dy2
3

∫ b1

0

∫ b2

0

βa(y1, y2, y3) dy1dy2 = 0 on (a, +∞). (25)

Since βa ∈ V , we conclude that

∫ b1

0

∫ b2

0

βa(y1, y2, y3) dy1dy2 is constant on

(a, +∞). Then the variational equation (22) yields (23).
Next we have

Ca,bl =

∫ b1

0

∫ b2

0

βa(y1, y2, c) dy1dy2, ∀c ≥ a.

Let 0 ≤ c1 < a < c2. Integration of the equation (19) over (c1, c2) gives

∫ b1

0

∫ b2

0

{∂βa

∂y3

(y1, y2, c2)− ∂βa

∂y3

(y1, y2, a + 0)+

∂βa

∂y3

(y1, y2, a− 0)− ∂βa

∂y3

(y1, y2, c1)
}

dy1dy2 = 0.

Hence from (20) and (25) we get

d

dy3

∫ b1

0

∫ b2

0

βa(y1, y2, y3) dy1dy2 = −b1b2, for c1 < y3 < a
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and∫ b1

0

∫ b2

0

βa(y1, y2, y3) dy1dy2 = (a− y3)b1b2 + Ca,bl, for 0 ≤ y3 ≤ a.

(26)
The variational equation for βa − β reads
∫

ZBL

∇(βa−β)∇ϕ dy = −
∫ b1

0

∫ b2

0

(ϕ(y1, y2, a)−ϕ(y1, y2, 0)) dy1dy2, ∀ϕ ∈ V.

Testing with ϕ = βa − β and using (26) yields
∫

ZBL

|∇(βa−β)|2 dy = −
∫ b1

0

∫ b2

0

(βa(y1, y2, a)−βa(y1, y2, 0)) dy1dy2 = ab1b2.

From the other hand∫

ZBL

|∇(βa − β)|2 dy =

∫

ZBL

|∇βa|2 dy +

∫

ZBL

|∇β|2 dy−

2

∫

ZBL

∇βa∇β dy = Cbl − Ca,bl

and formula (24) is proved.

Next we search to establish the exponential decay. For the Laplace opera-
tor the result is known for long time. General reference for the decay of solu-
tions to boundary layer problems corresponding to the operator −div (A∇u),
with bounded and positively definite matrix A is [46], where a Saint Venant
type estimate was proved. A very readable direct proof for similar setting
and covering our situation, is in [4] and in [6]. Nevertheless one of the first
known proofs for the case of second order elliptic operators in divergence
form is in [39]. Here we will present the main steps of that approach from
late seventies.

This early result is based on the following Tartar’s lemma:

Lemma 5. (Tartar’s lemma) Let V and V0 be two real Hilbert spaces such
that V0 ⊂ V with continuous injection. Let a be a continuous bilinear form
on V × V0 and M a surjective continuous linear map between V and V0. We
assume that

a(u,Mu) ≥ α||u||2V , α > 0, ∀u ∈ V (27)

and f ∈ V ′
0 . Then there exists a unique u ∈ V such that

a(u, v) =< f, v >V ′0 ,V0
, ∀v ∈ V0. (28)
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Proof. For the proof see [39]. We note that this is a variant of Lax-Milgram
lemma.

Now we suppose that

A = A(y) is a matrix such that A(y)ξ · ξ ≥ CA|ξ|2, a.e. and

||Aij||∞ ≤ C̄A; g ∈ H1
per(S); eδ0y3f ∈ L2(Z+) for some δ0 > 0, (29)

and consider the problem

−div y(A(y)∇yβ) = f in Z+ (30)

β is y′ = (y1, y2)− periodic ; β = g on S. (31)

We have the following result

Proposition 6. Under conditions (29) the problem (30)-(31) admits a unique
solution such that for some δ ∈ (0, δ0) we have





∫ ∞

0

∫ b1

0

∫ b2

0

e2δy3|∇yβ|2 dy < +∞;
∫ ∞

0

∫ b1

0

∫ b2

0

e2δy3|β − 1

b1b2

∫ b1

0

∫ b2

0

β(t, y3) dt|2 dy < +∞.

(32)

Proof. We just repeat the main steps from the proof from [39]. It relies on
Tartar’s lemma.

We introduce the spaces V and V0 by

V = {z ∈ L2
loc((0, +∞); H1

per((0, b1)× (0, b2))) : eδy3∇z ∈ L2(Z+) and z|S = 0}
V0 = {z ∈ V : eδy3z ∈ L2(Z+)}.

the associated bilinear form is

a(u, v) =

∫

Z+

A∇u∇(e2δy3v) dy, u ∈ V, v ∈ V0, (33)

and the linear form is

< f, v >V ′0 ,V0
=

∫

Z+

e2δy3fv dy, v ∈ V0. (34)

Obviously, the linear form is continuous for δ ≤ δ0. Same property holds for
the bilinear form a.
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In the next step we introduce the operator M by setting

Mu(y) = u(y)− 2δ

b1b2

∫ y3

0

∫ b1

0

∫ b2

0

e−2δ(y3−t)u(y1, y2, t) dy1dy2dt. (35)

Using Poincaré’s inequality in H1
per((0, b1)× (0, b2)) we get

eδy3Mu ∈ L2(Z+) and Mu ∈ V0 for δ < δ0. (36)

We note that M is surjective since the equation Mu = v, v ∈ V0, admits a
solution u = v + 2δ

∫ y3

0
< v >(0,b1)×(0,b2) (t) dt ∈ V.

Concerning ellipticity, a direct calculation yields

a(u,Mu) ≥ (α− 2δCP ||A||∞)||eδy3∇u||L2(Z+), (37)

where Cp is the constant in Poincaré’s inequality in H1
per((0, b1) × (0, b2)).

Therefore, for δ < min{δ0,
α

2Cp

1

||A||∞)
} we have the ellipticity and the Propo-

sition is proved.

