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Abstract. This is a study of the fluid-structure interaction between the stationary
Stokes flow of an incompressible, Newtonian viscous fluid filling a three-dimensional,
linearly elastic, pre-stressed hollow tube. The main motivation comes from the study
of blood flow in human arteries. Most literature on fluid-structure interaction in blood
flow utilizes thin structure models (shell or membrane) to describe the behavior of
arterial walls. However, arterial walls are thick, three-dimensional structures with the
wall thickness comparable to the vessel inner radius. In addition, arteries in vivo exhibit
residual stress: when cut along the radius, arteries spring open releasing the residual
strain. This work focuses on the implications of the two phenomena on the solution
of the fluid-structure interaction problem, in the parameter regime corresponding to
the blood flow in medium-to-large human arteries. In particular, it is assumed that
the aspect ratio of the cylindrical structure ε = R/L is small. Using asymptotic
analysis and ideas from homogenization theory for porous media flows, an effective,
closed model is obtained in the limit as both the thickness of the vessel wall and the
radius of the cylinder approach zero, simultaneously. The effective model satisfies the
original three-dimensional, axially symmetric problem to the ε2-accuracy. Several novel
properties of the solution are obtained using this approach. A modification of the well-
known “Law of Laplace” is derived, holding for thick elastic cylinders. A calculation
of the effective longitudinal displacement is obtained, showing that the leading-order
longitudinal displacement is completely determined by the external loading. Finally,
it is shown that the residual stress influences the solution only at the ε-order. More
precisely, it is shown that the only place where the residual stress influences the solution
of this fluid-structure interaction problem is in the calculation of the ε-correction of
the longitudinal displacement.

1 Introduction

The focus of this paper is on the fluid-structure interaction between a viscous, incompress-
ible, Newtonian fluid flowing through a pre-stressed tube with thick, three-dimensional elastic
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Figure 1.1: Ultrasound of the human carotid artery, [8].

walls. The main motivation comes from the study of blood flow in human arteries. In the
last few years there has been a significant growth in interest in the theoretical and numerical
study of fluid-structure interaction problems arising in blood flow. This is a complex prob-
lem involving several spatial and temporal scales, and a severe nonlinearity in the coupling
between the fluid and the structure (vessel wall). In addition, vessel walls are anisotropic
and inhomogeneous, composed of several layers with different mechanical properties. Taking
into account the detailed mechanical structure of the arterial walls would make the study of
the fluid-structure interaction intractable. This is why most models in the related literature
utilize the simple linearly elastic (or viscoelastic) membrane equations to model the behav-
ior of arterial walls, see [1, 3, 4, 6, 7, 15, 16, 21, 22, 23, 24]. In particular, the membrane
models assume small vessel wall thickness with respect to the vessel inner radius (lumen).
This is, however, not the case in the blood flow application. Arterial walls are thick three-
dimensional structures, with the vessel wall thickness h comparable to the vessel inner radius
R (lumen), [20]. See Figure 1. Taking this property into account leads to new information
about the coupling between arterial walls and blood flow, discussed in detail in Sections 4.3
and 7. In particular, we arrive to a modification of the Law of Laplace that relates the fluid
pressure with the wall displacement holding for thick walls.

Furthermore, most of the models used in the literature on the interaction between blood
flow and vessel walls, do not account for the fact that arteries in vivo exhibit residual stress:
if cut radially, arteries spring open releasing the residual strain and approaching the zero-
stress state which is a sector, shown in Figures 2.2 and 2.3. See [9, 11, 16, 17, 18, 25]. In this
manuscript we take both phenomena into account to derive a simple, effective closed model
that approximates the three-dimensional axially symmetric problem to the ε2-accuracy, where
ε = R/L << 1 is the aspect ratio of the vessel segment of length L.

More precisely, we study the fluid-structure interaction problem between a three-dimensi-
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onal, linearly elastic thick, pre-stressed, hollow tube filled with an incompressible, Newto-
nian viscous fluid satisfying the Stokes equations. Assuming the aspect ratio of the tube to
be small, and letting the thickness of the tube wall to be of the same order of magnitude as
the tube radius, we derive a closed effective model that approximates the three-dimensional
axially symmetric problem to the ε2-accuracy.

From the reduced model the following three interesting new results follow. One is a new
algebraic relationship between the fluid pressure and the vessel radius for thick structures,
given by (7.6), that is a modification of the well-known Law of Laplace that holds for thin
membrane shells. This is obtained in Section 7. We show that using the classical Law of
Laplace to study the pressure-displacement relationship for thick stuctures, under-estimates
the radial displacement of the structure. In particular, the error increases with the thickness
of the wall and is of order O(1) for medium-to-large arteries. Thus, we suggest that using
the pressure-radius relationship (7.6) is more appropriate for the blood-flow application.
The second result concerns the influence of the residual stress on the solution of the fluid-
structure interaction problem to the O(ε2) accuracy. Residual stresses have been studied
extensively in the past ten year in the contex of modeling the mechanical properties of vessel
walls. It has been shown using numerical simulations of the arterial wall mechanics, [17],
that under the static physiological loading, the influence of the residual stress on the vessel
wall displacement is relatively small. In this paper, we show using asymptotic analysis, that
even though the residual stress does not enter the solution to the leading order accuracy, it
influences the calculation of the longitudinal displacement of the vessel wall to the ε accuracy.
This is shown in Section 6. And finally, our third result concerns the magnitude of the
longitudinal displacement. Most of the literature on fluid-structure interaction in blood flow
assumes that the longitudinal displacement of the vessel wall is zero, arguing that the vessel
walls are longitudinally theatered, composed of a ”series” of approximately independent rings
giving rise to the negligible longitudinal displacement. In this manuscript we show in a
consistent way that the leading-order longitudinal displacement is zero, assuming that the
longitudinal displacement of the cylinder’s external boundary is zero. More precisely, we
show that in any three-dimensional linearly elastic cylindrical tube that is interacting with
an axially symmetric flow of an incompressible, viscous fluid, the leading-order longitudinal
displacement in the three-dimensional structure is completely determined by the ambient
boundary condition applied to the external lateral boundary of the cylinder. This result is
a consequence of the fact that the axial component of the fluid stress at the fluid-structure
interface is negligible to the leading order. Thus, if the external boundary of the vessel
wall is longitudinally fixed, the longitudinal displacement throughout the three-dimensional
cylindrical wall will remain zero to the leading-order accuracy. However, we also show that
the ε-correction of the longitudinal displacement is not zero. In fact, the ε-correction of
the longitudinal displacement depends on the residual stress, the tangential component of
the fluid stress, and on the zero-th order approximation of the radial displacement. This is
obtained in Section 4.3 and Section 5.
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2 Mathematical formulation

We study the flow of an incompressible viscous fluid through a pre-stressed tube with three-
dimensional linearly elastic walls of thickness h. The main assumptions in this paper are that
the thickness h is comparable to the inner tube radius R which is small with respect to the
tube length L:

h

R
= O(1),

R

L
= ε,

and that the walls of the tube, prior to the physiological loading, exhibit non-zero residual
stress.

It has been well accepted that blood in medium-to-large arteries can be modeled as a
viscous, incompressible, Newtonian fluid, utilizing the Navier-Stokes equations as a good
flow model. The study of the fluid-structure interaction between the incompressible, viscous
Navier-Stokes equations and the equations of the three-dimensional, linearly elastic struc-
ture, is complicated due to the following features: the fluid equations are non-linear and the
time-dependent coupling between the flow and the structure introduces additional nonlin-
earities in the problem. In particular, the time-scale at which the waves in the structure
and the fluid flow are captured to the leading order accuracy, is determined by both the
time scale of the ”far field” velocity, as well as the time scale of the vibrations of the struc-
ture, see [7, 2]. However, in our current work, we have realized that in order to understand
the influence of the residual stress and the structure’s wall thickness on the solution to the
fluid-structure interaction problem, it is sufficient to focus on the stationary Stokes problem,
thereby avoiding additional difficulties associated with the time-dependent coupling. This is
why in this paper, to keep ideas simple and to emphasize the basic features of the underlying
fluid-structure interaction problem, we first focus on the stationary Stokes problem. The re-
sults presented here will still hold in the non-stationary Navier-Stokes case where additional
difficulties related to the time-dependent coupling with a three-dimensional structure, will
be dealt separately in [2].

