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Abstract

A derivation of the model for a poroelastic elliptic membrane shell is undertaken. The flow and
deformation in a three-dimensional shell domain is described by the quasi-static Biot equations
of linear poroelasticity. We consider the limit when the shell thickness goes to zero and look
for the limit equations. Using the technique developed in the seminal articles by Ciarlet, Lods,
Miara et al and the recent results on the rigorous derivation of the equations for poroelastic
plates and flexural poroelastic shells by Marciniak-Czochra, Mikelić and Tambača, we present a
rigorous derivation of the linear poroelastic elliptic membrane shell model. After rescaling, the
corresponding velocity and the pressure field are close in the C([0, T ]; (H1

x)
2×(L2

x)
2) norm and the

stresses in C([0, T ]; (L2
x)

9) norm. We note the major difference with respect to the flexural case: (i)
it is not anymore the rescaled total stress divided by the scaling parameter, but the rescaled total
stress itself which converges ; (ii) the same comment applies to the pore fluid pressure and (iii)
there is a deterioration of the convergence for the vertical component of the rescaled displacement.
Consequence of the above differences is that the effective model remains of the 2nd order in space.
In the case of a spherical membrane shell we confirm the results by Taber from the literature.

Keywords: Membrane poroelastic shell, Biot’s quasi-static equations, elliptic-parabolic
systems, asymptotic methods
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1 Introduction

The present work is devoted to the derivation of a model of the poroelastic elliptic membrane shell.
We follow the standpoint of Ciarlet et al, who derived the Kirchhoff-Love models for thin elastic

bodies in the zero thickness limit (see [6, 7, 8]).
While this approach to the effective behavior of three-dimensional linearized elastic bodies is

well-established, much less attention has been paid to the poroelastic thin bodies. As the recent
example of the special issue of the journal Transport in Porous Media [34, 19] shows, this is likely to
change. Also there is a related experimental work, see [17].

The poroelastic bodies are characterized by the simultaneous presence of the deformation and
the filtration (flow). They are described by the quasi-static Biot’s system of PDE’s. It couples the
Navier equations of linearized elasticity, containing the pressure gradient, with the mass conservation
equation involving the fluid content change and divergence of the filtration velocity. The filtration
velocity is the relative velocity for the upscaled fluid-structure problem and obeys Darcy’s law. The
fluid content change is proportional to the pressure and the elastic body compression. In the quasi-
static Biot’s system the mechanical part is elliptic in the displacement and the flow equation has a
parabolic operator for the pressure. For more modeling details we refer to [10], [21] and [33] and for
the mathematical theory to [28], [26] and [23].

The simplest relevant two dimensional poroelastic thin body is a poroelastic plate. A physically
relevant choice of the time scale and the related coefficient size was set up by Marciniak-Czochra
and Mikelić in [20]. They rigorously derived the effective equations for the Kirchhoff-Love-Biot
poroelastic plate in the zero thickness limit of the 3D quasi-static Biot equations. The limiting zero
thickness procedure is seriously affected by the presence of coupling structure-flow. As in the purely
elastic case, the specificity of the poroelastic plate model from [20] is that the limit model contains
simultaneously both flexural and membrane equations. This remarkable property does not transfer
to the shells.

Following both Ciarlet et al zero thickness limit approach to flexural linearized shells and handling
of the Biot quasi-static equations in a thin domain by Marciniak-Czochra and Mikelić, Mikelić and
Tambača have undertaken the derivation of the equation for a linear flexural poroelastic shell in
[22]. In this article we undertake derivation of a model for linear elliptic membrane poroelastic shell
through the same type of the limit procedure.

The coupling elastic structure - flow is scaled as in [20]. It corresponds to the physical parameters
leading to the quasi-static diphasic Biot’s equations for the displacement and the pressure. As in [30]
and [31], it means that the characteristic time scale is of Taber and Terzaghi and in the dimensionless
form there will be the ratio between the width and length squared, multiplying Laplacean of the
pressure. The flexural and the membrane poroelastic shells correspond to different regimes of the
filtration, different sizes of the applied contact forces, different geometries of the shell and different
boundary conditions. In our case they are applied at the top and the bottom boundaries. For the
membrane shell case, we impose a given inflow/outflow velocity of order of the characteristic filtration
velocity through a shell of width ℓ. The applied contact forces at the same top/bottom boundaries
should be of order of the pressure drop between these boundaries. We recall that in the case of the
flexural poroelastic shell, studied in [22], the contact forces at the top/bottom boundaries are an
order of magnitude smaller and even smaller than the related inflow/outflow velocities.

The motivation for studying the flexural poroelastic shells comes from the industrial filters mod-
eling. For instance, the results from [20] and [22] can be applied to the modeling of the air filters for
the cars, while some oil car filters can be modeled as membrane poroelastic shells.

2



The motivation for studying the membrane poroelastic shells also comes from the biomechanics.
An important example is the study of the mechanical behavior of fluid-saturated large living bone
tissues. We recall that the bulk modulus of the bone is much larger than the bulk moduli of the soft
tissues and the bone deformation is small. A full physiological understanding of the bone modeling
would provide insight to important clinical problems which concern bones. For detailed review we
refer to [27] and [11]. Many other living structures are fluid-saturated membrane shells, see e.g. [13].

Another modeling question, raised in [11], is of the modeling of the elastic wave propagation in
a bone. As the Biot theory was originally developed to describe the wave propagation, the subject
attracted attention. The reader can consult [3], [15] and [32] and references therein. With our scaling,
our spatial operators do not coincide with models from these references, but rather with Taber’s works
[30] and [31]. Furthermore, the dynamic models of the diphasic Biot equations for a viscous fluid
exhibit memory effects, as proposed by Biot through the introduction of the viscodynamic operator
(see [33]). The homogenization derivation of the dynamic diphasic Biot’s equations gives the memory
terms (see [9]) for a viscous fluid. If the pores are filled by an ideal fluid, there are no memory effects
(see [16]). The analysis of the relationship between the dynamic and the quasi-static diphasic Biot
equation was undertaken in [24] and there are scalings when the memory effects are not important.
But in general it is not possible just to add the acceleration to the quasi-static Biot system. Hence
modeling of the elastic waves propagation in poroelastic plates/shell requires some future research.

Since in [23], the quasi-static Biot equations are obtained by homogenization of a pore scale fluid-
structure problem, one can raise question why we do not study simultaneously homogenization of the
fluid-structure problem and the zero thickness limit. In the applications we have in mind (industrial
filters, living tissues. . . ) the thickness is much bigger than the RVE size and such approach does
not make much sense. For some other problems like the study of the overall behavior of curved
layers of living cells, having a thickness of one cell, the simultaneous homogenization and singular
perturbation would give new models.

The flexural shell model is formulated on a subspace of infinitesimally inextensional displacements
involving boundary conditions, usually denoted by VF . However this function space for some geome-
tries and boundary conditions turns to be trivial. In this case a model for extensional displacements
is necessary. In this paper we focus on the shells with elliptic surfaces which are clamped at the
whole boundary. The model in this case is called elliptic membrane shell model. In the case of the
classical elasticity the membrane effects are measured by the change of the metric of the shell. This
is different with the case of the flexural shell model where the potential energy is measured by the
change in the curvature tensor. This difference results in a simpler model for the membrane case and
lower order derivatives involved in the formulation. Remaining cases in which VF = {0} as well are
covered by the generalized membrane shell model (an example is a tube clamped at ends). However,
the formulation is given in abstract spaces, see [5].

Derivation of the present model is more difficult than the derivation of the classical elliptic
membrane shell model starting from the three-dimensional linearized [7]. Namely, we are dealing
with an additional equation for the additional unknown (pressure). We use the results derived in the
classical static case, see [5], as much as possible, but Biot’s equations are quasi-static and, therefore,
time dependent. Presence of the additional independent variable (time) requires special attention and
careful analysis. Note also that in some parts this derivation is more demanding than the derivation
of the poroelastic flexural shell model from [22] since here we have weaker a priori estimates in strains
and we have to obtain the same convergences of the tangential displacements as in the flexural case.
Finally, we recall that the flexural shell models are characterized by the presence of the 4th order
differential operators and for the membrane shell models the differential operators are of the 2nd
order.

2 Geometry of Shells and Setting of the Problem

We are starting by recalling the basic facts of geometry of shells. The text follows [22], but it is
shorter since some terms are not needed in the membrane model. Namely, lower order derivatives
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are sufficient to express the membrane effects.
Throughout this paper we use boldfaced letters for vectors or matrices. The only exceptions are

points in the Euclidean spaces (e.g., x, y, ). Rn×m denotes the space of all n by m matrices and the
subscript sym denotes its subspace of symmetric matrices. By L2 we denote the Lebesgue space of
the square integrable functions, while H1 stands for the Sobolev space.