Next, by refining the result of Proposition 6 we get the pointwise expo-
nential decay, as in [46].

2.3 Rigorous derivation of the wall law

After constructing the boundary layer, we are ready for passing to the next
order

STEP 2: NEXT ORDER CORRECTION:

From the proof of (13) we see that the main contribution comes from
the term corresponding to the artificial interface Σ. Therefore one should

eliminate the term

∫

Σ

∂u0

∂x3

ϕ dS. The correction is given through a new

unknown uBL,ε and we search for uBL,ε ∈ H(Ωε) such that∫

Σ

∂u0

∂x3

ϕ dS +

∫

Ωε

∇uBL,ε∇ϕ dx = 0, ∀ϕ ∈ H(Ωε). (38)

Since the geometry is periodic this problem can be written as
∑

{k∈Z2 : (εk1,εk2)∈(0,L1)×(0,L2)}

{∫

Υ+(εk1b1,εk2b2)

∂u0

∂x3

|x3=0ϕ|x3=0 dS+

∫

εZbl+(εk1b1,εk2b2,0)

∇uBL,ε∇ϕ dx

}
= 0. (39)
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For
∂u0

∂x3

|Σ constant, by uniqueness, the solution to (39) would read uBL,ε =

εβ(x/ε)
∂u0

∂x3

|Σ, where β is the solution for (22). In general this is not the case,

but this is the candidate for a good approximation. also, the boundary layer
function β does not satisfy the homogeneous Dirichlet boundary condition at
Σ2. In order to have correct boundary condition we introduce an auxiliary
function v by





−∆v = 0 in P

v =
∂u0

∂x3

|Σ on Σ and v = 0 on Σ2,

v is (y1, y2)− periodic.

(40)

Therefore we search for uBL,ε in the form

uBL,ε = ε

(
(β(

x

ε
)− Cbl

b1b2

H(x3))
∂u0

∂x3

|Σ +
Cbl

b1b2

v(x)H(x3)

)
− wε, (41)

where Cbl < 0 is a uniquely determined constant such that eδy3(β(y)− Cbl

b1b2

) ∈
L2(Z+) (the boundary layer tail). By Proposition 6 we know that such
constant exists and is uniquely determined.

Next by direct calculation, as in [35], we get

• div (∇(β(
x

ε
)
∂u0

∂x3

|Σ)) is bounded by Cε3/2 in H−1.

• Jump of the normal derivative of εv at Σ leads also to a term which is
bounded by Cε3/2 in H−1.

• Corresponding terms in Rε are even smaller.

Then after testing by wε = vε−u0+ε

(
(β(

x

ε
)− Cbl

b1b2

H(x3))
∂u0

∂x3

|Σ+
Cbl

b1b2

v(x)H(x3)

)
,

we get that { ||∇wε||L2(Ωε) ≤ Cε3/2,
||wε||L2(Σ) + ||wε||L2(Ω) ≤ Cε2.

(42)

STEP 3: Derivation of the wall law
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Having obtained a good approximation for the solution of the original
problem, we get the wall law. We start by a formal derivation:

At the interface Σ we have

∂vε

∂x3

=
∂u0

∂x3

− ∂β(x
ε
)

∂x3

∂u0

∂x3

+ O(ε)

and
vε

ε
=

u0

ε
− ∂u0

∂x3

β(
x

ε
) + O(ε).

After averaging, and using that Cbl =

∫ b1

0

∫ b2

0

β(y1, y2, 0) dy1y2 and that the

mean of the normal derivative is zero, we obtain the familiar form of the wall
law

ueff = −ε
Cbl

b1b2

∂ueff

∂x3

on Σ, (43)

where ueff is the average over the impurities and Cbl < 0 is defined by (23).
The higher order terms are neglected.

Let us now give a rigorous justification of the wall law (43). First we
introduce the effective problem:





−∆ueff = f in P

ueff = −ε
Cbl

b1b2

∂ueff

∂x3

= ε
Cbl

b1b2

∂ueff

∂n
on Σ and ueff = 0 on Σ2,

ueff is (y1, y2)− periodic.
(44)

How close is ueff to vε? In the difference vε − ueff = wε + u0 − ε

(
(β(

x

ε
)−

Cbl

b1b2

H(x3))
∂u0

∂x3

|Σ +
Cbl

b1b2

v(x)H(x3)

)
− ueff , the error estimate (42) implies

that wε is negligible. Next ε

(
β(

x

ε
) − Cbl

b1b2

)
∂u0

∂x3

|Σ is O(ε3/2) in L2(P ) and

O(ε2) in L1(P ). Therefore it is enough to consider the function zε = u0 −
ε

Cbl

b1b2

v(x)− ueff . What do we know about this function?

First, we have ∆(u0 − ε
Cbl

b1b2

v(x) − ueff ) = 0 in P . Then on the lateral

boundaries and on Σ2 it satisfies homogeneous boundary conditions. Finally
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on Σ we have

zε = −ε
Cbl

b1b2

∂zε

∂x3

+ ε2(
Cbl

b1b2

)2 ∂v

∂x3

.

Hence zε solves the variational equation

∫

P

∇zε∇ϕ dx− b1b2

εCbl

∫

Σ

zεϕ dS = −εCbl

b1b2

∫

Σ

∂v

∂x3

ϕ dS, ∀ϕ ∈ H(P ). (45)

Testing (45) by ϕ = zε yields

||∇zε||L2(P ) ≤ Cε3/2, ||zε||L2(Σ) ≤ Cε2 and ||zε||L2(P ) ≤ Cε2. (46)

Using (42), (46) and estimates for the boundary layer β we conclude that




||vε − ueff ||L2(P ) ≤ Cε3/2,

||vε − ueff ||H1
loc(P ) ≤ Cε3/2,

||vε − ueff ||L1(P ) ≤ Cε2.

(47)

Note that the approximation on Σ is not good. In fact the boundary layer is
concentrated around Σ and there is a price to pay for neglecting it.