For completeness, in this section we present the general, non-stationary fluid-structure in-
teraction problem for the Navier-Stokes equations coupled with the three-dimensional struc-
ture equations, and focus on the stationary Stokes problem in the next section.

We begin by a description of the structure equations and the form of the Cauchy stress
tensor describing residual stress due to the circumferential and longitudinal stretch. Since
the structure equations are typically given in the Lagrangian framework (measuring the
deformation of the structure with respect to a fixed reference configuration), and the flow
equations are typically given in the Eulerian framework, we use different notation denoting
the two coordinate systems: we will be using (r, θ, z) to denote the radial, azimuthal, and axial
variable in the domain occupied by the fluid, and (s, ϑ, ζ) to measure the radial, azimuthal,
and axial variable in the domain corresponding to the structure.

2.1 Description of the elastic structure

The reference configuration Ωw
0 for the elastic structure (wall) is a cylinder with annular cross

section, with the internal and external radii R and R+ h, respectively. See Figure 2.1.
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R
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Figure 2.1: Prestressed reference configuration for a tube with three-dimensional elastic
walls.

In cylindrical coordinates the reference domain is given by

Ωw
0 = {(s cos ϑ, s sinϑ, ζ) ∈ R3 | s ∈ (R,R+ h), ϑ ∈ [0, 2π), ζ ∈ (0, L)}, (2.1)

with the exterior boundary

Σw
ext = {(s cos ϑ, s sinϑ, ζ) ∈ R3 | s = R+ h, ϑ ∈ [0, 2π), ζ ∈ (0, L)}, (2.2)

the interior boundary

Σw
int = {(s cos ϑ, s sinϑ, ζ) ∈ R3 | s = R, ϑ ∈ [0, 2π), ζ ∈ (0, L)}, (2.3)

and the inlet and outlet sections

Σw
0 = {(s cos ϑ, s sinϑ, ζ) ∈ R3 | s ∈ (R,R+ h), ϑ ∈ [0, 2π), ζ = 0}, (2.4)

Σw
L = {(s cos ϑ, s sinϑ, ζ) ∈ R3 | s ∈ (R,R + h), ϑ ∈ [0, 2π), ζ = L}. (2.5)

We will be assuming that the reference configuration Ωw
0 is pre-stressed. Namely, it is well-

known that arteries in vivo exhibit residual stress: when cut along the radius, an artery
springs open to form an open sector, see Figures 2.2 and 2.3, [9, 17, 16]. Residual stress is
the stress supported by a body in a fixed reference configuration in the absence of external
forces, [18]. Residual stress is the Cauchy stress field T satisfying the equilibrium equations
and the zero traction condition, [18]:

∇ ·T = 0 in Ωw
0 , (2.6)

Tn = 0 on ∂Ωw
0 , (2.7)

where n is the outward unit normal. To calculate the distribution of residual stress, we used
the approach and the results presented in [9, 11, 18, 17, 16]. In contrast with the rest of
the manuscript where incremental elasticity is used to study the deformation from the pre-
stressed, reference configuration Ωw

0 , the calculation of the residual stress relies on the theory
of finite elasticity. A brief summary is presented next.
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STRESS−FREE 
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pΩw
0

χ
I

sI

Figure 2.2: Cross-section of an arterial segment in the stress-free, unloaded and loaded
state.

2.1.1 The form of the Cauchy stress tensor for the residual stress due to

the circumferential and longitudinal stretch. Assume that the stress-free configu-
ration of the arterial wall is a cylinder with a cross-section which is an open sector as shown in
Figure 2.2, left. Consider a mapping which takes a material particle from its position (χ,ψ, ξ)
in the open sector, to the new position (s, ϑ, ζ) in the intact unloaded (ring) configuration
Ωw

0 shown in Figure 2.2 center, given by:

s = s(χ), ϑ =
π

Θ0
ψ, ζ = Λξ, (2.8)

where Θ0 is the opening angle and Λ is the axial stretch ratio associated with the residual
stress, [16] .

Assume that the vessel walls are incompressible. Then the product λ1λ2λ3 of the principal
stretch ratios

λ1 =
∂s

∂χ
, λ2 =

π

Θ0

s

χ
, λ3 = Λ

must be equal to 1. This implies

s2 − s2I =
Θ0

πΛ
(χ2 − χ2

I), (2.9)

where χI and sI are the internal radii in the stress-free and the unloaded configuration,
respectively. The deformation gradient J and the right Cauchy-Green tensor C associated
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Figure 2.3: Residual Stress in Pulmonary and Ileal Artery, [25].

with this deformation, are given by the following, [16]:

J =




Θ0χ

πΛs
0 0

0
πs

Θ0χ
0

0 0 Λ


 , C =




(
Θ0χ

πΛs

)2

0 0

0

(
πs

Θ0χ

)2

0

0 0 Λ2



. (2.10)

Define the Green-Lagrange strain tensor as E = (C − I)/2. Then, the Cauchy stress tensor

RESIDUAL STRESS PARAMETERS (CAROTID ARTERY) [11]

a = 44.2 kPa
b = 16.7

sI (inner radius of the unloaded config.) = 3.1 mm
sE (external radius of the unloaded config.) = 4.0 mm
χI (inner radius of the stress-free config.) = 5.05 mm

χE (external radius of the stress-free config.) = 6.04 mm

Table 2.1: Parameter values needed to the Residual Stress calculation

can be obtained as follows, see [11]:

T = pI + J
∂Ψ

∂E
JT −

1

3

[
J
∂Ψ

∂E
JT : I

]
I, (2.11)

where p is the Lagrangian multiplier that ensures the incompressibility of the material, and Ψ
is the strain-energy density function. In this manuscript we will be taking the strain-energy
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density function Ψ corresponding to the human carotid artery as proposed in [11]:

Ψ =
a

b

{
exp

[
b

2
(I1 − 3)

]}
. (2.12)

Here a and b are parameters representing the material properties and I1 := C : I is the first
invariant of the right Cauchy-Green strain tensor C. Substituting this expression into (2.11)
we find that tensor T depends only on the radial variable s and has a diagonal form with

Tss = p+
2

3
φCss, Tϑϑ = p+

2

3
φCϑϑ, Tζζ = p+

2

3
φCζζ , (2.13)

where

φ =
∂Ψ

∂Ess
=

∂Ψ

∂Eϑϑ
=

∂Ψ

∂Eζζ
= a

{
exp

[
b

2
(I1 − 3)

]}
, (2.14)

and Css, Cϑϑ and Cζζ are the diagonal components of the Cauchy-Green stress tensor C,
given in (2.10). The zero traction condition implies Tss(R) = Tss(R + h) = 0. To calculate
the Lagrange multiplier p we use the radial component of the equation ∇ ·T = 0:

dTss

ds
+
Tss − Tϑϑ

s
= 0. (2.15)

Integrating equation (2.15) from the internal radius sI to s ∈ (R,R+ h) one obtains

p = −
2

3
(φCss − L(s)), where L(s) =

∫ s

sI

φ

s

[(
Θ0χ

πΛs

)2

−

(
πs

Θ0χ

)2
]
ds. (2.16)

Using (2.11) we can now obtain the components of the Cauchy stress tensor describing the
residual stress:

Tss = −
2

3
L(s), Tϑϑ =

2

3
[φ(Cϑϑ −Css)− L(s)], Tζζ =

2

3
[φ(Cζζ − Css)− L(s)], (2.17)

where L(s) is defined in (2.16), φ in (2.14), and C is the right Cauchy-Green tensor given by
(2.10).