Ω̃
ℓ

L

Ω
ℓ

L

x3

y1

y2

Xr a3

a1

a2

ωL

S

Let the surface S is given as S = X(ωL), where ω ⊂ R2 be an open bounded and simply connected
set with Lipschitz-continuous boundary ∂ωL and X : ωL → R3 is a smooth injective immersion (that
is X ∈ C3 and 3 × 2 matrix ∇X is of rank two). Thus the vectors aα(y) = ∂αX(y), α = 1, 2,
are linearly independent for all y ∈ ωL and form the covariant basis of the tangent plane to the
2-surface S. Let Ωℓ

L = ωL × (−ℓ/2, ℓ/2). In this paper we study the deformation and the flow in a
three-dimensional poroelastic shell Ω̃ℓ

L = r(Ωℓ
L), L, ℓ > 0, where the injective mapping r is given by

r = r(y, x3) = X(y) + x3a3(y), a3(y) =
a1(y)× a2(y)

|a1(y)× a2(y)|
, (2.1)

for x3 ∈ (−ℓ/2, ℓ/2) and (y1, y2) ∈ ωL, diam (ωL) = L. The contravariant basis of the plane spanned
by a1(y),a2(y) is given by the vectors aα(y) defined by aα(y) · aβ(y) = δαβ . By adding the vector

a3(y) defined in (2.1) we extend these two bases to the basis of R3 (a3(y) = a3(y)). The following
matrix functions defined on ωL will be extensively used to account for the geometry of the shell

Q =
[
a1 a2 a3

]
, Q−1 =

 aT1
aT2
aT3

. (2.2)

As usual, the first fundamental form of the surface S, or the metric tensor, in covariant Ac = (aαβ)
and contravariantAc = (aαβ) components is given respectively by aαβ = aα ·aβ, aαβ = aα ·aβ, α, β =
1, 2. Note here that, since X is smooth Ac and Ac are continuous on the compact set ωL, there are
constants M c ≥ mc > 0 such that

mcx · x ≤ Ac(y)x · x,Ac(y)x · x ≤ M cx · x, x ∈ R3, y ∈ ωL. (2.3)

The second fundamental form of the surface S, also known as the curvature tensor, in covariant
Bc = (bαβ) and mixed components B = (bβα) is given respectively by

bαβ = a3 · ∂βaα = −∂βa
3 · aα, bβα =

2∑
κ=1

aβκbκα, α, β = 1, 2.
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The Christoffel symbols Γκ are defined by

Γκ
αβ = aκ · ∂βaα = −∂βa

κ · aα, α, β, κ = 1, 2.

The dual notation Γ3
αβ for bαβ will sometimes be used. The area element along S is

√
ady, where

a := detAc. By (2.3) it is uniformly positive, i.e., there is ma > 0 such that

0 < ma ≤ a(y), y ∈ ωL. (2.4)

In order to formulate the limit membrane model we define the notation:

γαβ(v) =
1

2
(∂αvβ + ∂βvα)−

2∑
κ=1

Γκ
αβvκ − bαβv3, α, β = 1, 2, (2.5)

nαβ|β = ∂βnαβ +

2∑
κ=1

Γα
βκnβκ +

2∑
κ=1

Γβ
βκnακ, α, β = 1, 2,

for smooth vector fields v and tensor fields n. γ(v) denotes linearization of the change of a metric
tensor defined by displacement v. Note here that in the membrane model case there is no need for
the linearization of the change of curvature tensor, usually denoted by ρ(v).

The upper and lower face of the body Ω̃ℓ
L are given by

Σ̃ℓ
L = r(ωL × {x3 = ℓ/2}) = r(Σℓ

L)

Σ̃−ℓ
L = r(ωL × {x3 = −ℓ/2}) = r(Σ−ℓ

L )),

while Γ̃ℓ
L = r(∂ωL × (−ℓ/2, ℓ/2)) = r(Γℓ

L) is the lateral boundary.
Behavior of the poroelastic bodies is described by the quasi-static Biot equations. For the poroe-

lastic body Ω̃ℓ
L the equations take the following dimensional form:

σ̃ = 2µe(ũ) + (λ div ũ− αp̃)I in Ω̃ℓ
L, (2.6)

− div σ̃ = −µ△ ũ− (λ+ µ)▽ div ũ+ α▽ p̃ = 0 in Ω̃ℓ
L, (2.7)

∂

∂t
(βGp̃+ α div ũ)− k

η
△ p̃ = 0 in Ω̃ℓ

L. (2.8)

Note that e(u) = sym▽u and σ̃ is the stress tensor. All other quantities are defined in Table 1.
We prescribe the contact force P̃±ℓ

L and normal flux ṼL at upper and lower face while at the lateral

Table 1: Parameter and unknowns description

SYMBOL QUANTITY

µ shear modulus (Lamé’s second parameter)

λ Lamé’s first parameter

βG inverse of Biot’s modulus

α effective stress coefficient

k permeability

η viscosity

L and ℓ midsurface length and shell width, respectively

u = (u1, u2, u3) solid phase displacement

p pressure

boundary Γ̃ℓ we impose a zero displacement and a zero normal flux. Thus the following boundary
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conditions are assumed

σ̃ν = P̃±ℓ
L at Σ̃±ℓ

L , (2.9)

−k

η

∂p̃

∂x3
= ṼL at Σ̃±ℓ

L , (2.10)

u = 0 at Γ̃ℓ, (2.11)

−k

η

∂p̃

∂ν
= 0 at Γ̃ℓ. (2.12)

Here ν is the outer unit normal at the boundary. At initial time t = 0 the initial pressure p̃ℓL,in is
given

p̃ = p̃ℓL,in for t = 0. (2.13)

The equations (2.6), (2.7) and (2.8) together with the boundary conditions (2.9)–(2.12) and initial
condition (2.13) constitute the model that we analyze.

Our goal is to extend the elliptic membrane shell justification by Ciarlet, Lods et al and by
Dauge et al to the poroelastic case. Thus in the sequel we assume that the middle surface is elliptic
(Gaussian curvature (product of principal curvatures) is positive at all points) and that is the reason
that we assumed the shell is clamped at its entire boundary. Further we assume that the body Ω̃ℓ

L

is thin in one direction comparing to two others, i.e. that the ratio between the shell thickness and
the characteristic horizontal length ε = ℓ/L ≪ 1. This ε is the small parameter in the problem and
we do the asymptotic analysis with respect to it.

We announce briefly the differential equations of the membrane poroelastic shell in dimensional
form. These equations follow from the weak formulation of the limit model (3.10)–(3.12) that we
derive in this paper.

Effective dimensional equations:

The model is given in terms of ueff : ωL → R3 which is the vector of components of the displace-
ment of the middle surface of the shell in the contravariant basis and peff : Ωℓ

L → R which is the
pressure in the 3D shell. Let us denote the stress tensor due to the variation in pore pressure across
the shell thickness by

n = ℓC̃c(Acγ(ueff))Ac − 2µα

λ+ 2µ

∫ ℓ/2

−ℓ/2
peffdy3A

c, (2.14)

where γ(·) is given by (2.5) and C̃c is the elasticity tensor, usually appearing in the classical shell
theories, given by

C̃cE = 2µ
λ

λ+ 2µ
tr (E)I+ 2µE, E ∈ R2×2

sym.

The stress tensor n is defined in order to formulate the differential equations as it is done in the
classical elastic elliptic membrane model (see [5, Chapter 4]). Then the model in the differential
formulation reads as follows:

−
2∑

β=1

nαβ |β = (P+ℓ
L )α + (P−ℓ

L )α in ωL, α = 1, 2,

−
2∑

α,β=1

bαβnαβ = (P+ℓ
L )3 + (P−ℓ

L )3 in ωL,

ueffα = 0, α = 1, 2, on ∂ωL, for every t ∈ (0, T ),

(2.15)
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(
βG +

α2

λ+ 2µ

)
∂peff

∂t
+ α

2µ

λ+ 2µ
Ac : γ(

∂ueff

∂t
)− k

η

∂2peff

∂(y3)2
= 0

in (0, T )× ωL × (−ℓ/2, ℓ/2),

k

η

∂peff

∂y3
= −VL, on (0, T ) × ωL × ({−ℓ/2} ∪ {ℓ/2}),

peff = pℓL,in given at t = 0.

(2.16)

Here (P±ℓ
L )i, i = 1, 2, 3 are components of the contact force P̃±ℓ

L ◦ r at Σ±ℓ
L in the covariant basis,

VL = ṼL ◦X, pℓL,in = p̃ℓL,in ◦ r. Thus, the poroelastic elliptic membrane shell model in the differential
formulation is given by equations (2.14), (2.15) and (2.16). The unknowns in the problem are contact
forces as components of n, the (vector) effective displacement of the middle surface ueff and effective
pressure peff . The first two equations in (2.15) are the same as in the differential equation of the
elliptic membrane shell model (see [5, Theorem 4.5-1]). The evolution equation for the effective
pressure with associated boundary and initial conditions is given in (2.16).

In the case of the classical theory of the purely elastic shell, we recall that, in addition to already
quoted articles and books by Ciarlet and al, there is a huge literature, with both mathematical and
engineering approaches (see e.g. [1], [12], [18], [25] and references therein).

In Section 3, with the help of curvilinear coordinates, we formulate the problem in the dimen-
sionless form on the domain Ω = ω × (−1/2, 1/2) independent of ε suitable for asymptotic analysis.
We recall existence and uniqueness result of the smooth solution for the starting problem and for-
mulate the limit model and the main convergence results. In further sections we prove the main
results. First, in Section 4, we derive a priori estimates for the family of solutions. Then, in Section
5, the convergence (including strong) of the solutions to the rescaled problem, is studied as ε → 0.
In Appendix we give the limit model written for a part of the spherical surface. Further, the radi-
ally symmetric effective equations of the problem on the whole sphere are derived and the result is
compared with the one in [31].

3 Problem setting in curvilinear coordinates and the main results

3.1 Dimensionless equations

The Biot’s diphasic equations describe behavior of the system at so called Terzaghi’s time scale
T = ηL2

c/(kµ), where Lc is the characteristic domain size, η is dynamic viscosity, k is permeability
and µ is the shear modulus. Thus we have two possible characteristic length. Similarly as in [20]
and [22] we chose as the characteristic length Lc = ℓ, which leads to the Taber-Terzaghi transversal
time Ttab = ηℓ2/(kµ). Our scaling corresponds to the one chosen by Blanchard and Francfort in [2]
for the derivation of a thermoelastic plate model.

Thus in order to obtain the dimensionless equations to be able to perform the asymptotic analysis
we introduce the dimensionless unknowns and variable by setting

ε =
ℓ

L
; β = βGµ; P =

µU

L
; U ũε = ũ; T =

ηℓ2

kµ
; λ̃ =

λ

µ
;

P p̃ε = p̃; ỹL = y; x̃3L = x3; r̃L = r; X̃L = X; t̃T = t; σ̃εµU

L
= σ̃.