STEP 4: Invariance of the wall law

It remains to prove that translation of the artificial boundary of order
O(ε) does not change our effective solution. We have established in Lemma
4 the formula (24), showing how the boundary tail changes with translation
of the artificial interface for a. Next using the smoothness of ueff we find out
that ueff (·, x3− aε) satisfies the wall law at x3 = a with error O(ε2). Now if
f does not depend on x3, we see that the translation of the artificial boundary
at O(ε) changes the result at order O(ε2). Things are more complicated if f
depends on x3.

2.4 Some further questions: almost periodic rough bound-
aries and curved rough boundaries

In the above sections the roughness was periodic. This corresponds to uni-
formly distributed rough elements. This is acceptable for industrially pro-
duces surfaces. Natural rough surfaces contain random irregularly distributed
roughness elements.

In applications it is important to derive wall laws for random surfaces.
The natural question to be raised is if our construction still works in that
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case. In estimates we were using Poincaré’s inequality and clearly one should
impose that our roughness layer does not become of large size with positive
probability. But the real difficulty is linked to construction of boundary
layers without periodicity assumption.

In this direction there is a recent progress for flow problems (see e.g. [15]),
but still there are open questions.

Let us discuss the question of decay at infinity of boundary layers which
is crucial for our estimates. We will follow the results by Amar et al from [5].

For sake of simplicity, we shall work in IR2. Our equation will be posed
in the half space Π = {(x, y) ∈ R2 : y > 0}, whose boundary ∂Π is the real
axis {(x, y) ∈ R2 : y = 0}. Let h : R → R be a smooth function, which is
almost-periodic in the sense of Bohr (simply, almost-periodic), which means
that for every δ > 0, there exists a strictly positive number `δ > 0 such
that for every real interval of length `δ there exists a number τδ satisfying
sup
x∈R

|h(x+τδ)−h(x)| ≤ δ. A well known reference on almost-periodic functions

is the book [19].
For any almost-periodic function h, the asymptotic average M [h] =

lim
T→+∞

1

2T

∫ T

−T

h(x)dx is well defined. Furthermore we can associate with h

its generalized Fourier series, given by

h(x) ∼
∑

λ∈R
h̃(λ)eiλx, h̃(λ) = lim

T→+∞
1

2T

∫ T

−T

h(x)e−iλxdx.

The number h̃(λ) is the Fourier coefficient of h associated to the frequency
λ. It is well known that there exists at most a countable set of frequencies
for which the Fourier coefficients are different from zero. Also the Parseval
identity holds.

Now, in analogy with the periodic case and with almost-periodic data on
∂Π, we expect to find solutions to Laplace equation that are almost-periodic
in the x variable and decay to a certain constant, say d, as y tends to infinity.
In the periodic case d was equal to the average of h. In the almost-periodic
case, d is given by the asymptotic average M [h], that we may fix to be zero
without loss of generality. In analogy with the periodic case, we introduce
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the following space of weakly decaying functions

L2
ap(Π) = {ψ : x → ψ(x, y) is almost–periodic ∀y ≥ 0, ||ψ||2 =

∫ +∞

0

[
lim

T→+∞
1

2T

∫ T

−T

ψ2(x, y) dx
]

dy =

∫ +∞

0

M
[
ψ2](y) dy < +∞}.

As noted in [5], a trouble with L2
ap(Π) is that it is not complete. This is a

known disadvantage of Besicovitch’s spaces.
Next we study our boundary layer problem. For a given smooth almost-

periodic function h it reads
{

∆ψ = 0 in Π,
ψ(x, 0) = h(x) on ∂Π, M [h] = 0.

(48)

It is well known that the unique smooth bounded solution for (48) is given
by

ψ(x, y) =
1

π

∫

R

yh(t)

(x− t)2 + y2
dt. (49)

Then we have the following result

Theorem 7. (see [5]) Let ψ be the unique bounded solution of (48). Then,
for every fixed y > 0, the function x → ψ(x, y) is an almost-periodic function.
Moreover, for any given γ0 > 0, the following equivalence condition holds:
||ψeγy|| < +∞ for every 0 < γ < γ0 if and only if h̃(λ) = 0 for every |λ| < γ0.

Further analysis in [5] lead to the conclusion that the necessary and suf-
ficient condition for the exponential decay is that the frequencies λ of h are
far from zero. It is worthwhile to point out that, in the purely periodic case,
the frequencies are always far from zero and hence the exponential decay of
the solution is in accordance with previous theorem. On the contrary, in
the general almost-periodic case, the exponential decay property fails if the
frequencies of h accumulate at zero. Difficulties are illustrated through the
following explicit example from [5]:

Let h(x) =
+∞∑
n=1

1

n2
sin(

x

n3
). Then the the series converges uniformly, the

function h is well defined, almost-periodic and satisfies M [h] = 0. With this
h, the problem (48) has a unique bounded solution

ψ(x, y) =
+∞∑
n=1

1

n2
sin(

x

n3
)e−y/n2

, with ||ψ|| = +∞.
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In this case not only that we do not have an exponential decay, but ψ is even
not in the space L2

ap(Π).
We can only conclude that a reasonable theory would be possible in a

correct setting and with well-prepared data.

Next difficulty is linked with the fact that in nature one has to handle
curved rough boundaries. In the pioneering paper [1] the roughness was linked
to a curved circular boundary. This work continued mainly with formal mul-
tiscale expansions and numerical simulations for flow problems (see [2], [3],
[43] and references therein). Nevertheless, there is a recent article [41] by
Madureira and Valentin, with analysis of the curvature influence on 2D ef-
fective wall laws. Their geometry is essentially annular and it was possible
to describe the rough surface using just angular variable. Their boundary
layer problems are posed in an open angle and the connection with known
results is to be established. Also their Laplace’s operator in polar coordi-
nates systematically misses a term. The paper gives ideas but not really the
complete construction of the approximation. Furthermore, we note that the
two-dimensional case is very special because it allows for a global isometric
parametrization of the boundary, while in the multidimensional case even
the correct formulation of the problem setting is not obvious.