To completely specify the residual stress tensor we will be using parameter values from
[11], shown in Table 2.1. The values for χI and χE are obtained by integrating equation
(2.15) from sI to sE to get

∫ sE

sI

φ

s

[(
Θ0χ

πΛs

)2

−

(
πs

Θ0χ

)2
]
ds = 0. (2.18)

Equation (2.18) is a compatibility condition. The choice of χI and χE must be such that
(2.18) holds. In particular, we used χI = 5.05 mm and χE = 6.04 mm, and for the values
of parameters Λ and Θ0 we used the suggested values from [11, 16] which are Λ = 1.1 and
Θ0 = 0.638π = (1− 130/360)π.
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Figures 2.4 and 2.5 show the components of the Cauchy stress tensor and the Green-
Lagrange strain tensor plotted as a function of the radius. We can see that the magnitude of
the radial component of the stress is much smaller than the circumferential and longitudinal
ones, see Figure 2.4 left. Moreover, Figure 2.5 middle shows that the circumferential strain is
negative in the inner part of the wall and positive in the outer part. This is in correspondence
with the results in [18] and the experimental measurements presented in [9] and [16].
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Figure 2.4: Diagonal components of the Cauchy stress tensor describing the residual stress.
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Figure 2.5: Diagonal components of the Green-Lagrange strain tensor describing the resid-
ual strains.

2.1.2 The Model Equations for the Structure. We assume that the elastic solid
undergoes small deformations from the reference pre-stressed, unloaded configuration Ωw

0 ,
and that the gradient of the displacement u = (us, uϑ, uζ) from the reference configuration,
∇u, is small, allowing the use of linear theory. The equations of the structure dynamics in
the absence of body forces in the Lagrangian framework read as follows [18]:

̺w
∂2u

∂t2
= ∇ · S in Ωw

0 , (2.19)

where S is the first Piola-Kirchhoff stress tensor. Following the approach in [18], we assume
that S is differentiable and that for small ∇u it can be expressed as

S(I +∇u) = S(I) +DS(I)∇u , (2.20)
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where we denoted by S(x) the stress tensor corresponding to the deformation x. In the
above expression, S(I) represents the stress in the structure in the absence of deformation.
Therefore S(I) = T. Tensor T does not depend on the displacement u or its gradient. The
form of DS(I)∇u is discussed in [18] and it is given by

DS(I)∇u = WT +
1

2
(ET−TE) + L, (2.21)

where L is the (incremental) elasticity tensor

L = 2µwE + λw(trE)I, (2.22)

with E and W denoting the infinitesimal strain and infinitesimal rotation, respectively,

E =
1

2

(
∇u + (∇u)t

)
, W =

1

2

(
∇u− (∇u)t

)
, (2.23)

with constants µw and λw corresponding to the counterparts of the Lamé constants of the
classical theory.

For simplicity, we now introduce tensor Q

Q = T + WT +
1

2
(ET−TE) (2.24)

which accounts for the contribution of the pre-stress, so that S can be simply expressed as

S = Q + L.

Written in components, (2.19) reads:

̺w
∂2us

∂t2
=
Sss − Sϑϑ

s
+
∂Sss

∂s
+

1

s

∂Ssϑ

∂ϑ
+
∂Ssζ

∂ζ
,

̺w
∂2uϑ

∂t2
=
Ssϑ + Sϑs

s
+
∂Sϑs

∂s
+

1

s

∂Sϑϑ

∂ϑ
+
∂Sϑζ

∂ζ
,

̺w
∂2uζ

∂t2
=
Sζs

s
+
∂Sζs

∂s
+

1

s

∂Sζϑ

∂ϑ
+
∂Sζζ

∂ζ
,

where ̺w denotes the density of the elastic solid. Equations (2.19) are supplemented by
boundary conditions. To reflect a typical situation in blood flow modeling, we assume that
the external boundary is exposed to the external ambient pressure Pe

neSne = −Pe, (2.25)

where ne is the outward unit normal vector on Σext, and that the tangential displacements
of the exterior boundary are zero, namely

uϑ(R + h, ϑ, ζ, t) = 0, uζ(R + h, ϑ, ζ, t) = 0. (2.26)
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On Σw
int we impose continuity of stresses

Sn0(R,ϑ, ζ, t) = Φfn0(R,ϑ, ζ, t), (2.27)

where n0 is the outward unit normal vector on Σw
int and Φf is the stress due to the fluid flow

in the lumen (interior) of the annulus, written in the Lagrangian framework. The fluid stress
Φf will be specified later in (2.41). Thus, neither the internal or the external boundary of
the structure are given explicitly. Both boundaries will be determined as a solution of the
fluid-structure-ambient interaction problem.

At the end points of the annular sections we assume that the displacement is zero

u(R,ϑ, 0, t) = u(R,ϑ,L, t) = 0. (2.28)

Although the latter set of conditions is not natural for the blood flow application, the asymp-

totically reduced problem has this set of conditions relaxed in a way that is appropriate for
the use in the blood flow application. Namely, following the approach in [5] one can show
that the homogeneous boundary conditions for the displacement at the inlet and at the outlet
boundary are “incompatible” with the prescribed stresses at the inlet and outlet. As a con-
sequence, a boundary layer forms near the inlet and outlet boundaries ”contaminating” the
solution of the full two-dimensional axially-symmetric problem in a small neighborhood. It
was shown in [5] that this boundary layer decays exponentially fast away from the boundary.
However, in the asymptotically reduced effective problem, studied in Section 5, conditions
(2.28) drop out and the displacement of the structure in the reduced model will be governed
entirely by the inlet and outlet fluid pressure and the conditions imposed on the external and
internal boundary of the structure Σw

ext and Σw
int.

2.2 Description of the fluid

The domain occupied by the fluid is not known a priori and it will be denoted by Ωf (t). In
cylindrical coordinates (r, θ, z) the fluid domain is defined by

Ωf (t) = {(r, θ, z) ∈ R3 | r ∈ (0, γ(θ, z, t)), θ ∈ [0, 2π), z ∈ (0, L)}, (2.29)

where γ(θ, z, t) is the fluid-solid interface given by:

γ(θ, z, t) = R+ us(R,ϑ, ζ, t), (2.30)

with
(θ, z, t) =

(
ϑ+ uϑ(R,ϑ, ζ, t), ζ + uζ(R,ϑ, ζ, t), t

)
(2.31)

relating the Eulerian coordinates of the fluid description with the Lagrangian coordinates
used in the description of the structure. The inlet and outlet sections of the fluid domain are
given by

Σf
0 = {(r, θ, z) ∈ R3 | r ∈ [0, R), θ ∈ [0, 2π), z = 0}, (2.32)

Σf
L = {(r, θ, z) ∈ R3 | r ∈ [0, R), θ ∈ [0, 2π), z = L}. (2.33)
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The motion of the fluid is described by the Navier-Stokes equations for an incompressible,
viscous fluid. In cylindrical coordinates, in the absence of body forces, they read as follows:

1

r

∂

∂r
(rvr) +

1

r

∂vθ

∂θ
+
∂vz

∂z
= 0, (2.34)

̺

(
∂vr

∂t
+ vr

∂vr

∂r
+
vθ

r

∂vr

∂θ
+ vz

∂vr

∂z
−
v2
θ

r

)
= −

∂p

∂r
+ µ

(
∆vr −

vr

r2
−

2

r2
∂vθ

∂θ

)
, (2.35)

̺

(
∂vθ

∂t
+ vr

∂vθ

∂r
+
vrvθ

r
+
vθ

r

∂vθ

∂θ
+ vz

∂vθ

∂z

)
= −

1

r

∂p

∂θ
+ µ

(
∆vθ −

vθ

r2
+

2

r2
∂vr

∂θ

)
, (2.36)

̺

(
∂vz

∂t
+ vr

∂vz

∂r
+
vθ

r

∂vz

∂θ
+ vz

∂vz

∂z

)
= −

∂p

∂z
+ µ∆vz, (2.37)

where v = (vr, vθ, vz) is the velocity of the fluid, p is the pressure, ̺ is the fluid density and
µ is the dynamic viscosity of the fluid. We used notation ∆ to denote the operator

∆ϕ =
1

r

∂

∂r

(
r
∂ϕ

∂r

)
+

1

r2
∂2ϕ

∂θ2
+
∂2ϕ

∂z2
= ∆rϕ+

1

r2
∂2ϕ

∂θ2
+
∂2ϕ

∂z2
, (2.38)

applied to a scalar function ϕ(r, θ, z).