Then we rewrite the problem in terms of the dimensionless quantities. It is then given on a the
domain

Ω̃ε = Ω̃ℓ
L/L = r(Ωε), Ωε = ω × (−ε/2, ε/2), ω = ωL/L.

The upper and lower face of the shell-like body Ω̃ε are denoted by Σ̃ε
+ and Σ̃ε

−, while Γ̃
ε = Γ̃ℓ

L/Lis lat-

eral boundary. Let V(Ω̃ε) = {ṽ ∈ H1(Ω̃ε;R3) : ṽ|Γ̃ε = 0}. The weak formulation of the dimensionless
problem associated to the system (2.6)–(2.13) is given by (see [22] for more details):
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find ũε ∈ H1(0, T,V(Ω̃ε)), p̃ε ∈ H1(0, T ;H1(Ω̃ε)) such that it holds∫
Ω̃ε

2 e(ũε) : e(ṽ) dx+ λ̃

∫
Ω̃ε

div ũε div ṽ dx− α

∫
Ω̃ε

p̃ε div ṽ dx

=

∫
Σ̃ε

+

εP̃+ · ṽ ds+

∫
Σ̃ε

−

εP̃− · ṽ ds, for every ṽ ∈ V(Ω̃ε) and t ∈ (0, T ), (3.1)

β

∫
Ω̃ε

∂tp̃
εq̃ dx+

∫
Ω̃ε

α div ∂tũ
εq̃ dx+ ε2

∫
Ω̃ε

∇p̃ε · ∇q̃ dx

= ε

∫
Σ̃ε

−

Ṽ q̃ ds− ε

∫
Σ̃ε

+

Ṽ q̃ ds, for every q̃ ∈ H1(Ω̃ε) and t ∈ (0, T ), (3.2)

p̃ε|{t=0} = p̃in, in Ω̃ε, (3.3)

here ũε = (ũε1, ũ
ε
2, ũ

ε
3) denotes the dimensionless displacement field and p̃ε the dimensionless pressure.

Note that for two 3×3 matrices A and B the Frobenius scalar product is denoted by A : B = tr (ABT ).
The coefficient ε2 in (3.2) is a consequence of the choice of the characteristic length in the Terzaghi
time. There are also three important assumptions on the order of prescribed quantities P±ℓ

L , VL, p
ℓ
L,in

made here:

σ̃εν = (2e(ũε)− αp̃εI + λ̃(div ũε)I)ν = εP̃± on Σ̃ε
±, (3.4)

−ε2 ▽ p̃ε · ν = ±εṼ , on Σ̃ε
±, (3.5)

p̃ε(x1, x2, x3, 0) = p̃in(x1, x2) in Ω̃ε. (3.6)

Remark 1. The difference here, with respect to flexural shell case ([22]), is that the contact loads
in (3.4) and filtration velocity in (3.5) are differently scaled. More precisely, we recall that in the
flexural shell case contact loads were assumed to behave like ε3P̃± and the normal boundary filtration
velocity by −ε2 ▽ p̃ε · ν = ±ε2Ṽ . Furthermore the initial pressure was of order ε in the flexural shell
case.

We follow [20] and get the existence and uniqueness result for (3.1)-(3.3).

Proposition 2. Let us suppose

p̃in ∈ H2
0 (Ω̃

ε), P± ∈ H2(0, T ;L2(ω;R3)) and Ṽ ∈ H1(0, T ;L2(ω)), Ṽ |{t=0} = 0. (3.7)

Then problem (3.1)–(3.3) has a unique solution {ũε, p̃ε} ∈ H1(0, T ;V(Ω̃ε)))×H1(0, T ;H1(Ω̃ε)).

3.2 Problem in Curvilinear Coordinates and the Scaled Problem

In this section we introduce the formulation of the problem in curvilinear coordinates. The for-
mulation is similar as in Subsection 3.3 in [22, pages 371–374] but with some prescribed quantities
differently scaled which will at the end lead to a different model. For completeness and for the
comfort of the reader we point out the main steps and define only necessary quantities, for details
see [22].

Our goal is to find the limits of the solutions of problem (3.1)–(3.3) when ε tends to zero. Since
the expected behavior of local components of the displacement is different we turn to the formulation
in curvilinear coordinates given by r. Further, we rescale the problem on a domain independent of ε.

To introduce the curvilinear coordinates we still need to define some geometry. The covariant

basis of the the three-dimensional manifold Ω̃ε, parameterized by r, is defined by gε
i = ∂ir : Ωε →

R3, i = 1, 2, 3. Similarly as before the contravariant basis
{
g1,ε,g2,ε,g3,ε

}
is biorthogonal one, defined

by gj,ε · gε
i = δij on Ω

ε
, i, j = 1, 2, 3, where δij is the Kronecker symbol. The covariant metric tensor

Gε
c = (gεij) and the Christoffel symbols Γi,ε

jk of the body Ω̃
ε
are defined by

gεij = gε
i · gε

j , Γi,ε
jk = gi,ε · ∂jgε

k on Ω
ε
, i, j, k = 1, 2, 3.
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We set Γi,ε = (Γi,ε
jk )j,k=1,...,3, g

ε = detGε
c and Qε = (∇r)−T= (gε1 gε2 gε3)

−T =
(
g1,ε g2,ε g3,ε

)
. Now

the displacement is rewritten in the contravariant basis while the forces are rewritten in the covariant
basis. New functions u, v and P± are defined by ũε ◦ r = Qεu, ṽε ◦ r = Qεv, P± = (Qε)T P̃± ◦ r.
For scalar functions we just change the coordinates p̃ε ◦ r = pε, q̃ ◦ r = q, Ṽ ◦ r = V, p̃in ◦ r = pin, on
Ω
ε
.
Still, problem for ũε, p̃ε and uε, pε is posed on ε–dependent domains. Therefore we follow the

idea from Ciarlet, Destuynder [6] and rewrite (3.1)–(3.3) on the canonical domain independent of ε.
As a consequence, the coefficients of the resulting weak formulation will depend on ε explicitly. The
rescaling we use is given by

Rε(z) = (z1, z2, εz3), z ∈ Ω, ε ∈ (0, ε0), Ω = ω × (−1/2, 1/2).

By Σ± = ω × {±1/2} we denote the upper and lower face of Ω and Γ = ∂ω × (−1/2, 1/2). To the
functions uε, pε, gε, gε

i , g
ε,i, Qε, Γi,ε

jk , i, j, k = 1, 2, 3 defined on Ω
ε
we associate the functions u(ε),

p(ε), g(ε), gi(ε), g
i(ε), Q(ε), Γi

ij(ε), i, j, k = 1, 2, 3 defined on Ω by composition with Rε. Let us also
define

V(Ω) = {v = (v1, v2, v3) ∈ H1(Ω;R3) : v|Γ = 0}.

Then the problem (3.1)–(3.3) can be written as

ε

∫
Ω
C
(
Q(ε)γε(u(ε))Q(ε)T

)
:
(
Q(ε)γε(v)Q(ε)T

)√
g(ε)dz

− εα

∫
Ω
p(ε)tr

(
Q(ε)γε(v)Q(ε)T

)√
g(ε)dz

= ε

∫
Σ±

P± · v
√
g(ε)ds, v ∈ V(Ω), a.e. t ∈ [0, T ],

ε

∫
Ω
β
∂p(ε)

∂t
q
√
g(ε)dz + ε

∫
Ω
α
∂

∂t
tr
(
Q(ε)γε(u(ε))Q(ε)T

)
q
√

g(ε)dz

+ ε3
∫
Ω
Q(ε)∇εp(ε) ·Q(ε)∇εq

√
g(ε)dz

= ∓ε

∫
Σ±

V q
√

g(ε)ds, q ∈ H1(Ω), a.e. t ∈ [0, T ],

p(ε) = pin, for t = 0.

(3.8)

Here CE = λ̃(trE)I+ 2E, for all E ∈ R3×3
sym,

γε(v) =
1

ε
γz(v) + γy(v)−

3∑
i=1

viΓ
i(ε), (3.9)

γz(v) =

 0 0 1
2∂3v1

0 0 1
2∂3v2

1
2∂3v1

1
2∂3v2 ∂3v3

, γy(v) =

 ∂1v1
1
2(∂2v1 + ∂1v2)

1
2∂1v3

1
2(∂2v1 + ∂1v2) ∂2v2

1
2∂2v3

1
2∂1v3

1
2∂2v3 0

,
∇εq =

1

ε
∇zq +∇yq, ∇zq =

[
0 0 ∂3q

]
, ∇yq =

[
∂1q ∂2q 0

]
and we have also used the notation

∓
∫
Σ±

V q
√

g(ε)ds =

∫
Σ−

V q
√

g(ε)ds−
∫
Σ+

V q
√

g(ε)ds,∫
Σ±

P± · v
√

g(ε)ds =

∫
Σ+

P+ · v
√
g(ε)ds+

∫
Σ−

P− · v
√

g(ε)ds.

A consequence of Proposition 2 and the smoothness of the curvilinear coordinates transformation
is the existence and uniqueness of the solution of (3.8). Also note that in the present (elliptic
membrane) case there is no rescaling of the pressure. It will appear to be of order one which is in
contrast to the flexural shell case where it was of order ε.
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3.3 Convergence results

In the remainder of the paper we make the following assumptions.

Assumption 3. For simplicity, we assume that pin = 0, that V ∈ H1(0, T ;L2(ω)), V |{t=0} = 0 and
that P± ∈ H2(0, T ;L2(ω;R3)), with P±|{t=0} = 0.