Derivation of the approximations and effective boundary conditions for
solutions of the Poisson equation on a domain in Rn whose boundary differs
from the smooth boundary of a domain Rn by rapid oscillations of size ε,
was considered in [45]. More precisely, the Poisson equation was supposed
in a bounded or unbounded domain Ω of Rn, n ≥ 2, with smooth compact
boundary Γ = ∂Ω, being an (n−1)-dimensional Riemannian manifold. Using
the unit outer normal ν to Γ, the tubular neighborhood of Γ was defined by
the mapping T : (x, t) → x + tν(x), defined on Γ × (−δ, δ). Then, using a
function γε from Γ to R such that |γε(x)| ≤ εM < δ/2 on Γ, and that γε is
locally ε-periodic through an atlas of charts, it was possible to define a rough
boundary Γε = T (x, γε(x)); x ∈ Γ. For this fairly general geometric situation
it was possible to accomplish the steps 1 to 3 from the above construction, for
the flat rough boundary. The wall law (43) was obtained again. Nevertheless,
it was found that the coefficient Cbl depends on position. The position was
present as a parameter in the boundary layer construction. The construction
from [45] is to be extended to systems, most notably to the Stokes system.
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3 Wall laws for the Stokes and Navier-Stokes

equations

In the text which follows we will try to give a brief resume of the results
concerning the wall laws for the incompressible Stokes and Navier-Stokes
equations. Also we will recall the basic steps of the construction of the
boundary layer corrections, following the approach from [31].

Flow problems over rough surfaces were considered by O. Pironneau and
collaborators in [43] , [2] and [3]. The paper [43] considers the flow over a
rough surface and the flow over a wavy sea surface. It discusses a number of
problems and announces a rigorous result for an approximation of the Stokes
flow. Similarly, in the paper [2] numerical calculations are presented and
rigorous results in [3] are announced. Finally, in the paper [3] the stationary
incompressible flow at high Reynolds number Re ∼ 1

ε
over a periodic rough

boundary, with the roughness period ε, is considered. An asymptotic expan-
sion is constructed and, with the help of boundary layer correctors defined in
a semi-infinite cell, effective wall laws are obtained. A numerical validation
is presented, but there are no mathematically rigorous convergence results.
The error estimate for the approximation, announced in [2], was not proved
in [3]. We mention also the article [14].

In this section we are going to present a sketch of the justification of the
Navier slip law by the technique developed in [30] for Laplace’s operator and
then in [31] for the Stokes system. The result for a 2D laminar stationary
incompressible viscous flow over a rough boundary is in [35]. It presents
a generalization of the analogous results on the justification of the law by
Beavers and Joseph [16] for a tangential viscous flow over a porous bed,
obtained in [32], [33], [34] and [36]. For a review we refer to [42] and [38].
In the subsections which follow we consider a 3D Couette flow over a rough
boundary. In §3.1 we introduce the corresponding boundary layer problem
and in §3.2 we present the main steps in obtaining the Navier slip condition
from [37].

3.1 Navier’s boundary layer

As observed in hydrodynamics, the phenomena relevant to the boundary oc-
cur in a thin layer surrounding it. We are not interested in the boundary
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layers corresponding to the inviscid limit of the Navier-Stokes equations, but
we undertake to construct the viscous boundary layer describing effects of
the roughness. There is a similarity with boundary layers describing effects
of interfaces between a perforated and a non-perforated domain. The corre-
sponding theory for the Stokes system is in [31] and, in a more pedagogical
way, in [42]. In this subsection we are going to present a sketch of con-
struction of the main boundary layer, used for determining the coefficient in
Navier’s condition. It is natural to call it the Navier’s boundary layer. In
[35] the 2D boundary layer was constructed and the 3D case was studied in
[37] .

We suppose the layer geometry from the beginning of the subsection 2.2.

Following the construction from [35], the crucial role is played by an
auxiliary problem. It reads as follows:

For a given constant vector λ ∈ R2, find {βλ, ωλ} that solve

−4yβ
λ +∇yω

λ = 0 in Z+ ∪ (Y − b3~e3) (50)

divyβ
λ = 0 in Zbl (51)[

βλ
]
S
(·, 0) = 0 on S (52)[{∇yβ

λ − ωλI}~e3

]
S
(·, 0) = λ on S (53)

βλ = 0 on (Υ− b3~e3), {βλ, ωλ} is y′ = (y1, y2)− periodic, (54)

where S = (0, b1) × (0, b2) × {0}, Z+ = (0, b1) × (0, b2) × (0, +∞), and
Zbl = Z+ ∪ S ∪ (Y − b3~e3).

Let V = {z ∈ L2
loc(Zbl)

3 : ∇yz ∈ L2(Zbl)
9; z = 0 on (Υ− b3~e3); divyz = 0

in Zbl and z is y′ = (y1, y2)-periodic }. Then, by the Lax-Milgram lemma,
there is a unique βλ ∈ V satisfying

∫

Zbl

∇βλ∇ϕ dy = −
∫

S

ϕλ dy1dy2, ∀ϕ ∈ V. (55)

Using De Rham’s theorem we obtain a function ωλ ∈ L2
loc(Zbl), unique up

to a constant and satisfying (50). By the elliptic theory, {βλ, ωλ} ∈ V ∩
C∞(Z+ ∪ (Y − b3~e3))

3 ×C∞(Z+ ∪ (Y − b3~e3)), for any solution to (50)-(54).
In the neighborhood of S we have βλ − (λ1, λ2, 0)(y3 − y2

3/2)e−y3H(y3) ∈
W 2,q and ωλ ∈ W 1,q, ∀q ∈ [1,∞).