The coupling between the fluid and the structure is performed by requiring the continuity
of velocity and the continuity of the stress at the interface. We write these conditions in the
Lagrangian framework:

v(γ(θ, z, t), θ, z, t) =
∂u

∂t
(R,ϑ, ζ, t) (2.39)

with (θ, z, t) defined in (2.31), while the condition on the stress reads

det(F)σF−tn0 = Sn0, (2.40)

where n0 = (−1, 0, 0) is the outer unit normal on Σw
0 . Here

det(F)σF−t =: Φf (2.41)

is the Lagrangian form of the fluid stress σ = −pI + 2µD(v), F = I + ∇u is the gradient
of the transformation between the Eulerian and Lagrangian coordinates, and D(v) = (∇v +
(∇v)t)/2 is the symmetrized gradient of the fluid velocity, given, in cylindrical coordinates,
by the following

D(v) =




∂vr

∂r

1

2

(
1

r

∂vr

∂θ
+
∂vθ

∂r
−
vθ

r

)
1

2

(∂vr

∂z
+
∂vz

∂r

)

1

2

(
1

r

∂vr

∂θ
+
∂vθ

∂r
−
vθ

r

)
1

r

∂vθ

∂θ
+
vr

r

1

2

(
1

r

∂vz

∂θ
+
∂vθ

∂z

)

1

2

(∂vr

∂z
+
∂vz

∂r

) 1

2

(
1

r

∂vz

∂θ
+
∂vθ

∂z

)
∂vz

∂z



.
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Reduced Model of Flow through a 3D Elastic Tube

At the inlet and outlet boundary we require that the pressure be prescribed and the flow
enters and leaves the domain parallel to the axis of symmetry. This gives

vr = 0 and p = P0/L(t) at z = 0, L. (2.42)

Remark. In the follow-up paper [2] we show that the kinematic lateral boundary condition
(2.39) determines a new time-scale necessary for the asymptotic analysis of the coupling be-
tween the non-stationary Navier-Stokes problem and the three-dimensional elastic structure.
This new time-scale interpolates between the time scale at which the oscillations in the struc-
ture take place (fast traveling waves) and the time scale determined by the velocity of the
fluid. It is only with this new time scale that a closed system of equations can be obtained.
Nothing like this is necessary in the stationary Stokes case, as we shall see in the next section.
Thus, the two cases differ not only in the traditional sense, but also in the choice of the time
scale necessary for a derivation of a closed set of reduced equations.

3 The Stationary, Axially Symmetric Stokes Fluid-Structure Interaction

Problem: Summary

In this manuscript we focus on the fluid-structure interaction problem assuming axially sym-
metric, stationary Stokes flow. The axial symmetry means, in particular, that the following
holds
Assumption 1. All the quantities are independent of the azimuthal variables θ and ϑ and
the azimuthal components of the displacement and of the fluid velocity are both equal to
zero vθ = uϑ = 0.

The stationary feature of the problem implies that the fluid velocity, the pressure and the
structure displacement are all independent of time.

Under these assumptions the flow equations simplify to

1

r

∂

∂r
(rvr) +

∂vz

∂z
= 0, (3.1)

−
∂p

∂r
+ µ

(
∆rvr +

∂2vr

∂z2
−
vr

r2

)
= 0, (3.2)

−
∂p

∂z
+ µ

(
∆rvz +

∂2vz

∂z2

)
= 0, (3.3)

where ∆r :=
1

r

∂

∂r

(
r
∂

∂r

)
. These equations are defined on the domain

Ωf = {(r cos θ, r sin θ, z)|0 < r < γ(z), z ∈ (0, L), θ ∈ (0, 2π)} (3.4)

bounded by the fluid-structure interface

γ(z) = R+ us(R, ζ), (3.5)

where z = ζ+uζ(R, ζ). Here us and uζ are the radial and axial displacement of the structure,
evaluated at s = R. The fluid equations are defined in the Eulerian coordinates where r

13
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denotes the radial, and z the axial variable, while the structure is defined in the Lagrangian
coordinates where s denotes the radial, and ζ the axial variable.

The structure equilibrium equations, determining the displacement (us, uζ) read

Sss − Sϑϑ

s
+
∂Sss

∂s
+
∂Ssζ

∂ζ
= 0, (3.6)

Sζs

s
+
∂Sζs

∂s
+
∂Sζζ

∂ζ
= 0, (3.7)

where
S = L + Q (3.8)

with

L =




2µw
∂us

∂s + λwdivu 0 2µwesζ
0 2µw

us

s + λwdivu 0

2µwesζ 0 2µw
∂uζ

∂ζ + λwdivu


 (3.9)

and

Q =




Tss 0 wsζTζζ + 1
2esζ(Tζζ − Tss)

0 Tθθ 0
−wsζTss −

1
2esζ(Tζζ − Tss)

0 Tζζ


 , (3.10)

where

wsζ =
1

2

(
∂us

∂ζ
−
∂uζ

∂s

)
, esζ =

1

2

(
∂us

∂ζ
+
∂uζ

∂s

)
. (3.11)

The boundary conditions for the structure at ζ = 0 and ζ = L are given by:

u(s, 0) = u(s, L) = 0, s ∈ (R,R + h). (3.12)

At the external cylindrical boundary the structure is exposed to the ambient pressure Pe and
the axial displacement is equal to zero:

neSne|Σext
= −Pe, uζ(R + h, ζ) = 0, (3.13)

where ne = (1, 0, 0). At the internal cylindrical boundary Σw
0 the structure is coupled with

the fluid through the stationary form of the kinematic and dynamic boundary condition,
respectively:

v(γ(z), z) = (0, 0), det(F)σF−tn0|Σint
= Sn0, (3.14)

where n0 = (−1, 0, 0) is the outer unit normal on Σw
0 , and F = I +∇u is the gradient of the

transformation between the Eulerian and Lagrangian coordinates, with σ = −pI + 2µD(v)
denoting the fluid stress. Finally, at the inlet and outlet boundary of the fluid domain Ωf ,
we require that the pressure be prescribed and that the flow enters and leaves the domain
parallel to the axis of symmetry:

vr = 0 and p = P0/L at z = 0, L. (3.15)
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4 The non-dimensional variables

To introduce the scalings of the independent variables, recall that we consider a three-
dimensional elastic cylinder in the case when the radius R of the lumen is comparable to
the thickness h of the elastic cylinder, namely h = O(R). Thus, the radial variables for the
fluid and the structure are scaled with the same parameter as

r = Rr̃, s = Rs̃, (4.1)

so that s̃ ∈ (1, 1+h/R) for the elastic cylinder. In particular, we are interested in the reduced,
effective model when the aspect ratio

ε =
R

L
=
h

L

is small. The cylinder length L gives the scaling for the axial variables

z = Lz̃, ζ = Lζ̃. (4.2)

The dependent variables are scaled as follows: the two components of the displacement

us(s, ζ) = Usũs(s̃, ζ̃), uζ(s, ζ) = Uζ ũζ(s̃, ζ̃) (4.3)

and the fluid velocity and pressure are scaled as

vr(r, z) = Vrṽr(r̃, z̃), vz(r, z) = Vz ṽz(r̃, z̃), p(r, z) = P p̃(r̃, z̃). (4.4)

Finally we introduce the characteristic scale for the residual stress tensor to be τ so that

T = τT̃. (4.5)

The pre-stress scale τ is around 103 Pa, as shown in Section 2.1.1, Figure 2.4.
With these scalings, the non-dimensional reference domain for the elastic structure be-

comes

Ω̃w
0 = {(s̃ cos ϑ, s̃ sinϑ, ζ̃) ∈ R3 | s̃ ∈ (1, 1 + h/R), ϑ ∈ [0, 2π), ζ̃ ∈ (0, 1)}, (4.6)

while the fluid domain in non-dimensional variables is given by

Ω̃f = {(r̃ cos θ, r̃ sin θ, z̃) ∈ R3 | r̃ ∈ (0, γ̃(z̃)), θ ∈ [0, 2π), z̃ ∈ (0, 1)}, (4.7)

where γ̃(z̃) = γ(z)/R.