To describe the limit problem, which we presented in the differential formulation in (2.14)–(2.16),
we introduce the function space VM (ω) = H1

0 (ω)×H1
0 (ω)×L2(ω). Contrary to VF (ω), which is the

function space for the flexural shell model, it is always non-trivial. The boundary value problem in
Ω = ω × (−1/2, 1/2) for the effective displacement and the effective pressure is given by:

find {u, p0} ∈ C([0, T ];VM (ω)× L2(Ω)), ∂z3p
0 ∈ L2((0, T )× Ω) satisfying the system∫

ω
C̃(Acγ(u)) : γ(v)Ac√adz1dz2 −

2α

λ̃+ 2

∫
ω

∫ 1/2

−1/2
p0dz3A

c : γ(v)
√
adz1dz2

=

∫
ω
(P+ + P−) · v

√
adz1dz2., v ∈ VM (ω),

(3.10)

∫
Ω

(
β +

α2

λ̃+ 2

)
∂p0

∂t
q
√
adz +

∫
Ω
α
∂

∂t

(
2

λ̃+ 2
Ac : γ(u)

)
q
√
adz +

∫
Ω

∂p0

∂z3

∂q

∂z3

√
adz

= ∓
∫
Σ±

V q
√
ads, q ∈ H1(Ω).

(3.11)

p0 = 0 at t = 0, (3.12)

where γ(·) is given by (2.5) and

C̃E = 2
λ̃

λ̃+ 2
tr (E)I+ 2E, E ∈ R2×2

sym. (3.13)

We observe that, contrary to the effective flexural shell system from [22], problem (3.10)–(3.12)
is of the second order. Also, pressure enters the shell equation (3.10) with the average over the
cross–section in difference with the first moment over the cross–section in the flexural shell model.

Fundamental for the analysis of this model is the inequality of Korn’s type on an elliptic surface,
see [5, Theorem 2.7-3] or [7, Theorem 4.2].

Lemma 4. Let ω be a domain in R2 and let X ∈ C2,1(ω;R3) be an injective mapping such that the
two vectors aα = ∂αX are linearly independent at all points of ω and such that the surface X(ω) is
elliptic. Then there is CM > 0 such that

∥v1∥2H1(ω) + ∥v2∥2H1(ω) + ∥v3∥2L2(ω) ≤ CM∥γ(v)∥2L2(ω;R3×3), v ∈ VM (ω).

Proposition 5. Under Assumption 3, problem (3.10)–(3.12) has a unique solution {u, p0} in the
space C([0, T ];VM (ω) × L2(Ω)), ∂z3p

0 ∈ L2((0, T ) × Ω) Furthermore, ∂tp
0 ∈ L2((0, T ) × Ω) and

∂tu ∈ L2(0, T ;VM (ω)).

Proof. We follow the proof of Proposition 4 from [22] and first prove that {u, p0} ∈ C([0, T ];VM (ω)×
L2(Ω)) and ∂z3p

0 ∈ L2((0, T )×Ω) imply a higher regularity in time. Ideas are analogous but details
of the calculations are different.

We take q = q(z1, z2), q ∈ C∞(ω) as a test function in (3.11). The time continuity and (3.11)
yield (

β +
α2

λ̃+ 2

)∫ 1/2

−1/2
p0 dz3 +

2α

λ̃+ 2
Ac : γ(u) = 0. (3.14)
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We insert (3.14) into (3.10) and obtain∫
ω
C̃(Acγ(u)) : γ(v)Ac√adz1dz2 +

4α2

(λ̃+ 2)
(
β(λ̃+ 2) + α2

) ∫
ω
Ac : γ(u)Ac : γ(v)

√
adz1dz2

=

∫
ω
(P+ + P−) · v

√
adz1dz2, v ∈ VM (ω).

(3.15)

The H2-regularity in time of P± allows taking time derivatives of equation (3.15) up to order 2. It
yields ∂tu ∈ L2(0, T ;VM (ω)) and ∂ttu ∈ L2(0, T ;VM (ω)). Hence ∂tu ∈ H1(0, T ;VM (ω)). Now the
classical parabolic regularity theory applied at (3.11) implies ∂tp

0 ∈ L2((0, T )× Ω).

We insert v =
∂u

∂t
as a test function in (3.10) and p0 as a test function in (3.11) and sum up the

equations. It follows

1

2

d

dt

{∫
ω
C̃(Acγ(u)) : γ(u)Ac√adz1dz2 +

∫
Ω

(
β +

α2

λ̃+ 2

)
(p0)2

√
adz

− 2

∫
ω
(P+ + P−) · u

√
adz1dz2

}
+

∫
Ω

(
∂p0

∂z3

)2√
adzdt

= −
∫
ω
∂t(P+ + P−) · u

√
adz1dz2 ∓

∫
Σ±

V p0
√
a dz1dz2.

(3.16)

Equality (3.16) implies uniqueness of solutions to problem (3.10)–(3.12). Equality (3.16) allows to
obtain the uniform bounds for γ(u) in L∞(0, T ;VM (ω)), for p0 in L∞(0, T ;L2(Ω)) and for ∂z3p

0

in L2(0, T ;L2(Ω)). Using Lemma 4 and the classical weak compactness reasoning, we conclude the
existence of the solution.

Remark 6. Note that the equation (3.15) can be used to decouple the problem. Thus we first
can solve the membrane problem with slightly changed coefficients and with time as a parameter in
the equation. In the second step we plug this solution into (3.11). This approach can also lead to
alternative existence proof. Namely, standard existence theory for membrane shell model applied on
(3.15) yields that there is a unique u ∈ H2(0, T ;VM (ω)) solving (3.15). Then the standard parabolic
theory for (3.11) implies the existence of p0 in C([0, T ];L2(Ω)) and such ∂z3p

0 in L2(0, T ;L2(Ω)).
Further regularity is classical.

Standard computations give

p0 −
∫ 1/2

−1/2
p0dz3 = −V (t)y3 +

4β

π2

∞∑
m=0

∫ t

0
e
− (2m+1)2π2

β
(t−s)

∂tV ds
(−1)m

(2m+ 1)2
sin
(
(2m+ 1)πy3

)
, (3.17)

with β = β +
α2

λ̃+ 2
. After inserting (3.14) into (3.10) for displacement we get a standard elastic

membrane shell equations with modified coefficients. Then we use (3.14) to compute the mean
pressure and finally (3.17) to reconstruct the pressure fluctuation.

Next we formulate the main result of the paper.

Theorem 7. Let us suppose Assumption 3. Let {u(ε), p(ε)} ∈ H1(0, T ;V(Ω))×H1(0, T ;H1(Ω)) be
the unique solution of (3.8) and let {u, p0} be the unique solution for (3.10)–(3.12). Then we obtain

u(ε) → u strongly in C([0, T ];H1(Ω)×H1(Ω)× L2(Ω)),

γε(u(ε)) → γ0 strongly in C([0, T ];L2(Ω;R3×3)),

p(ε) → p0 strongly in C([0, T ];L2(Ω)),

∂p(ε)

∂z3
→ ∂p0

∂z3
strongly in L2(0, T ;L2(Ω)),
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where

γ0 =

 γ(u)
0
0

0 0 α
λ̃+2

p0 − λ̃
λ̃+2

Ac : γ(u)

 . (3.18)

Remark 8. We observe differences between convergence theorem (Theorem 6) from [22] and this
result: the scaling of symmetrized gradient in curvilinear coordinates γε(u(ε)), the function space
for the transversal displacement and the structure of γ0.

Convergence of the symmetrized gradient in curvilinear coordinates γε(u(ε)) implies convergence
of the stress tensor.

Corollary 9. For the stress tensor σ(ε) = C(Q(ε)γε(u(ε))Q(ε)T )− αp(ε)I one has

σ(ε) → σ = C(Qγ0QT )− αp0I strongly in C([0, T ];L2(Ω;R3×3)). (3.19)

The limit stress in the local contravariant basis Q = (a1 a2 a3) is given by

QTσQ =


(
− 2α

λ̃+ 2
p0I+

2λ̃

λ̃+ 2
(Ac : γ(u))I+ 2Acγ(u)

)
Ac 0

0 0

 .

4 A priori estimates and consequences

The following three-dimensional inequality of Korn’s type for a family of linearly elastic elliptic
membrane shells is essential for derivation of a priori estimates. It is different from the inequality
used in derivation of flexural shell models.

Theorem 10 ([5, Theorem 4.3-1], [7, Theorem 4.1]). Assume that X ∈ C3(ω;R3) parameterizes an
elliptic surface. Then there exist constants ε0 > 0, C > 0 such that for all ε ∈ (0, ε0) one has

∥v1∥2H1(Ω) + ∥v2∥2H1(Ω) + ∥v3∥2L2(Ω) ≤ C∥γε(v)∥2L2(Ω;R3×3), v ∈ V(Ω).

Remark 11. Note that the above estimate applies to the functions on the three-dimensional domain
Ω and will be the basis for the a priori estimates for the solution of (3.8), while in Lemma 4 the
estimate was for functions on ω and is the basis for the existence and uniqueness of the solution of
the limit model (3.10)–(3.12).

Next we state the asymptotic properties of the geometry coefficients in the equation (3.8). Direct
calculation shows that there are constants 0 < mg ≤ Mg, independent of ε ∈ (0, ε0), such that
mg ≤

√
g(ε) ≤ Mg. The functions gi(ε),gi(ε), g

ij(ε), g(ε),Γi
jk(ε),Q(ε) are in C(Ω) by assumptions.