Then we have

21



Lemma 8. ([31], [32], [42]). For any positive a, a1 and a2, a1 > a2, the
solution {βλ, ωλ} satisfies





∫ b1
0

∫ b2
0

βλ
2 (y1, y2, a) dy1dy2 = 0,

∫ b1
0

∫ b2
0

ωλ(y1, y2, a1) dy1dy2 =
∫ b1
0

∫ b2
0

ωλ(y1, y2, a2) dy1dy2,

∫ b1
0

∫ b2
0

βλ
j (y1, y2, a1)dy1dy2 =

∫ b1
0

∫ b2
0

βλ
j (y1, y2, a2)dy1dy2, j = 1, 2;

Cbl
λ =

2∑
j=1

Cj,bl
λ λj =

∫
S

βλλ dy1dy2 = − ∫
Zbl
|∇βλ(y)|2 dy < 0.

(56)

Lemma 9. Let λ ∈ R2 and let {βλ, ωλ} be the solution for (50)-(54) sat-

isfying
∫

S
ωλ dy1dy2 = 0. Then βλ =

2∑
j=1

βjλj and ωλ =
2∑

j=1

ωjλj, where

{βj, ωj} ∈ V ×L2
loc(Zbl),

∫
S

ωj dy1dy2 = 0, is the solution for (50)-(54) with
λ = ~ej, j = 1, 2.

Lemma 10. Let a > 0 and let βa,λ be the solution for (50)-(54) with S
replaced by Sa = (0, b1) × (0, b2) × {a} and Z+ by Z+

a = (0, b1) × (0, b2) ×
(a, +∞). Then we have

Ca,bl
λ =

∫ b1

0

∫ b2

0

βa,λ(y1, y2, a)λ dy1 = Cbl
λ − a | λ |2 b1b2 (57)

Proof. It goes along the same lines as Lemma 2 from [35] and we omit it.

Lemma 11. (see [37]) Let {βj, ωj} be as in Lemma 8 and let Mij =
1

b1b2

∫
S

βj
i dy1dy2

be the Navier matrix. Then the matrix M is symmetric negatively definite.

Lemma 12. (see [37]) Let Y have the mirror symmetry with respect to yj,
where j is 1 or 2. The the matrix M is diagonal.

Lemma 13. (see [37]) Let us suppose that the shape of the boundary doesn’t
depend on y2 . Then for λ = ~e2 the system (50)-(54) has the solution β2 =
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(0, β2
2(y1, y3), 0) and ω2 = 0, where β2

2 is determined by

−∂2β2
2

∂y2
1

− ∂2β2
2

∂y2
3

= 0 in (0, b1)× (0, +∞) ∪ (Y ∩ {y2 = 0} − b3~e3) (58)

[
β2

2

]
(·, 0) = 0 on (0, b1)× {0} (59)

[∂β2
2

∂y3

]
(·, 0) = 1 on (0, b1)× {0} (60)

β2
2 = 0 on (Υ ∩ {y2 = 0} − b3~e3), β2

2 is y1 − periodic, (61)

Furthermore, for λ = ~e1, the system (50)-(54) has the solution β1 = (β1
1(y1, y3),

0, β1
3(y1, y3)) and ω1 = ω(y1, y3) satisfying

−∂β1
j

∂y2
1

− ∂β1
j

∂y2
3

+
∂ω

∂yj

= 0 in (0, b1)× (0, +∞) ∪ (Y ∩ {y2 = 0} − b3~e3),

j = 1 and j = 3 (62)

∂β1
1

∂y1

+
∂β1

3

∂y3

= 0 in Zbl ∩ {y2 = 0} (63)

[
β1

j

]
(·, 0) = 0 on (0, b1)× {0}, j = 1 and j = 3 (64)

[
ω
]
= 0 and

[∂β1
1

∂y3

]
(·, 0) = 1,

[∂β1
3

∂y3

]
(·, 0) = 1 on (0, b1)× {0} (65)

β1
1 = β1

3 = 0 on (Υ ∩ {y2 = 0} − b3~e3), {β1
1 , β

1
3 , ω} is y1 − periodic. (66)

Finally, 



M11 =
1

b1

∫ b1

0

β1
1(y1, 0) dy1

M12 = M21 = 0

M22 =
1

b1

∫ b1

0

β2
2(y1, 0) dy1

(67)

and | M11 |≤| M22 |.
Lemma 14. Let {βj, ωj}, j = 1 and j = 3, be as in Lemma 8. Then we have





| Dα curlyβ
j(y) |≤ Ce−2πy3 min{1/b1,1/b2}, y3 > 0, α ∈ IN2 ∪ (0, 0)

| βj(y)− (M1j, M2j, 0) |≤ C(δ)e−δy3 , y3 > 0, ∀δ < 2π min{1/b1, 1/b2}
| Dαβj(y) |≤ C(δ)e−δy3 , y3 > 0, α ∈ IN2, ∀δ < 2π min{1/b1, 1/b2}
| ωj(y) |≤ Ce−2πy3 min{1/b1,1/b2}, y3 > 0.

(68)
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Proof. As in [32] we take the curl of the equation (50) and obtain the following
problem for ξj

m =
(
curl βj

)
m

, m = 1, 2, 3

{
∆ξj

m = 0 in Z+

ξj
m ∈ W 1−1/q,q(S), ∀q < +∞ ξj

m is periodic in y′ = (y1, y2)
(69)

Now Tartar’s lemma from [39] (see Lemma 5) implies an exponential decay
of ∇ξj

m to zero and of ξj
m. Since ξj

m ∈ L2(Z+), this constant equals to zero.
Furthermore, having established an exponential decay, we are in situation to
apply the separation of variables. Then explicit calculations, analogous to
those in [36], give the first estimate in (68).

In the next step we use the following identity, holding for the divergence
free fields:

−∆βj = curl curl βj = curl ξj

and the same arguing as above leads to the second and the third estimate.
After taking the divergence of the equation (50) we find out that the

pressure is harmonic in Z+. Since the averages of the pressure over the
sections {y3 = a} are zero, we obtain the last estimate in (69).