4.1 The Fluid Equations

By plugging the non-dimensional variables into the fluid equations (3.1)-(3.3), we obtain the
following system of fluid equations in non-dimensional form. The incompressibility condition
becomes:

Vr

Vz

L

R

1

r̃

∂

∂r̃
(r̃ṽr) +

∂ṽz

∂z̃
= 0, (4.8)
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and the momentum equations read

−
PR

µVr

∂p̃

∂r̃
+ ∆r̃ṽr −

ṽr

r̃2
+ ε2

∂2ṽr

∂z̃2
= 0 (4.9)

−
PR2

µLVz

∂p̃

∂z̃
+ ∆r̃ṽz + ε2

∂2ṽz

∂z̃2
= 0, (4.10)

where we recall that ε = R/L. From the incompressibility condition it follows that a con-
sistent scaling for the velocity components is given by Vr = εVz, [7]. To determine the
appropriate scaling for the pressure we follow the approach based on the homogenization
theory for porous media flows, presented in [7]. Determining the “correct” scaling for the
pressure is important for several reasons, one of which is that the correct scaling for the pres-
sure will give rise to a reduced system that is closed. Following [7] we obtain P = µVz/(Lε

2),
which is of ”Poiseuille type”. With these choices the Stokes equations become

1

r̃

∂

∂r̃
(r̃ṽr) +

∂ṽz

∂z̃
= 0, (4.11)

−
1

ε2
∂p̃

∂r̃
+ ∆r̃ṽr −

ṽr

r̃2
+ ε2

∂2ṽr

∂z̃2
= 0 (4.12)

−
∂p̃

∂z̃
+ ∆r̃ṽz + ε2

∂2ṽz

∂z̃2
= 0. (4.13)

In particular, the following is the non-dimensional form of the fluid stress tensor σ̃:

σ =
µVz

ε2L
σ̃ =

µVz

ε2L




−p̃+ 2ε2
∂ṽr

∂r̃
0 ε3

∂ṽr

∂z̃
+ ε

∂ṽz

∂r̃

0 −p̃+ 2ε2
ṽr

r̃
0

ε3
∂ṽr

∂z̃
+ ε

∂ṽz

∂r̃
0 −p̃+ 2ε2

∂ṽz

∂z̃



. (4.14)

To obtain the effective equations that approximate the original, three-dimensional axially
symmetric problem to ε2 accuracy, we expand the dependent variables with respect to ε,
plug the expansions into the non-dimensional equations, and ignore the terms of order ε2 and
smaller. The expansion of the dependent variables is given by the following:
(
vz

vr

)
=

(
Vz ṽz

Vrṽr

)
=

(
Vz

(
ṽ0
z + εṽ1

z + ...
)

Vzε
(
ṽ1
r + ...

)
)
, p =

µVz

ε2L
p̃ =

µVz

ε2L

(
p̃0 + εp̃1 + ...

)
. (4.15)

Then, the divergence free condition up to O(ε2) reads:

1

r̃

∂

∂r̃
(r̃ṽ1

r ) +
∂ṽ0

z

∂z̃
= 0. (4.16)

The balance of radial momentum implies that the pressure is hydrostatic up to the second
order:

p̃0 = p̃0(z̃), p̃1 = p̃1(z̃), (4.17)

and the balance of axial momentum at ε0 and ε implies, respectively:

2
∂ṽ0

z

∂r̃
= r̃

dp̃0

dz̃
and 2

∂ṽ1
z

∂r̃
= r̃

dp̃1

dz̃
. (4.18)
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4.2 The Structure Equations

To study the leading-order problem for the structure we will be assuming the following

Assumption 2. The radial and the axial displacement of the structure are of the same order
of magnitude, namely

Us = Uζ = δ, (4.19)

where δ < h.
Under this assumption the non-dimensional form of the incremental elasticity tensor L

becomes

L = µwL̃ = µw
δ

R




2
∂ũs

∂s̃
+
λw

µw
d̃ivũ 0 ε

∂ũs

∂ζ̃
+
∂ũζ

∂s̃

0 2
ũs

s̃
+
λw

µw
d̃ivũ 0

ε
∂ũs

∂ζ̃
+
∂ũζ

∂s̃
0 2ε

∂ũζ

∂ζ̃
+
λw

µw
d̃ivũ



, (4.20)

where

d̃ivũ =

(
1

s̃

∂

∂s̃
(s̃ũs) + ε

∂ũζ

∂ζ̃

)
. (4.21)

Similarly, the contribution from residual stress Q in non-dimensional variables reads

Q = τQ̃ = τ




T̃ss 0 w̃sζ T̃ζζ +
1

2
ẽsζ(T̃ζζ − T̃ss)

0 T̃ϑϑ 0

−w̃sζ T̃ss −
1

2
ẽsζ(T̃ζζ − T̃ss) 0 T̃ζζ


 , (4.22)

where

w̃sζ =
1

2

δ

R

(
ε
∂ũs

∂ζ̃
−
∂ũζ

∂s̃

)
, ẽsζ =

1

2

δ

R

(
ε
∂ũs

∂ζ̃
+
∂ũζ

∂s̃

)
. (4.23)

The radial and axial component of the non-dimensional equilibrium equations (2.19) describ-
ing the structure equilibrium for the stationary problem are then given by:

0 =
S̃ss − S̃ϑϑ

s̃
+
∂S̃ss

∂s̃
+ ε

∂S̃sζ

∂ζ̃
, (4.24)

0 =
1

s̃

∂

∂s̃
(s̃S̃ζs) + ε

∂S̃ζζ

∂ζ̃
, (4.25)

where S̃ = L̃ + τ
µw

Q̃ so that S = µwS̃. In the rest of the manuscript we will be using the
following assumption:
Assumption 3. The scaling µw for the incremental elasticity tensor L is of the same order
of magnitude or bigger than the scaling τ for the residual stress T .

We will see that this assumption is reasonable for the blood flow application. In fact, as
shown in Section 2.1.1, for the data presented in [9, 11] τ is around 103 Pa, whereas µw,
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for the blood flow application, is around 105 Pa. Thus, τ is smaller than µw, which is in
agreement with our analysis.

By expanding the structure dependent variables with respect to ε:

ũs = ũ0
s + εũ1

s +O(ε2), ũζ = ũ0
ζ + εũ1

ζ +O(ε2), (4.26)

and plugging the expansions into equations (4.24), (4.25), we get the following leading order
equilibrium equations for the structure displacement u0 = (ũ0

s, ũ
0
ζ)

(
2 +

λw

µw

)
∂

∂s̃

[
1

s̃

∂

∂s̃
(s̃ũ0

s)

]
= −

τ

µw

R

δ

(
T̃ss − T̃ϑϑ

s̃
+
∂T̃ss

∂s̃

)
, (4.27)

(
2 +

3τ

4µw
T̃ss −

τ

4µw
T̃ζζ

)
∂ũ0

ζ

∂s̃
=
C0(ζ̃)

s̃
, (4.28)

defined for (s̃, ζ̃) ∈ (1, 1 + h/R) × (0, 1). Notice that the equation of the equilibrium for the
stress tensor T, (2.15), implies that the right hand-side of (4.27) is zero. Thus, the zero-th
order displacement u0 = (ũ0

s, ũ
0
ζ) satisfies

∂

∂s̃

[
1

s̃

∂

∂s̃
(s̃ũ0

s)

]
= 0, (4.29)

(
1 +

3τ

4µw
T̃ss −

τ

4µw
T̃ζζ

)
∂ũ0

ζ

∂s̃
=

C0(ζ̃)

s̃
. (4.30)

Similarly, a calculation shows that the ε-correction (ũ1
s, ũ

1
ζ) of the displacement u = u0 + εu1

satisfies the following equations in the radial and axial direction respectively
(