Further, there is C > 0 such that for all ε ∈ (0, ε0),

∥gi(ε)− ai∥∞ + ∥gi(ε)− ai∥∞ ≤ Cε,

∥ ∂

∂z3

√
g(ε)∥∞ + ∥

√
g(ε)−

√
a∥∞ ≤ Cε, (4.1)

∥Q(ε)−Q∥∞ ≤ Cε,

where ∥ · ∥∞ is the norm in C(Ω). See [7, 8] for details. In addition, in [5, Theorem 3.3-1] and [8,
Lemma 3.1] the asymptotic of the Christoffel symbols is given by

Γκ(ε) =

 Γκ
11 Γκ

12 −bκ1
Γκ
21 Γκ

22 −bκ2
−bκ1 −bκ2 0

+O(ε), κ = 1, 2, Γ3(ε) =

 b11 b12 0
b21 b22 0
0 0 0

+O(ε). (4.2)

A priori estimates are given in the following two lemmas. The estimates are similar, but different
from the flexural case. Namely, the scaling of γε(u(ε)) is different. The proof is analogous to the
proof of Lemma 10 from [22] and we omit it.
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Lemma 12. There is C > 0 and ε0 > 0 such that for all ε ∈ (0, ε0) one has

∥γε(u(ε))∥L∞(0,T ;L2(Ω;R3×3)), ∥p(ε)∥L∞(0,T ;L2(Ω;R)), ∥ε∇εp(ε)∥L2(0,T ;L2(Ω;R3)) ≤ C.

We now first take the time derivative of the first equation in (3.8) and then insert v =
∂u(ε)

∂t
as

a test functions and sum it with (3.8) for the test function q =
∂p(ε)

∂t
. We obtain∫

Ω
C
(
Q(ε)γε(

∂u(ε)

∂t
)Q(ε)T

)
:

(
Q(ε)γε(

∂u(ε)

∂t
)Q(ε)T

)√
g(ε)dz

+ β

∫
Ω

∂p(ε)

∂t

∂p(ε)

∂t

√
g(ε)dz +

1

2
ε2

d

dt

∫
Ω
Q(ε)∇εp(ε) ·Q(ε)∇εp(ε)

√
g(ε)dz

=

∫
Σ±

∂P±
∂t

· ∂u(ε)
∂t

√
g(ε)ds∓

∫
Σ±

V
∂p(ε)

∂t

√
g(ε)ds.

(4.3)

Then, similarly as in Lemma 12, we obtain

Lemma 13. There is C > 0 and ε0 > 0 such that for all ε ∈ (0, ε0) one has

∥γε(
∂u(ε)

∂t
)∥L2(0,T ;L2(Ω;R3×3)), ∥

∂p(ε)

∂t
∥L2(0,T ;L2(Ω;R)), ∥ε∇εp(ε)∥L∞(0,T ;L2(Ω;R3)) ≤ C.

From the scaled Korn’s inequality from Theorem 10 we directly obtain the following Corollary.

Corollary 14. Let us suppose Assumption 3 and let {u(ε), p(ε)} be the solution for problem (3.8).
Then there is C > 0 and ε0 > 0 such that for all ε ∈ (0, ε0) one has

∥γε(u(ε))∥H1(0,T ;L2(Ω;R9)), ∥u1(ε)∥H1(0,T ;H1(Ω)), ∥u2(ε)∥H1(0,T ;H1(Ω)), ∥u3(ε)∥H1(0,T ;L2(Ω)),

∥p(ε)∥H1(0,T ;L2(Ω;R)), ∥
∂p(ε)

∂z3
∥L∞(0,T ;L2(Ω;R)) ≤ C.

In addition, there are u1, u2 ∈ H1(0, T ;H1(Ω;R3)), u3 ∈ H1(0, T ;L2(Ω;R3)), p0 ∈ H1(0, T ;L2(Ω;R))
and γ0 ∈ L∞(0, T ;L2(Ω;R3×3)) such that on a subsequence one has

uj(ε) ⇀ uj weakly in H1(0, T ;H1(Ω)), j = 1, 2,

u3(ε) ⇀ u3 weakly in H1(0, T ;L2(Ω)),

p(ε) ⇀ p0 weakly in H1(0, T ;L2(Ω;R)),
∂p(ε)

∂z3
⇀

∂p0

∂z3
weakly in L2(0, T ;L2(Ω;R)) and weak * in L∞(0, T ;L2(Ω;R)),

γε(u(ε)) ⇀ γ0 weakly in H1(0, T ;L2(Ω;R3×3)).

(4.4)

Since γε(u(ε)) and u(ε) are related one expects that the limits u= (u1, u2, u3) and γ0 are related
too. The following theorem gives the precise relationship. Its statements are essential in obtaining
the limit model in classical elliptic membrane shell derivation as well. However it is different from
the corresponding statement, Theorem 13, in [22]. Its proof is a collection of particular statements
in the proof of Theorem 4.4-1 in [5]. Therefore we just sketch it here.

Theorem 15. For any v ∈ V(Ω) let γε(v) be given by (3.9) and let the tensor γ(v) be given by
(2.5). Let the family (w(ε))ε>0 ⊂ V(Ω) satisfies

wj(ε) ⇀ wj weakly in H1(Ω), j = 1, 2,

w3(ε) ⇀ w3 weakly in L2(Ω),

γε(w(ε)) ⇀ γ̃0 weakly in L2(Ω;R3×3)

(4.5)

as ε → 0. Then w= (w1, w2, w3) is independent of transverse variable z3, belongs to VM (ω) =
H1

0 (ω)×H1
0 (ω)× L2(ω), and satisfies

γ̃0αβ = γαβ(w), α, β ∈ {1, 2}.
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Proof. From γε(w(ε)) ⇀ γ̃0 we obtain that

εγε(w(ε)) = γz(w(ε)) + εγy(w(ε))− ε

3∑
i=1

wi(ε)Γ
i(ε) → 0

strongly in L2(Ω;R3). From the convergences in (4.5) and asymptotics of Γi(ε) given in (4.2) we
have that

ε

3∑
i=1

wi(ε)Γ
i(ε) → 0

strongly in L2(Ω;R3×3). Also (4.5) implies that εγy(w(ε)) → 0 strongly in H−1(Ω;R3×3). Finally
γz(w(ε)) → 0 strongly in L2(ω;H−1(−1/2, 1/2;R3×3)) and weakly in L2(Ω;R3×3). From the defini-
tion of γz in (3.9) we obtain that ∂3wi(ε) → 0 strongly in H−1(Ω). Therefore w is independent of
the transverse variable z3. Then it is straightforward to conclude that w ∈ VM (ω).

Now, the convergences γεαβ(w(ε)) ⇀ γ̃0αβ , α, β ∈ {1, 2} from (4.5), using the definition of γε from
(3.9), imply

γ̃0αβ = lim
ε→0

(
1

2
(∂αwβ(ε) + ∂βwα(ε))−

3∑
i=1

wi(ε)Γ
i
αβ(ε)

)
.

Using the asymptotics of Γi(ε) from (4.2) together with the remaining convergences in (4.5) yield

γ̃0αβ =
1

2
(∂αwβ + ∂βwα)−

3∑
i=1

wiΓ
i
αβ(0) = γαβ(w).

Remark 16. In order to apply Theorem 15 we need pointwise convergences for every t ∈ [0, T ]. The
estimates from Corollary 14 (i.e., Lemma 12 and Lemma 13) imply that we are in the same position
as in Remark 14 from [22] for u1(ε), u2(ε), p(ε) and γε(u(ε)), i.e.

uα(ε)(t) ⇀ uα(t) weakly in H1(Ω) for every t ∈ [0, T ], α ∈ {1, 2},
p(ε)(t) ⇀ p0(t) weakly in L2(Ω),

γε(u(ε))(t) ⇀ γ0(t) weakly in L2(Ω;R3×3),

for every t ∈ [0, T ]. In the case of u3(ε) we argue similarly and obtain

u3(ε)(t) ⇀ u3(t) weakly in L2(Ω;R3) for every t ∈ [0, T ]. (4.6)

Thus we may apply Theorem 15, with w(ε) = u(ε)(t), for each t ∈ [0, T ] and conclude that the
limit points of {u(ε)(t)} belong to VM (ω).

Moreover we conclude that

γ0αβ = γαβ(u), α, β ∈ {1, 2}. (4.7)

5 Derivation of the elliptic membrane model

We now derive the limit model. We do it by taking the limit in (3.8) for two choices of test functions.
In the third step we prove the strong convergence of the strain and pressure. Finally in the fourth
step we prove the strong convergence of displacements.

Step 1 (Identification of γ0i3). We take the limit as ε → 0 in the first equation in (3.8) divided
by ε and obtain∫

Ω
C
(
Q(0)γ0Q(0)T

)
:
(
Q(0)γz(v)Q(0)T

)√
g(0)dz − α

∫
Ω
p0 tr

(
Q(0)γz(v)Q(0)T

)√
g(0)dz = 0,

v ∈ V(Ω), a.e. t ∈ [0, T ].
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This equation is the same as in the first step of derivation the limit model in the flexural case,
see page 382 in [22]. Thus using the definition of γz and the space V(Ω) and arguing as in [22] we
identify the third row/column of γ0. Here we also use (4.7).

Lemma 17.
γ013 = γ031 = γ023 = γ032 = 0,

γ033 =
α

λ̃+ 2
p0 − λ̃

λ̃+ 2
Ac : γ(u).

From this lemma and Theorem 15 we have that γ0 is of the following form

γ0 =

 γ(u)
0
0

0 0 α
λ̃+2

p0 − λ̃
λ̃+2

Ac : γ(u)

 . (5.1)

Step 2 (Identification of the limit model). Now we take the limit in (3.8), after division of both
equations by ε, for test functions independent of the transversal variable z3, i.e., v ∈ H1

0 (ω;R3), such
that

γz(v) = 0.