Corollary 15. The system (50)-(54) defines a boundary layer.

3.2 Justification of the Navier slip condition for the
laminar 3D Couette flow

A mathematically rigorous justification of the Navier slip condition for the
2D Poiseuille flow over a rough boundary is in [35]. Rough boundary was the
periodic repetition of a basic cell of roughness, with characteristic heights
and lengths of the impurities equal to a small parameter ε. Then the flow
domain was decomposed to a rough layer and its complement.

The no-slip condition was imposed on the rough boundary and there were
inflow and outflow boundaries, not interacting with the humps. The flow was
governed by a given constant pressure drop. The mathematical model were
the stationary Navier-Stokes equations. In [35] the flow under moderate
Reynolds numbers was considered and the following results were proved:

a) A non-linear stability result with respect to small perturbations of the
smooth boundary with a rough one;
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b) An approximation result of order ε3/2;

c) Navier’s slip condition was justified.

In this review we are going to present analogous results for a 3D Couette
flow from [37].

We consider a viscous incompressible fluid flow in a domain Ωε defined in
Subsection §2.1

Then, for a fixed ε > 0 and a given constant velocity ~U = (U1, U2, 0), the
Couette flow is described by the following system

−ν4vε + (vε∇)vε +∇pε = 0 in Ωε, (70)

div vε = 0 in Ωε, (71)

vε = 0 on Bε, (72)

vε = ~U on Σ2 = (0, L1)× (0, L2)× {L3} (73)

{vε, pε} is periodic in (x1, x2) with period (L1, L2) (74)

where ν > 0 is the kinematic viscosity and
∫ ε

Ω
pε dx = 0.

Let us note that a similar problem was considered in [9], but in an infinite
strip with a rough boundary. In [9] the authors were looking for solutions
periodic in (x1, x2), with the period ε(b1, b2).

Since we need not only existence for a given ε, but also the a priori
estimates independent of ε, we give a non-linear stability result with respect
to rough perturbations of the boundary, leading to uniform a priori estimates.

First, we observe that the Couette flow in P , satisfying the no-slip con-
ditions at Σ, is given by

v0 =
U1x3

L3

~e1 +
U2x3

L3

~e2 = ~U
x3

L3

, p0 = 0. (75)

Let |U | =
√

U2
1 + U2

2 . Then it is easy to see that v0 is the unique solution for

the Couette flow in P if |U |L3 < 2ν, i.e. if the Reynolds number is moderate.
We extend the velocity field to Ωε \ P by zero.
The idea is to construct the solution to (70)-(74) as a small perturbation

to the Couette flow (75). Before the existence result, we prove an auxiliary
lemma:
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Lemma 16. ([35]). Let ϕ ∈ H1(Ωε \P ) be such that ϕ = 0 on Bε. Then we
have

‖ϕ‖L2(Ωε\P ) ≤ Cε‖∇ϕ‖L2(Ωε\P )3 , (76)

‖ϕ‖L2(Σ) ≤ Cε1/2‖∇ϕ‖L2(Ωε\P )3 . (77)

Now we are in position to prove the desired non-linear stability result:

Theorem 17. ([37]). Let |U |L3 ≤ ν. Then there exists a constant C0 =

C0(b1, b2, b3, L1, L2) such that for ε ≤ C0(
L3

|U |)
3/4ν3/4 the problem (70)-(74)

has a unique solution {vε, pε} ∈ H2(Ωε)3 ×H1(Ωε),
∫ ε

Ω
pε dx = 0, satisfying

‖∇(vε − v0)‖L2(Ωε)9 ≤ C
√

ε
|U |
L3

. (78)

Moreover,

‖vε‖L2(Ωε\P )3 ≤ Cε
√

ε
|U |
L3

, (79)

‖vε‖L2(Σ)3 + ‖vε − v0‖L2(P )3 ≤ Cε
|U |
L3

, (80)

‖pε − p0‖L2(P ) ≤ C
|U |
L3

√
ε, (81)

where C = C(b1, b2, b3, L1, L2).

Therefore, we have obtained the uniform a priori estimates for {vε, pε}.
Moreover, we have found that Couette’s flow in P is an O(ε) L2-approximation
for vε.

Following the approach from [35], the Navier slip condition should corre-
spond to taking into the account the next order corrections for the velocity.
Then formally we get

vε = v0 − ε

L3

2∑
j=1

Uj

(
βj(

x

ε
)− (Mj1,Mj2, 0)H(x3)

)−

ε

L3

2∑
j=1

Uj(1− x3

L3

)(Mj1,Mj2, 0)H(x3) + O(ε2)
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where v0 is the Couette velocity in P and the last term corresponds to the
counterflow generated by the motion of Σ. Then on the interface Σ

∂vε
j

∂x3

=
Uj

L3

− 1

L3

2∑
i=1

Ui

∂βi
j

∂y3

+ O(ε) and
1

ε
vε

j = − 1

L3

2∑
i=1

Uiβ
i
j(

x

ε
) + O(ε).

After averaging we obtain the familiar form of the Navier slip condition

ueff
j = −ε

2∑
i=1

Mji
∂ueff

i

∂x3

on Σ, (82)

where ueff is the average over the impurities and the matrix M is defined in
Lemma 11. The higher order terms are neglected.