2 +
λw

µw

)
∂

∂s̃

[
1

s̃

∂

∂s̃
(s̃ũ1

s)

]
= −

[(
1 +

λw

µw

)
−

τ

4µw

(
T̃ζζ + T̃ss

)] ∂2ũ0
s

∂ζ̃∂s̃
, (4.31)

(
1 +

3τ

4µw
T̃ss −

τ

4µw
T̃ζζ

)
∂ũ1

ζ

∂s̃
=

C1(ζ̃)

s̃
−

[(
1 +

λw

µw

)
−

τ

4µw

(
T̃ζζ + T̃ss

)] ∂ũ0
s

∂ζ̃
.(4.32)

The expansion of the interface γ, defined in (2.30), is determined by both the radial and
axial displacement. The expansion for the radial displacement enters explicitly, whereas the
expansion of the axial displacement enters through the relationship between the Eulerian and
Lagrangian coordinates as follows:

γ(z) = R+ us(R, ζ) = R

[
1 +

δ

R

(
ũ0

s(1, ζ̃) + εũ1
s(1, ζ̃)

)]
= R

[
γ̃0 + εγ̃1

]
, (4.33)

with

γ̃0(z̃) := 1 +
δ

R
ũ0

s(1, ζ̃) and γ̃1(z̃) :=
δ

R
ũ1

s(1, ζ̃), (4.34)

where z = ζ + uζ(R, ζ) implies

z̃ = ζ̃ +
δ

L
ũζ(1, ζ̃) = ζ̃ + ε

δ

R
ũζ(1, ζ̃) = ζ̃ + ε

δ

R
ũ0

ζ +O(ε2). (4.35)
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As we shall see later, for the physiologically relevant external boundary conditions given by
(2.26), the longitudinal displacement u0

ζ will turn out to be zero throughout the structure,
implying

z̃ = ζ̃ +O(ε2). (4.36)

This will imply that only the radial displacement determines the position of the fluid-solid
interface up to the O(ε2)-order.

4.3 The Fluid-Structure Coupling

To couple the structure and the fluid equations, integrate the balance of axial momentum
(4.13) with respect to r̃ from r̃ to γ̃(z̃) and use the no-slip boundary condition in (3.14).
After collecting the terms of order ε0 and ε1 one obtains the following expressions for ṽ0

z and
ṽ1
z respectively:

ṽ0
z(r̃, z̃) =

1

4
[r̃2 − (γ̃0(z̃))2]

dp̃0

dz̃
(z̃), (4.37)

ṽ1
z(r̃, z̃) =

1

4
[r̃2 − (γ̃0(z̃))2]

dp̃1

dz̃
(z̃)−

1

2
γ̃0γ̃1∂p̃

0

∂z̃
. (4.38)

These equations define the axial component of the velocity in terms of the pressure p̃ and the
interface γ̃.

Next we obtain the expressions for the radial component of the velocity in terms of p̃ and
γ̃ by plugging the expressions for the axial component of the velocity (4.37) and (4.38) into
the incompressibility condition (4.16), and by integrating with respect to r̃ from 0 to r̃. The
equation at the ε1 order gives

ṽ1
r (r̃, z̃) =

r̃

4
γ̃0 dγ̃

0

dz̃

dp̃0

dz̃
−
r̃3

16

d2p̃0

dz̃2
+
r̃

8
(γ̃0)2

d2p̃0

dz̃2
. (4.39)

At this point we have expressed the axial and the radial component of the velocity in
terms of the pressure p̃ and the fluid-structure interface γ̃. We now derive an equation that
relates the pressure and the interface. This will lead to a result which is a generalization
of the well-known fact that the pressure gradient is constant for the Poiseuille flow in the
stationary Stokes problem through an axially symmetric domain with fixed walls. With
deformable walls, we will see that the effective pressure gradient is not constant, but inversely
proportional to the forth power of the structure displacement at the interface. More precisely,
by integrating the incompressibility condition with respect to r̃ from 0 to γ̃ we get

∫
eγ(z̃)

0

∂

∂r̃
(r̃ṽr)dr̃ +

∫
eγ(z̃)

0

∂ṽz

∂z̃
r̃dr̃ = 0, (4.40)

and then recalling the no-slip condition ṽr(γ̃(z̃), z̃) = ṽz(γ̃(z̃), z̃) = 0 we get that the average
over the cross-section of the axial component of the velocity is constant, to all orders, in z̃:

∂

∂z̃

∫
eγ(z̃)

0
ṽz r̃dr̃ = 0. (4.41)
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By expanding γ̃ and ṽz and by using the expressions for ṽ0
z and ṽ1

z , given by (4.37) and
(4.38), equation (4.41) implies the following pressure-interface laws at the ε0 and ε order,
respectively:

d

dz̃

[
(γ̃0(z̃))4

dp̃0

dz̃
(z̃)

]
= 0, (4.42)

d

dz̃

[
(γ̃0(z̃))4

dp̃1

dz̃
(z̃)

]
= −4

(
(γ̃0)4

dp̃0

dz̃

)
d

dz̃

(
γ̃1

γ̃0

)
. (4.43)

At this point, the velocity (ṽ0
z + εṽ1

z , εṽ
1
r ) and the pressure p̃0 + εp̃1 can all be expressed

in terms of the two functions γ̃0 and γ̃1 determining the fluid-structure interface γ̃0 + εγ̃1.
To obtain a closed system we need equations that determine γ̃0 and γ̃1, or, from (4.34),
ũ0

s and ũ1
s at s̃ = 1. They will be provided by employing the interface condition (2.40)

describing continuity of stresses at the fluid-solid interface. More precisely, from the fluid
side we need to compute det(F)σF−tn0 at s̃ = 1 and set it equal to Sn0. For this purpose
denote es = (1, 0, 0) and eζ = (0, 0, 1). Recalling that T̃ss

∣∣
s̃=1

= 0, and that n0 = −es, the
condition det(F)σF−tn0 = Sn0 at the ε0-order gives

(
1 +

δ

R

ũ0
s

s̃

∣∣∣∣
s̃=1

)
p̃0es =−

δµw

PR

[(
2 +

λw

µw

)
∂ũ0

s

∂s̃

∣∣∣∣
s̃=1

+
λw

µw

ũ0
s

s̃

∣∣∣∣
s̃=1

]
es

−
δµw

PR

[
1−

τ

4µw
T̃ζζ

∣∣
s̃=1

]
∂ũ0

ζ

∂s̃

∣∣∣∣
s̃=1

eζ . (4.44)

This says that in the radial direction es we have
(

1 +
δ

R

ũ0
s

s̃

∣∣∣∣
s̃=1

)
p̃0 = −

δµw

PR

[(
2 +

λw

µw

)
∂ũ0

s

∂s̃

∣∣∣∣
s̃=1

+
λw

µw

ũ0
s

s̃

∣∣∣∣
s̃=1

]
, (4.45)

and in the axial direction eζ we obtain that there is no effective elastic shear at the interface:

∂ũ0
ζ

∂s̃
(1, ζ̃) = 0. (4.46)

A similar calculation gives the ε-correction of the interface condition det(F)σF−tn0 = Sn0.
More precisely, in the radial direction es we have:

(
1 +

δ

R

ũ0
s

s̃

∣∣∣∣
s̃=1

)(
p̃1 +

δ

R

∂ũ0
ζ

∂ζ̃

∣∣∣∣
s̃=1

p̃0

)
+
δ

R

ũ1
s

s̃

∣∣∣∣
s̃=1

p̃0 = −
δµw

PR

[(
2 +

λw

µw

)
∂ũ1

s

∂s̃

∣∣∣∣
s̃=1

+
λw

µw

ũ1
s

s̃

∣∣∣∣
s̃=1

]

(4.47)
and in the axial direction eζ :

{
∂ṽ0

z

∂r̃

∣∣∣∣
s̃=1

+
δ

R
p̃0 ∂ũ

0
s

∂ζ̃

∣∣∣∣
s̃=1

}(
1 +

δ

R

ũ0
s

s̃

∣∣∣∣
s̃=1

)
=
δµw

PR

(
1−

τ

4µw
Tζ̃ ζ̃

∣∣∣∣
s̃=1

)(
∂ũ0

s

∂ζ̃

∣∣∣∣
s̃=1

+
∂ũ1

ζ

∂s̃

∣∣∣∣
s̃=1

)
.