Thus γε(v) = γy(v)−
∑3

i=1 viΓ
i(0). The equations are∫

Ω
C
(
Q(ε)γε(u(ε))Q(ε)T

)
:
(
Q(ε)γε(v)Q(ε)T

)√
g(ε)dz

− α

∫
Ω
p(ε) tr

(
Q(ε)γε(v)Q(ε)T

)√
g(ε)dz =

∫
Σ±

P± · v
√

g(ε)ds,

v ∈ H1
0 (ω;R3), a.e. t ∈ [0, T ],∫

Ω
β
∂p(ε)

∂t
q
√

g(ε)dz +

∫
Ω
α
∂

∂t
tr
(
Q(ε)γε(u(ε))Q(ε)T

)
q
√

g(ε)dz

+ ε2
∫
Ω
Q(ε)∇εp(ε) ·Q(ε)∇εq

√
g(ε)dz = ∓

∫
Σ±

V q
√

g(ε)ds, q ∈ H1(Ω).

In the limit when ε → 0 we obtain∫
Ω
C
(
Qγ0QT

)
:

(
Q(γy(v)−

3∑
i=1

viΓ
i(0))QT

)
√
adz

− α

∫
Ω
p0 tr

(
Q(γy(v)−

3∑
i=1

viΓ
i(0))QT

)
√
adz =

∫
Σ±

P± · v
√
ads,

v ∈ H1
0 (ω;R3), a.e. t ∈ [0, T ],∫

Ω
β
∂p0

∂t
q
√
adz +

∫
Ω
α
∂

∂t
tr
(
Qγ0QT

)
q
√
adz +

∫
Ω

∂p0

∂z3
Qe3 ·

∂q

∂z3
Qe3

√
adz

= ∓
∫
Σ±

V q
√
ads, q ∈ H1(Ω).

(5.2)

First note that

QTQ =

[
Ac 0
0 1

]
(5.3)

Since

γy(v)− viΓ
i(0) =

 γ(v)
1
2∂1v3 +

∑2
σ=1 vσb

σ
1

1
2∂2v3 +

∑2
σ=1 vσb

σ
2

1
2∂1v3 +

∑2
σ=1 vσb

σ
1

1
2∂2v3 +

∑2
σ=1 vσb

σ
2 0


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using (5.3) we get

tr (Q(γy(v)−
3∑

i=1

viΓ
i(0))QT ) = tr (QTQ(γy(v)−

3∑
i=1

viΓ
i(0))) = Ac : γ(v). (5.4)

Next, using Lemma 17 yields

tr (Qγ0QT ) = tr (QTQγ0) = Ac : γ(u) + γ033

= Ac : γ(u) +
α

λ̃+ 2
p0 − λ̃

λ̃+ 2
Ac : γ(u) =

2

λ̃+ 2
Ac : γ(u) +

α

λ̃+ 2
p0.

(5.5)

Further, using (5.3) and Lemma 17 we compute

QTQγ0QTQ =

[
Acγ(u)Ac 0

0 γ033

]
=

[
Acγ(u)Ac 0

0 α
λ̃+2

p0 − λ̃
λ̃+2

Ac : γ(u)

]
. (5.6)

Now the main elastic term in the first equation in (5.2) is computed:∫
Ω
C
(
Qγ0QT

)
:

(
Q(γy(v)−

3∑
i=1

viΓ
i(0))QT

)
√
adz

=

∫
Ω
λ̃ tr

(
Qγ0QT

)
tr

(
Q(γy(v)−

3∑
i=1

viΓ
i(0))QT

)
+ 2Qγ0QT : Q(γy(v)−

3∑
i=1

viΓ
i(0))QT√adz

=

∫
Ω
λ̃

(
2

λ̃+ 2
Ac : γ(u) +

α

λ̃+ 2
p0
)
Ac : γ(v)

√
adz

+

∫
Ω
2QTQγ0QTQ : (γy(v)−

3∑
i=1

viΓ
i(0))

√
adz

=

∫
Ω

2λ̃

λ̃+ 2
(Ac : γ(u))(Ac : γ(v)) +

λ̃α

λ̃+ 2
p0Ac : γ(v)

√
adz +

∫
Ω
2Acγ(u)Ac : γ(v)

√
adz.

Let us define the tensor (it usually appears in plate and shell theories!)

C̃E =
2λ̃

λ̃+ 2
tr (E)I+ 2E, E ∈ R2×2

sym.

The first equation in (5.2) now becomes: for all v ∈ H1
0 (ω;R3) one has∫

ω
C̃(Acγ(u)) : γ(v)Ac√adz1dz2 +

∫
Ω

λ̃α

λ̃+ 2
p0Ac : γ(v)

√
adz − α

∫
Ω
p0Ac : γ(v)

√
adz

=

∫
ω
(P+ + P−) · v

√
adz1dz2.

By density of H1
0 (ω;R3) in VM (ω) the above equation implies:∫

ω
C̃(Acγ(u)) : γ(v)Ac√adz1dz2 −

2α

λ̃+ 2

∫
ω

∫ 1/2

−1/2
p0dz3A

c : γ(v)
√
adz1dz2

=

∫
ω
(P+ + P−) · v

√
adz1dz2., v ∈ VM (ω).

(5.7)

Equation (5.7) is the classical equation of the membrane shell model with the addition of the pressure
p0 term.
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Using (5.5), the second equation in (5.2) can be now written by∫
Ω

(
β +

α2

λ̃+ 2

)
∂p0

∂t
q
√
adz +

∫
Ω
α
∂

∂t

(
2

λ̃+ 2
Ac : γ(u)

)
q
√
adz +

∫
Ω

∂p0

∂z3

∂q

∂z3

√
adz

= ∓
∫
Σ±

V q
√
ads, q ∈ H1(Ω).

(5.8)

The elliptic membrane poroelastic shell model is given by (5.7), (5.8).

Step 3 (The strong convergences of strain and pressure).
As mentioned in Remark 6 the limit problem can be decoupled and the displacement can be

calculated independently of the pressure, by solving the elliptic membrane shell model with modified
coefficients. However the same decoupling cannot be done for the three-dimensional problem and
thus the result of the strong convergence for the classical elliptic membrane shell derivation, see [5],
cannot be applied directly to the poroelastic case. Hence we adapt the ideas from [5]. Let

Λ(ε)(t) =
1

2

∫
Ω
C
(
Q(ε)

(
γε(u(ε))(t)− γ0(t)

)
Q(ε)T

)
:
(
Q(ε)

(
γε(u(ε))(t)− γ0(t)

)
Q(ε)T

)√
g(ε) +

1

2
β

∫
Ω
(p(ε)(t)− p0(t))2

√
g(ε)dz

+ ε2
∫ t

0

∫
Ω
(∇εp(ε)−∇εp0)Q(ε)T · (∇εp(ε)−∇εp0)Q(ε)T

√
g(ε)dz.

We will show that Λ(ε)(t) → Λ(t) as ε tends to zero for all t ∈ [0, T ]. Since Λ(ε) ≥ 0 then Λ ≥ 0 as
well. After some calculation we will show that actually Λ = 0. This will give the strong convergences
in (4.4).

Since we have only weak convergences in (4.4) to find the limit of Λ(ε) we first remove quadratic

terms in it using (3.8). We insert v =
∂u(ε)

∂t
and q = p(ε) in (3.8) divided by ε and sum up the

equations. We integrate this equation over time and use the initial conditions p(ε)|t=0 = 0 and
u(ε)|t=0 = 0. The left hand side of the obtained equation, which is the same as in [22, page 387], we
insert in Λ(ε) to obtain

Λ(ε)(t) =

∫ t

0

∫
Σ±

P± · ∂u(ε)
∂t

√
g(ε)dsdτ ∓

∫ t

0

∫
Σ±

V p(ε)
√

g(ε)dsdτ

−
∫
Ω
C
(
Q(ε)γε(u(ε))(t)Q(ε)T

)
:
(
Q(ε)γ0(t)Q(ε)T

)√
g(ε)dz

− β

∫
Ω
p(ε)p0

√
g(ε)dz

− 2ε2
∫ t

0

∫
Ω
Q(ε)∇εp(ε)(t) ·Q(ε)∇εp0(t)

√
g(ε)dzdτ

+
1

2

∫
Ω
C
(
Q(ε)γ0Q(ε)T

)
:
(
Q(ε)γ0Q(ε)T

)√
g(ε)dz +

1

2
β

∫
Ω
(p0)2

√
g(ε)dz

+ ε2
∫ t

0

∫
Ω
Q(ε)∇εp0 ·Q(ε)∇εp0

√
g(ε)dzdτ.

We take ε to zero and using weak convergences from Corollary 14 obtain that Λ(ε)(t) → Λ(t) ≥ 0,
where

Λ(t) =

∫ t

0

∫
ω
(P+ + P−) ·

∂u

∂t

√
adsdτ ∓

∫ t

0

∫
Σ±

V p0
√
adsdτ

− 1

2

∫
Ω
C
(
Qγ0(t)QT

)
:
(
Qγ0(t)QT

)√
adz − 1

2
β

∫
Ω
p0(t)2

√
adz −

∫ t

0

∫
Ω

(
∂p0

∂z3

)2√
adzdτ.

(5.9)
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Next we use the limit equations (5.7) and (5.8) to simplify the expression for Λ. We insert
∂u

∂t
as a

test function in (5.7), p0 in (5.8) and sum up the equations. The anti-symmetric terms cancel out as
before. Then we integrate the equation over time and use the initial conditions to obtain

1

2

∫
ω
C̃(Acγ(u(t))) : (γ(u(t))Ac)

√
adz1dz2 +

1

2

∫
Ω

(
β +

α2

λ̃+ 2

)
(p0(t))2

√
adz

+

∫ t

0

∫
Ω

(
∂p0

∂z3

)2√
adzdτ =

∫ t

0

∫
ω
(P+ + P−) ·

∂u

∂t

√
adsdτ ∓

∫ t

0

∫
Σ±

V p0
√
adsdτ.