Now let us make this formal asymptotic expansion rigorous.
It is clear that in P the flow continues to be governed by the Navier-Stokes

system. The presence of the irregularities would only contribute to the effec-
tive boundary conditions at the lateral boundary. The leading contribution
for the estimate (78) were the interface integral terms

∫
Σ

ϕj. Following the
approach from [35], we eliminate it by using the boundary layer-type func-
tions

βj,ε(x) = εβj(
x

ε
) and ωj,ε(x) = ωj(

x

ε
), x ∈ Ωε, j = 1, 2, (83)

where {βj, ωj} is defined in Lemma 8. We have, for all q ≥ 1 and j = 1, 2,

1

ε
‖βj,ε − ε(M1j,M2j, 0)‖Lq(P )3 + ‖ωj,ε‖Lq(P ) + ‖∇βj,ε‖Lq(Ω)9 = Cε1/q (84)

and

−4βj,ε +∇ωj,ε = 0 in Ωε \ Σ, (85)

div βj,ε = 0 in Ωε, (86)[
βj,ε

]
Σ
(·, 0) = 0 on Σ, (87)[{∇βj,ε − ωj,εI}e3

]
Σ
(·, 0) = ej on Σ. (88)

As in [35] stabilization of βj,ε towards a nonzero constant velocity ε
(
M1j,M2j, 0

)
,

at the upper boundary, generates a counterflow. It is given by the 3D Couette

flow di = (1− x3

L3

)~ei and gi = 0.
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Now, we would like to prove that the following quantities are o(ε) for the
velocity and O(ε) for the pressure:

U ε(x) = vε − 1

L3

(
x+

3
~U − ε

2∑
j=1

Ujβ
j(

x

ε
) + ε

x+
3

L3

M ~U

)
, (89)

Pε = pε +
ν

L3

2∑
j=1

Ujω
j,ε. (90)

Then we have the following result:

Theorem 18. ([37]). Let U ε be given by (89) and Pε by (90). Then U ε ∈
H1(Ωε)3, U ε = 0 on Σ, it is periodic in (x1, x2), exponentially small on
Σ2 and div U ε = 0 in Ωε. Furthermore, ∀ϕ satisfying the same boundary
conditions, we have the following estimate

|ν
∫

Ωε

∇U ε∇ϕ−
∫

Ωε

Pεdivϕ +

∫

Ωε

x+
3

L3

2∑
j=1

Uj
∂U ε

∂xj

ϕ +

∫

Ωε

U ε
3

~U

L3

ϕ

+

∫

Ωε

(
(vε − v0)∇)

(vε − v0)ϕ| ≤ Cε3/2‖∇ϕ‖L2(Ωε)9
|U |2
L3

. (91)

Corollary 19. ([37]). Let U ε(x) and Pε be defined by (89)-(90) and let

ε ≤ ν6/7

|U | min
{ ν1/7

4(|M |+ ‖β‖L∞)
, C(b1, b2, b3, L1, L2)L

3/7
3 |U |1/7

}
. (92)

Then vε, constructed in Theorem 17, is a unique solution to (70)-(74) and

‖∇U ε‖L2(Ωε)9 + Pε‖L2(P ) ≤ Cε3/2 |U |2
νL3

, (93)

‖U ε‖L2(P )3 + ‖U ε‖L2(Σ)3 ≤ Cε2 |U |2
νL3

. (94)

The estimates (93)-(94) allow to justify Navier’s slip condition.

Remark 20. It is possible to add further correctors and then our problem
would contain an exponentially decreasing forcing term. This is in accor-
dance with [9] for the Navier-Stokes system and with [7], [8] and [13] for the
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Stokes system. For the case of rough boundaries with different characteristic
heights and lengths we refer to the doctoral dissertation of I. Cotoi [28]. The
estimate (92) is of the same order in ε as the H1-estimate in [4], obtained
for the Laplace operator. The advantage of our approach is that we are go-
ing to obtain the Navier slip condition with a negatively definite matricial
coefficient.

Now we introduce the effective Couette-Navier flow through the following
boundary value problem:

Find a velocity field ueff and a pressure field peff such that

−ν4ueff + (ueff∇)ueff +∇peff = 0 in P, (95)

div ueff = 0 in P, ueff = (U1, U2, 0) on Σ2, ueff
3 = 0 on Σ, (96)

ueff
j = −ε

2∑
i=1

Mji
∂ueff

i

∂x3

, j = 1, 2 on Σ, (97)

{ueff , peff} is periodic in (x1, x2) with period (L1, L2). (98)

If |U |L3 ≤ ν, the problem (95)-(98) has a unique solution




ueff = (ũeff , 0), ũeff = ~U +
(x3

L3

− 1
)(

I − ε

L3

M

)−1

~U, x ∈ P ;

peff = 0, x ∈ P.

(99)

Let us estimate the error made when replacing {vε, pε,Mε} by {ueff , peff ,Meff}.
Theorem 21. ([37]). Under the assumptions of Theorem 17 we have

‖∇(vε − ueff )‖L1(P )9 ≤ Cε, (100)

√
ε‖vε − ueff‖L2(P )3 + ‖vε − ueff‖L1(P )3 ≤ Cε2 |U |

L3

. (101)

Our next step is to calculate the tangential drag force or the skin friction

F ε
t,j =

1

L1L2

∫

Σ

ν
∂vε

j

∂x3

(x1, x2, 0) dx1dx2, j = 1, 2. (102)

Theorem 22. ([37]). Let the skin friction F ε
t be defined by (102). Then we

have

|F ε
t − ν

1

L3

(
~U +

ε

L3

M ~U
)| ≤ Cε2 |U |2

νL3

(1 +
ν

L3|U |). (103)
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Corollary 23. . Let F eff
t = ν

1

L3

(
I− ε

L3

M
)−1~U be the tangential drag force

corresponding to the effective velocity ueff . Then we have

|F eff
t −F ε

t | ≤ Cε2 |U |2
νL3

(1 +
ν

L3|U |) (104)

Remark 24. We see that the presence of the periodic roughness diminishes
the tangential drag. The contribution is linear in ε, and consequently rather
small. It coincides with the conclusion from [8] that for laminar flows there
is no palpable drag reduction. Nevertheless, we are going to see in the next
subsection that the calculations from the laminar case could be useful for
turbulent Couette flow.