(4.48)
These condition will now be used to determine the leading-order solution and the ε-

correction of the fluid-structure interaction problem for the stationary Stokes problem.
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5 The 0th-order solution

First notice that equation (4.46) says that the radial derivative of the leading-order approx-
imation of the axial displacement is zero at the fluid-structure interface as a consequence
of the fact that the axial component of the fluid stress exerted to the structure interface is
negligible. This implies that the function C0(ζ̃) in (4.28) must equal zero, and so ∂ũ0

ζ/∂s̃ = 0

identically. Therefore, the axial component of the displacement, ũ0
ζ , is constant in the radial

direction starting from the contact interface and ending at the external surface. This means
that the axial displacement of the structure is entirely determined by the axial displacement
at the external interface. In our case we have taken the external boundary condition on the
axial displacement to be zero, see (2.26), and so this implies that

ũ0
ζ = 0

everywhere in the structure. This is an interesting result since, often in the hemodynamics
literature, the assumption that the axial displacement of the fluid-structure interface is zero,
is imposed a priori. Here we showed that this is a reasonable assumption only if the external
lateral boundary conditions are such that the axial component of the displacement at Σext is
zero. We state this results as a proposition.

Proposition 5.1 Consider axially symmetric flow through a cylindrical tube with small as-

pect ratio ε = R/L and with three-dimensional linearly elastic walls of thickness h. Assume

that the thickness h is comparable to the inner radius R of the tube, and allow the axial and

longitudinal displacements of the wall structure to be of the same order of magnitude. Then,

the leading-order axial displacement ũ0
ζ of the three-dimensional structure is entirely deter-

mined by the axial displacement of the structure’s external boundary, namely, by the external

lateral boundary condition.

As a consequence, we have the following

Corollary 5.2 The axial coordinates in both the Lagrangian and the Eulerian framework

are identical to O(ε2), namely,

z̃ = ζ̃ + εũ0
ζ +O(ε2) = ζ̃ +O(ε2). (5.1)

With this property, the fluid-solid interface leading-order approximations are given by

γ̃0(ζ̃) = 1 +
δ

R
ũ0

s(1, ζ̃) and γ̃1(ζ̃) =
δ

R
ũ1

s(1, ζ̃). (5.2)

Notice that they do not depend on the axial displacement to the ε2-accuracy!

We continue our calculation by determining the radial displacement ũ0
s. For this purpose

we need to take into account the structure equation (4.29), the fluid-solid interface boundary
condition (4.45) and the external boundary condition (2.25) describing the external pressure
load on the structure. These two conditions provide the two boundary conditions for the
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second-order differential equation (4.29) determining ũ0
s:

∂

∂s̃

[
1

s̃

∂

∂s̃
(s̃ũ0

s)

]
= 0, s̃ ∈ (1, 1 + h/R), ζ̃ ∈ (0, 1), (5.3)

(
2 +

λw

µw

)
∂ũ0

s

∂s̃
+
λw

µw

ũ0
s

s̃
= −

PR

δµw
γ̃0(z̃)p̃0(z̃) at s̃ = 1, (5.4)

(
2 +

λw

µw

)
∂ũ0

s

∂s̃
+
λw

µw

ũ0
s

s̃
= −

PR

δµw
P̃e at s̃ = 1 + h/R , (5.5)

where γ̃0 is given by equation (5.2). Here P̃e = Pe/P is the non-dimensional external pressure
and γ̃0(z̃)p̃0(z̃) = γ̃0(ζ̃)p̃0(ζ̃) to the leading order. Notice that ζ̃ here plays the role of a
parameter since the differential operator involves only the radial variable s̃. The solution of
problem (5.3)-(5.5) is simple:

ũ0
s(s̃, ζ̃) =

[
a1γ̃

0(z̃)p̃0(z̃)− a2P̃e

]
s̃+

[
γ̃0(z̃)p̃0(z̃)− P̃e

]a3

s̃
, (5.6)

with constants a1, a2 and a3 given by:

a1 =
PR

δµw

[
2h

R

(
2 +

h

R

)(
1 +

λw

µw

)]−1

, a2 = a1

[
1 +

h

R

]2

, a3 = a1

[
1 +

λw

µw

] [
1 +

h

R

]2

.

(5.7)
We can now use the expression for ũ0

s to express the leading-order fluid-solid interface
entirely in terms of the internal (fluid) pressure and the external ambient pressure data.
Namely, evaluating (5.6) at s̃ = 1 and substituting it in (4.34) we obtain that

γ̃0(z̃) =
1− b1P̃e

1− b2p̃0(z̃)
, (5.8)

where

b1 =
δ

R
(a2 + a3), b2 =

δ

R
(a1 + a3). (5.9)

With this equation we have obtained a closed system of equations that allows us to calculate
the leading-order components of the fluid velocity ṽ0

z , ṽ
0
r , the pressure p̃0, the fluid-structure

interface γ̃0, and the structure displacements ũ0
ζ , ũ

0
s. Recall that the fluid velocity and the

structure displacement have been expressed in terms of p̃0 and γ̃0, see (4.37), (4.39) and (5.6).
Thus, solving the two equations (4.42), (5.8) for p̃0 and γ̃0 will determine the leading-order
solution to the fluid-structure interaction for the stationary Stokes flow. Substituting (5.8)
into (4.42) and integrating (4.42) in z̃ we get

p̃0(z̃) =
1

b2

[
1− (C0z̃ + C1)

−1/3
]
, z̃ ∈ (0, 1), (5.10)

where C0 and C1 are constants determined by the inlet and outlet pressure data (2.42)

C0 =
[
(1− b2P̃L)−3 − (1 − b2P̃0)

−3
]
, C1 = (1− b2P̃0)

−3, (5.11)
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where P̃0 and P̃L are the non-dimensional inlet and outlet pressure data

p̃0(0) = P̃0, p̃0(1) = P̃L. (5.12)

This completes the calculation of the ε0-order solution to the fluid-structure interaction prob-
lem for the stationary Stokes flow. The solution is given by:

p̃0(z̃) =
1

b2

[
1− (C0z̃ + C1)

−1/3
]
, γ̃0(z̃) =

1− b1P̃e

1− b2p̃0(z̃)
=
(
1− b1P̃e

)
(C0z̃ + C1)

1/3 , z̃ ∈ (0, 1)

Pressure and the fluid-structure interface

ũ0
s(s̃, ζ̃) =

[
a1γ̃

0(z̃)p̃0(z̃)− a2P̃e

]
s̃+

[
γ̃0(z̃)p̃0(z̃)− P̃e

]
a3

s̃ ,

ũ0
ζ(s̃, ζ̃) = 0,

s̃ ∈ (1, 1 + h
R ), ζ̃ ∈ (0, 1)

Radial and axial displacement in the 3D structure

where z̃ and ζ̃ are related via (4.36), and

ṽ0
z(r̃, z̃) = 1

4 [r̃2 − (γ̃0(z̃))2]
dp̃0

dz̃
(z̃),

ṽ0
r (r̃, z̃) = 0,

r̃ ∈ (0, γ̃0(z̃)), z̃ ∈ (0, 1)

Axial and Radial Component of the Fluid Velocity

where C0 and C1 are constants determined by (5.11), b1 and b2 are given by (5.9) and a1, a2

and a3 given by (5.7).