Inserting the above equation into (5.9) yields

Λ(t) =
1

2

∫
ω
C̃(Acγ(u(t))) : (γ(u(t))Ac)

√
adz1dz2 +

1

2

∫
Ω

α2

λ̃+ 2
(p0(t))2

√
adz

− 1

2

∫
Ω
C
(
Qγ0(t)QT

)
:
(
Qγ0(t)QT

)√
adz.

(5.10)

Next we compute the elastic energy using (5.1), (5.5), (5.6):∫
Ω
C
(
Qγ0QT

)
:
(
Qγ0QT

)√
adz

=

∫
Ω
λ̃(tr

(
Qγ0QT

)
)2 + 2QTQγ0QTQ : γ0√adz

=

∫
Ω
λ̃

(
2

λ̃+ 2
Ac : γ(u) +

α

λ̃+ 2
p0
)2

+ 2

[
Acγ(u)Ac 0

0 α
λ̃+2

p0 − λ̃
λ̃+2

Ac : γ(u)

]
: γ0√adz

=

∫
Ω
λ̃

(
2

λ̃+ 2
Ac : γ(u) +

α

λ̃+ 2
p0
)2

+ 2

Acγ(u)Ac : γ(u) +

(
α

λ̃+ 2
p0 − λ̃

λ̃+ 2
Ac : γ(u)

)2
√

adz

=

∫
Ω

( 4λ̃

(λ̃+ 2)2
(Ac : γ(u))2 +

4λ̃α

(λ̃+ 2)2
Ac : γ(u)p0 +

λ̃α2

(λ̃+ 2)2
(p0)2 + 2Acγ(u)Ac : γ(u)

+
2α2

(λ̃+ 2)2
(p0)2 − 4λ̃α

(λ̃+ 2)2
Ac : γ(u)p0 +

2λ̃2

(λ̃+ 2)2
(Ac : γ(u))2

)√
adz

=

∫
Ω

2λ̃

λ̃+ 2
(Ac : γ(u))2 +

α2

λ̃+ 2
(p0)2 + 2Acγ(u)Ac : γ(u)

√
adz

=

∫
Ω
C̃(Acγ(u)) : γ(u)Ac +

α2

λ̃+ 2
(p0)2

√
adz.

Inserting this into (5.10) we obtain that Λ(t) = 0 and thus Λ(ε)(t) → 0 for every t ∈ [0, T ]. Since
Λ(ε) : [0, T ] → R is an equicontinuous family, strong convergences of the strain tensor and the
pressure follow

γε(u(ε)) → γ0 strongly in C([0, T ];L2(Ω;R3×3)),

p(ε) → p0 strongly in C([0, T ];L2(Ω)),

∂p(ε)

∂z3
→ ∂p0

∂z3
strongly in L2(0, T ;L2(Ω)).

(5.11)

Step 4 (The strong convergences of the displacements). The setting is more complicated than in
the proof of Theorem 4.4-1 from [5] because the problem is time dependent. Moreover, the setting is
more complicated than in the flexural case from [22]. The first convergence in (5.11) implies

γαβ(u(ε)) → γαβ(u) strongly in C([0, T ];L2(Ω)), α, β ∈ {1, 2}. (5.12)
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Let us now denote by · the operator of averaging over z3, i.e.,

v(·) =
∫ 1/2

−1/2
v(·, z3)dz3.

Then from (5.12) we obtain

γαβ(u(ε)) → γαβ(u) strongly in C([0, T ];L2(ω)), α, β ∈ {1, 2}.

Note that u = u since u is independent of z3. The inequality of Korn’s type on an elliptic surface,
see Lemma 4 ([5, Theorem 2.7-3]), for u(ε)− u implies

∥u1(ε)− u1∥2H1(ω) + ∥u2(ε)− u2∥2H1(ω) + ∥u3(ε)− u3∥2L2(ω) ≤ CM∥γ(u(ε))− γ(u)∥2L2(Ω;R3×3).

Application of (5.12) yields

uα(ε) → uα strongly in C([0, T ];H1(ω)), α ∈ {1, 2},
u3(ε) → u3 strongly in C([0, T ];L2(ω)).

(5.13)

Next we prove that
u3(ε) → u3 strongly in C([0, T ];L2(Ω)). (5.14)

From the Poincare type estimate

|u3(ε)(·, z3)− u3(ε)(·)| ≤ C

√∫ 1/2

−1/2
(∂3u3(ε)(·, y3))2dy3

we obtain
∥u3(ε)− u3(ε)∥C([0,T ];L2(Ω)) ≤ C∥∂3u3(ε)∥C([0,T ];L2(Ω)).

From γε33(u(ε)) =
1
ε∂3u3(ε) → γ033 strongly in C([0, T ];L2(Ω)) we conclude ∂3u3(ε) → 0 strongly in

C([0, T ];L2(Ω)). Together with the last convergence in (5.13) this implies (5.14).
In the remaining part of the proof we prove

uα(ε) → uα strongly in C([0, T ];H1(Ω)), α ∈ {1, 2}. (5.15)

It follows from the Korn inequality and the Lions lemma (see [14]). Let us denote u′(ε) = (u1(ε), u2(ε), 0),
u′ = (u1, u2, 0). Then, using the Korn inequality, the convergence

e(u′(ε)) → e(u′) strongly in C([0, T ];L2(Ω;R3×3)) (5.16)

is equivalent to (5.15) (e(u) denotes the symmetrized gradient). Convergence in (5.16) will be
obtained component by component. Since for α, β ∈ {1, 2}

eαβ(u
′(ε)) = γεαβ(u(ε)) +

3∑
i=1

ui(ε)Γ
i
αβ(ε),

using the first convergence in (5.11) for γεαβ(u(ε)), Remark 16 for u1(ε) and u2(ε), (5.14) for u3(ε)
and (4.2) we obtain

eαβ(u
′(ε)) → γαβ(u) +

3∑
i=1

uiΓ
i
αβ(0) = eαβ(u

′) strongly in C([0, T ];L2(Ω)), α, β = 1, 2. (5.17)

Since e33(u
′(ε)) = e33(u

′) = 0 the convergence of this component is trivial.
For the convergence of eα3(u

′(ε)) = 1
2∂3uα(ε) we apply the Lions lemma. Thus we first prove

that

∂3uα(ε), ∂13uα(ε), ∂23uα(ε), ∂33uα(ε) → 0 strongly in C([0, T ];H−1(Ω)), α = 1, 2. (5.18)
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We start with the expression

1

ε
∂3uα(ε) = 2γεα3(u(ε))− ∂αu3(ε) + 2

3∑
i=1

ui(ε)Γ
i
α3(ε). (5.19)

The first and the third term on the right hand side converge strongly in C([0, T ];L2(Ω)), while the
middle one converges only in C([0, T ];H−1(Ω)) by (5.14). Thus we obtain that ∂3uα(ε) → 0 in
C([0, T ];H−1(Ω)). Differentiating (5.19) with respect to z3 yields

1

ε
∂33uα(ε) = 2∂3γ

ε
α3(u(ε))− ∂α∂3u3(ε) + 2

3∑
i=1

∂3(ui(ε)Γ
i
α3(ε)).

Since ∂3u3(ε) → 0 in C([0, T ];L2(Ω)) the convergence of ∂33uα(ε) in C([0, T ];H−1(Ω)) is obtained.
Differentiating (5.17) with respect to z3 for α = β yields

∂α3uα(ε) = ∂3eαα(u
′(ε)) → ∂3eαα(u

′) = 0 strongly in C([0, T ];H−1(Ω)), α = 1, 2.

Since

∂13u2(ε) = ε∂1γ
ε
23(u(ε))− ε∂2γ

ε
13(u(ε)) + ∂3e12(u

′(ε)) + ε

(
∂1

2∑
τ=1

uτ (ε)Γ
τ
23(ε)− ∂2

2∑
τ=1

uτ (ε)Γ
τ
13(ε)

)

and since all terms on the right hand side strongly converge in C([0, T ];H−1(Ω)) we obtain the strong
convergence of ∂13u2(ε) in the same space. It then implies that the term

∂23u1(ε) = 2∂3γ
ε
12(u(ε))− ∂13u2(ε) + 2∂3

3∑
i=1

ui(ε)Γ
i
12(ε)

converges strongly in C([0, T ];H−1(Ω)). Thus we have proved (5.18). A consequence of Lions lemma
is that the spaces

v ∈ L2(Ω) ↔ (v, ∂1v, ∂2v, ∂3v) ∈ H−1(Ω)4

are isomorphic. Therefore the spaces

v ∈ C([0, T ];L2(Ω)) ↔ (v, ∂1v, ∂2v, ∂3v) ∈ C([0, T ];H−1(Ω))4

are also isomorphic. Therefore (5.18) implies that eα3(u
′(ε)) = 1

2∂3uα(ε) → 0 strongly in C([0, T ];L2(Ω)).
Therefore we have proved (5.16) and then (5.15) follows by the Korn inequality. Thus we have proved
the strong convergence of displacements

u(ε) → u strongly in C([0, T ];H1(Ω)×H1(Ω)× L2(Ω)).

A Spherical surface

Let ω = [0, d1]× [0, d2], where d1 ∈ (0, 2π], d2 ∈ (0, π], with one of the strict inequalities d1 < 2π or
d2 < π holding, and let (φ, θ) denotes the generic point in ω. Let R > 0. We define a spherical shell
by the parametrization

X : ω → R3, X(φ, θ) = (R sin θ cosφ,R sin θ sinφ,R cos θ)T .