3.3 Wall laws for fluids obeying Fourier’s boundary
conditions at the rough boundary

In number of situations, the adherence conditions, that are used to describe
fluid behavior when moderate pressure and low surface stresses are involved,
are no longer valid. Physical considerations lead to slip boundary conditions.
These conditions are of particular interest in the study of polymers, blood
flow, and flow through filters. We mention also the near wall models from
turbulence theories.

These conditions are of Fourier’s type and in number of recent publica-
tions, authors undertook the homogenization of Stokes and Navier-Stokes
equations in such setting. An early reference is [10], but it was the work of
Simon et al [26] which attracted lot of interest. This is a fast developing
research area and we mention only the articles [22] and [23]. In most cases
the effective boundary condition is the no-slip condition. Consequently, the
boundary layers do not enter into the wall law and the effective models are
valid for much larger class of the rough boundaries than the wall law derived
in the previous section.

Finally, we mention that there is a work on roughness induced wall laws
for geostrophic flows. For more information see the article [20] and references
therein.
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4 Rough boundaries and drag minimization

Drag reduction for planes, ships and cars reduces significantly the spending
of the energy, and consequently the cost for all type of land, sea and air
transportation.

Drag-reduction adaptations were important for the survival of Avians and
Nektons, since their efficiency or speed, or both, have improved.

Essentially, there are three forms of drag. The largest drag component
is pressure or form drag. It is particularly troublesome when flow separa-
tion occurs. The two remaining drag components are skin-friction drag and
drag due to lift. Skin-friction drag is the result of the no-slip condition on
the surface. Those components are present for both laminar (low Reynolds
number) or turbulent (high Reynolds number) flows.

There are several drag-reduction methods and here we discuss only the
use of drag-reducing surfaces. For an overview of other techniques we refer
to Bushnell, Moore [24].

The inspiration comes from morphological observations. It is known that
the skin of fast sharks is covered with tiny scales having little longitudinal
ribs on their surface (shark dermal denticles). These are tiny ridges, closely
spaced (less than 100 µm apart and still less in height). We note that the
considered sharks have a length of approximately 2 m and swim at Reynolds
numbers Re≈ 3 · 107 (see e.g. Vogel [50]). Such grooves are similar to ones
used on the yacht “ Stars and Strips ” in America’s Cup finals and seem to
reduce the skin-friction for O(10%) (see [24]).

In the applications, the main interest is in the turbulent case. Mathe-
matical modeling of the turbulent flows in the presence of solid walls is still
out of reach. However the turbulent boundary layers on surfaces with fine
roughness contain a viscous sublayer. It was found that the viscous sublayer
exhibits a streaky structure. Those “ low-speed streaks ” are believed to be
produced by slowly rotating longitudinal vortices. For a streaky structure,
with a preferred lateral wavelength, a turbulent shear stress reduction was
observed.

The experimental facts were theoretically explained in the papers by
Bechert and Bartenwerfer [17] and Luchini, Manzo and Pozzi [40] (see also
[18] and references in mentioned articles).

In [37] the theory developed in the laminar situation was applied to the
turbulent flow. It is known that the turbulent Couette flow has a 2-layer
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structure. There is a large core layer where the molecular momentum transfer
can be neglected and a thin wall layer (or sublayer) where both turbulent
and molecular momentum transfer are important. The flow in the wall layer
is governed by the turbulent viscous shear stress τw, supposed to depend only

on time. In connection with τw authors use the friction velocity v =

√
τw

ρ
,

where ρ is the density. Then the wall layer thickness is δv =
ν

v
, we suppose

that our riblets remain all the time in the pure viscous sublayer and try to
apply the analysis from the subsection §3.2.

The corresponding equations are (70)-(74) with L3 = δv and velocity

v =

√
τw

ρ
= (v1, v2, 0) at x3 = δv. Since δv

√
τw

ρ
= ν < 2ν, our results from

§3.2 are applicable and we get

|F ε
t −

ν

δv

(
v +

ε

δv

Mv
)| ≤ C(

ε|U |
δv

)2. (105)

Since δv = ν

√
ρ

τw

, we see that the effects of roughness are significant.

For the shark skin ε/δv = 0.1, L3 = δv = 10−3 =
√

ν and |U | =
√

ν =
10−3. The uniqueness condition from Corollary 19 applies if ε ≤ Cν9/4. Since
ε ≈ 10−4 and ν9/14 ≈ 1.389 · 10−4. We see that our theory is applicable to
the swimming of Nektons. For more details we refer to [36].

Furthermore, let us suppose the geometry of the rough boundary from [17]
and [40]. Then M is diagonal and the origins of the cross and longitudinal

flows are at the characteristic walls coordinates (see [49]) y+ =
ε

δv

M11 and

y+ =
ε

δv

M22, respectively. Hence the proposition is to model the flow in the

viscous sublayer in the presence of the rough boundary by the Couette-Navier
profile (98) instead of the simple Couette profile in the smooth case.

We note that these observations were implemented numerically into a
shape optimization procedure in [29]. The numerically obtained drag reduc-
tion confirmed the theoretical predictions from [36].
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J. Stará, π Chapman and Hall/CRC Research Notes in Mathematics no
406, 1999. pp. 175–186.
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[38] W. Jäger, A. Mikelić, Modeling effective interface laws for transport
phenomena between an unconfined fluid and a porous medium using
homogenization, accepted for publication in Transport in Porous Media,
2009. DOI : 10.1007/s11242-009-9354-9

[39] J. L. Lions, Some Methods in the Mathematical Analysis of Systems
and Their Control, Gordon and Breach, New York, 1981.

[40] P. Luchini, F. Manzo, A. Pozzi, Resistance of a grooved surface to
parallel flow and cross-flow, J. Fluid Mech. 228(1991), p. 87-109.

[41] A. Madureira, F. Valentin, Asymptotics of the Poisson problem in do-
mains with curved rough boundaries, SIAM J. Math. Anal. 38 (2006/07),
no. 5, 1450–1473.
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