Then the extended covariant basis of the shell S = X(ω) is given by

a1(φ, θ) = ∂φX(φ, θ) = R(− sin θ sinφ, sin θ cosφ, 0)T ,

a2(φ, θ) = ∂θX(φ, θ) = R(cos θ cosφ, cos θ sinφ,− sin θ)T ,

a3(φ, θ) =
a1(φ, θ)× a2(φ, θ)

|a1(φ, θ)× a2(φ, θ)|
= (− sin θ cosφ,− sin θ sinφ,− cos θ)T .
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The contravariant basis is biorthogonal and is given by

a1(φ, θ) =
1

R
(− sinφ/ sin θ, cosφ/ sin θ, 0)T ,

a2(φ, θ) =
1

R
(cos θ cosφ, cos θ sinφ,− sin θ)T ,

a3(φ, θ) = (− sin θ cosφ,− sin θ sinφ,− cos θ)T .

The covariant Ac = (aαβ) and contravariant Ac = (aαβ) metric tensors are respectively given by

Ac =

[
R2 sin2 θ 0

0 R2

]
, Ac =

[
1
R2

1
sin2 θ

0

0 1
R2

]
and the area element is now

√
adS =

√
detAcdS = R2 sin θdS. The covariant and mixed components

of the curvature tensor are now given by

b11 = a3 · ∂φa1 = R sin2 θ, b12 = a3 · ∂θa1 = 0,

b21 = a3 · ∂φa2 = 0, b22 = a3 · ∂θa2 = R,

b11 =

2∑
σ=1

a1σbσ1 = a11b11 =
1

R
, b12 =

2∑
σ=1

a1σbσ2 = 0,

b21 =
2∑

σ=1

a2σbσ1 = 0, b22 =
2∑

σ=1

a2σbσ2 = a22b22 =
1

R2
R =

1

R
.

For Christoffel symbols Γσ
αβ = aσ · ∂βaα one has

Γ1 = (Γ1
αβ) =

[
0 ctg θ

ctg θ 0

]
, Γ2 = (Γ2

αβ) =

[
− sin θ cos θ 0

0 0

]
.

Now the displacement vector ṽ in the canonical coordinates is rewritten in the local basis ṽ =
Qv = v1a

1 + v2a
2 + v3a

3. Note that contravariant basis is different than the usual basis associated
with the spherical coordinates. One has

v1 = R sin θvφ, v2 = Rvθ, v3 = −vr.

Similarly, P̃± = Q−TP± = (P±)1a1 + (P±)2a2 + (P±)3a3. Thus

(P±)1 =
1

R sin θ
(P±)φ, (P±)2 =

1

R
(P±)θ, (P±)3 = −(P±)r

and
P± · v = (P±)1v1 + (P±)2v2 + (P±)3v3 = (P±)φvφ + (P±)θvθ + (P±)rvr.

Inserting the geometry coefficients into the strain γ we obtain

γ(v) =

[
∂1v1 −

∑2
κ=1 Γ

κ
11vκ − b11v3

1
2(∂1v2 + ∂2v1)−

∑2
κ=1 Γ

κ
12vκ − b12v3

1
2(∂2v1 + ∂1v2)−

∑2
κ=1 Γ

κ
21vκ − b21v3 ∂2v2 −

∑2
κ=1 Γ

κ
22vκ − b22v3

]
= R

[
sin θ∂φvφ + sin θ cos θvθ + sin2 θvr

1
2(∂φvθ + sin θ∂θvφ)− cos θvφ

1
2(sin θ∂θvφ + ∂φvθ)− cos θvφ ∂θvθ + vr

]
.

Next

C̃(Acγ(u)) : γ(v)Ac =
2λ̃

λ̃+ 2
tr (Acγ(u)) tr (Acγ(v)) + 2Acγ(u) : γ(v)Ac

=
2λ̃

λ̃+ 2

1

R2

(
1

sin2 θ
(sin θ∂φuφ + sin θ cos θuθ + sin2 θur) + (∂θuθ + ur)

)
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(
1

sin2 θ
(sin θ∂φvφ + sin θ cos θvθ + sin2 θvr) + (∂θvθ + vr)

)
+ 2

1

R2

(
1

sin4 θ
(sin θ∂φuφ + sin θ cos θuθ + sin2 θur)(sin θ∂φvφ + sin θ cos θvθ + sin2 θvr)

+
2

sin2 θ
(
1

2
(∂φuθ + sin θ∂θuφ)− cos θuφ)(

1

2
(∂φvθ + sin θ∂θvφ)− cos θvφ)

+ (∂θuθ + ur)(∂θvθ + vr)

)
=

2λ̃

λ̃+ 2

1

R2

(
1

sin θ
(∂φuφ + cos θuθ + sin θur) + ∂θuθ + ur

)
(

1

sin θ
(∂φvφ + cos θvθ + sin θvr) + ∂θvθ + vr

)
+ 2

1

R2

(
1

sin2 θ
(∂φuφ + cos θuθ + sin θur)(∂φvφ + cos θvθ + sin θvr)

+
1

2 sin2 θ
(∂φuθ + sin θ∂θuφ − 2 cos θuφ)(∂φvθ + sin θ∂θvφ − 2 cos θvφ) + (∂θuθ + ur)(∂θvθ + vr)

)
.

The insertion of the above expression for C̃ into (3.15) gives the equations of the spherical membrane
shell. They read: find {(uφ, uθ, ur)} ∈ C([0, T ];VM (ω)), satisfying the system∫ d1

0

∫ d2

0

((
2λ̃

λ̃+ 2
+

4α2

(λ̃+ 2)
(
β(λ̃+ 2) + α2

)) 1

R2

(
1

sin θ
(∂φuφ + cos θuθ + sin θur) + ∂θuθ + ur

)
(

1

sin θ
(∂φvφ + cos θvθ + sin θvr) + ∂θvθ + vr

)
+ 2

1

R2

(
1

sin2 θ
(∂φuφ + cos θuθ + sin θur)(∂φvφ + cos θvθ + sin θvr)

+
1

2 sin2 θ
(∂φuθ + sin θ∂θuφ − 2 cos θuφ)(∂φvθ + sin θ∂θvφ − 2 cos θvφ)

+ (∂θuθ + ur)(∂θvθ + vr)

))
R2 sin θdφdθ

=

∫ d1

0

∫ d2

0
(((P+)φ + (P−)φ)vφ + ((P+)θ + (P−)θ)vθ + ((P+)r + (P−)r)vr)R

2 sin θdφdθ,

(vφ, vθ, vr) ∈ VM (ω).

Then
∫ 1/2
−1/2 p

0dr is calculated from (3.14) and the fluctuation of the pressure across the thickness can

be calculated from (3.17).

Remark 18. In the case of the whole sphere we are not in the elliptic membrane case since the
boundary conditions are different. However if we assume that the body is loaded radially (i.e. P±, V
are functions of time only) we can search for the radial solution of the three-dimensional problem
(3.8) (i.e. uφ = uθ = 0 and ur is independent of φ and θ). The asymptotic analysis is based on the a
priori estimates used in Theorem 10. In the case of the whole sphere and radial solutions, a simple
calculation gives

∥γε(v)∥2L2(Ω;R3×3) =

∫ 2π

0

∫ π

0

∫ 1/2

−1/2

(
(R sin2 θ − εz3)

4v23 + (R− εz3)
2v23 +

1

ε2
∂3v3(z3)

2

)
dz3dθdφ

≥
∫ 2π

0

∫ π

0

∫ 1/2

−1/2

(
R2/4v23 +

1

ε2
∂3v3(z3)

2

)
dz3dθdφ ≥ C2∥v3∥2H1(Ω),

for R ≥ ε and 1 ≫ ε. Then the subsequent analysis follows as above and the limit model in this case
can be obtained by specialization of the above equations for spherical geometry.
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Thus for loading depending only on time for the solution of the shell problem we obtain the
following relation for ur and p0:

3λ̃+ 2

λ̃+ 2
4ur − 2R

2α

λ̃+ 2

∫ 1/2

−1/2
p0dr = ((P+)r + (P−)r)R

2. (A.20)

d

dt

∫ 1/2

−1/2

(
β +

α2

λ̃+ 2

)
p0qR2dr + 2R

2α

λ̃+ 2

∫ 1/2

−1/2
∂turqdr +R2

∫ 1/2

−1/2

∂p0

∂r

∂q

∂r
dr =

V (q(−1/2)− q(1/2))R2 in D′(0, T ), q ∈ H1(−1/2, 1/2),

p0 = 0 at t = 0.

(A.21)

From (A.21) for constant test functions we obtain(
β +

α2

λ̃+ 2

)
∂t

∫ 1/2

−1/2
p0R2dr + 2R

2α

λ̃+ 2
∂tur = 0.

Inserting ur from(A.20), after some calculations, we obtain

∂t

∫ 1/2

−1/2
p0 = − Rα

β(3λ̃+ 2) + α2 3λ̃+6
λ̃+2

∂t((P+)r + (P−)r). (A.22)

After partial integration in (A.21), we obtain(
β +

α2

λ̃+ 2

)
∂tp

0R2 + 2R
2α

λ̃+ 2
∂tur −R2∂rrp

0 = 0,

∂rp
0|r=±1/2 = V,

p0 = 0 at t = 0.

Here we calculate ur from (A.20) with ∂t
∫ 1/2
−1/2 p

0dr replaced using (A.22) and obtain the boundary

value problem for p0(
β +

α2

λ̃+ 2

)
∂tp

0 +R
α(β(λ̃+ 2) + α2)

β(3λ̃+ 2)(λ̃+ 2) + α2(3λ̃+ 6)
∂t((P+)r + (P−)r)− ∂rrp

0 = 0,

∂rp
0|r=±1/2 = V,

p0 = 0 at t = 0.

This equation has the same structure as the equation in [31] for spherical poroelastic membrane,
however the coefficients are obviously not the same since in [31] there are no inverse Biot’s coefficient
β and the effective stress coefficient α. In the constitutive law (2.6) Taber takes α = 1 and in (2.8)
β seems to be 1 as well. Hence, our consideration establish rigorously the results from [31].

B Acknowledgements

The research of A.M. was supported in part by the LABEX MILYON (ANR-10-LABX-0070) of
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