6 The 1st-order correction

To calculate the ε-correction we proceed as before. First, we consider the boundary value
problem for the ε-correction of the displacement ũ1

s. The problem is defined by the PDE
(4.31), the fluid-structure interface boundary condition given by (4.47) and the external
boundary condition (2.25), with ũ0

ζ = 0:

∂

∂s̃

[
1

s̃

∂

∂s̃
(s̃ũ1

s)

]
= 0, s̃ ∈ (1, 1 + h/R), ζ̃ ∈ (0, 1) (6.1)

(
2 +

λw

µw

)
∂ũ1

s

∂s̃
+

(
λw

µw
+
P p̃0(z̃)

µw

)
ũ1

s

s̃
= −

PR

δµw
γ̃0(z̃)p̃1(z̃) at s̃ = 1, (6.2)

(
2 +

λw

µw

)
∂ũ1

s

∂s̃
+
λw

µw

ũ1
s

s̃
= 0 at s̃ = 1 + h/R . (6.3)

This system determines ũ1
s in terms of p̃1 and the lower-order terms. Now, ũ1

s and p̃1 are also
related through equation (4.43). Thus, these two completely determine ũ1

s and p̃1 in terms
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of the already calculated lower order approximations. With the ũ1
s and p̃1 known, we can

recover ṽ1
z using (4.38). Therefore, the ε-corrections ṽ1

z , p̃
1, γ̃1, ũ1

s can be easily determined
from this closed system of equations. Notice that ũ1

ζ does not influence the calculation
of these functions. The ε-correction of the axial displacement can be now determined by
solving equation (4.32) with the boundary conditions (4.48) at the fluid-structure interface,
and ũ1

ζ = 0 at the external interface. Thus, the problem for ũ1
ζ reads:

(
1 +

3τ

4µw
T̃ss −

τ

4µw
T̃ζζ

)
∂ũ1

ζ

∂s̃
=

C1(ζ̃)

s̃
−

[(
1 +

λw

µw

)
−

τ

4µw

(
T̃ζζ + T̃ss

)] ∂ũ0
s

∂ζ̃
,

δµw

PR

(
1−

τ

4µw
Tζ̃ ζ̃

)
∂ũ1

ζ

∂s̃
= −

δµw

PR

(
1−

τ

4µw
Tζ̃ζ̃

)
∂ũ0

s

∂ζ̃

+

{
∂ṽ0

z

∂r̃
+
δ

R
p̃0∂ũ

0
s

∂ζ̃

}(
1 +

δ

R

ũ0
s

s̃

)
at s̃ = 1,

ũ1
ζ = 0 at s̃ = 1 + h/R .

Notice that this is the only place where the pre-stress enters the calculation of the solution
to this problem.

In addition, we have already calculated the ε-correction for the radial component of the
velocity which is given by

ṽ1
r (r̃, z̃) =

r̃

4
γ̃0 dγ̃

0

dz̃

dp̃0

dz̃
−
r̃3

16

d2p̃0

dz̃2
+
r̃

8
(γ̃0)2

d2p̃0

dz̃2
, r̃ ∈ (0, γ̃0(z̃)), z̃ ∈ (0, 1). (6.4)

We now have the following result.

Proposition 6.1 The velocity field v = Vz(ṽ
0
z + εṽ1

z , εṽ
1
r ), the pressure p = µVzL

R2 (p̃0 + εp̃1),
and the displacement u = δ(εũ1

ζ , ũ
0
s + εũ1

s) solve problem (3.1)-(3.15) to the ε2-accuracy.

The proof of this result follows the same steps and the proof of Proposition 7.1 in [7].

7 The pressure-radius relationship for a thick-walled cylinder with small

deformations

In this section we derive an explicit pressure-radius relationship that holds for a pre-stressed,
three-dimensional elastic tube, loaded by the pressure exerted by the stationary Stokes flow,
under the assumption that the deformation of the structure is small. This will give rise to
a generalization of the Law of Laplace that holds for thin elastic structures. We start by
utilizing equations (5.8) and (4.34) to obtain

1− b1P̃e

1− b2p̃0(z̃)
= 1 +

δ

R
ũ0

s

∣∣∣
s̃=1

. (7.1)

We can write this equation in terms of the transmural pressure ∆p̃(z̃) defined by

∆p̃(z̃) :=
b2
b1
p̃0(z̃)− P̃e. (7.2)
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By noticing that b2 = b1 + O(h/R), we see that in the case of a thin-walled cylinder, the
definition of the transmural pressure (7.2) becomes the usual one, to the leading order:

∆p̃(z̃) := p̃0(z̃)− P̃e. (7.3)

Now, the pressure-displacement relationship (7.1) becomes

1

1− b1
1−b1 ePe

∆p̃
= 1 +

δ

R
ũ0

s

∣∣∣
s̃=1

. (7.4)

Since our model was obtained by assuming linear theory of elasticity, it is meaningful
to investigate the behavior of expression (5.8) for small transmural pressures ∆p̃ which im-
plies small deformation δũs. By expanding equation (7.4) with respect to δ/R and ignoring
the terms of order (δ/R)2 and smaller, one obtains the following leading-order pressure-
displacement relationship, for a thick-walled cylinder with small deformations, written in
dimensional form:

∆p(z) =

(
h

R2

2 + h/R

(1 + h/R)2
2µw(µw + λw)

2µw + λw
−
Pe

R

)
u0

s(R, z). (7.5)

We can express the coefficients involving the Lamé constants λw and µw in terms of the
Young’s modulus E and the Poisson ratio σ by using

4µw
λw + µw

λw + 2µw
=

E

1− σ2
,

2µwλw

λw + 2µw
=

Eσ

1− σ2
.

Then, the leading-order pressure-displacement relationship for a three-dimensional linearly
elastic tube with wall thickness comparable to the tube radius, loaded by the stationary
Stoke’s flow, becomes

∆p(z) =

(
K

Eh

(1− σ2)R2
−
Pe

R

)
u0

s(R, z). (7.6)

where

K =
1

2

2 + h/R

(1 + h/R)2
,

u0
s(R, z) is the radial displacement at the interface, and ∆p(z) is the transmural pressure,

defined by (7.2). Notice that for K = 1 this is exactly the Law of Laplace. Indeed, by
assuming that the cylinder wall is thin in the sense that (h/R)2 is negligible, and by assuming
small displacements, equation (7.6) reduces to the well-known Law of Laplace, describing a
pre-stressed linearly elastic membrane shell, see e.g. equation (2.5) in [1]. Namely, we obtain

∆p(z) =

(
Eh

(1− σ2)R2
−
Pe

R

)
u0

s(R, z). (7.7)

The Law of Laplace has been widely used to model linearly elastic behavior of arterial
walls in the blood flow literature, [4, 6, 10, 15, 21, 22, 24]. However, the thickness of the
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Mikelić, Guidoboni and Čanić

PARAMETERS AORTA/ILIACS

Inner char. radius R(m) 0.003-0.012 [24]
Char. length L(m) 0.065-0.2 [10]

Dyn. viscosity µF ( kg

ms
) 3.5 × 10−3[24]

Young’s modulus E(Pa) 105
− 106[24, 12, 14]

Table 7.2: Table with parameter values

ARTERY RADIUS WALL THICKNESS

ELASTIC ARTERY 9mm 1mm
MUSCULAR ARTERY 3mm 1mm

Table 7.3: Table with Radius and Wall Thickness Values

vessel walls in elastic and muscular arteries is very much comparable with the vessel radius,
see Table 7, [20]. Thus, equation (7.6) is more appropriate as a model for the linearly elastic
behavior of arterial walls. A calculation of the value of constant K for the muscular arteries
is around 0.6, implying that the effective stiffness of the vessel wall with the new model is 0.6
of that in the Laplace Law. Similarly, a calculation of K corresponding to the elastic arteries
is around 0.85 giving rise to an error of 0.15 which is larger than ε if L is larger than 6cm,
which is the case for the typical abdominal aorta. Thus, we conclude that using equation
(7.6) instead of the Law of Laplace (7.7) is more appropriate for the blood flow application.

8 Numerically Calculated Solution

We conclude this manuscript by showing the numerically calculated solution emphasizing the
structure deformation for a couple of different parameters. Figure 8.1 shows the radial and
longitudinal displacement of the structure for the parameter values corresponding roughly
to the blood flow application: the inlet pressure is taken to be P0 = 15990Pa which is
about 120mmHg, the outlet pressure PL = 14391Pa, which is taken to be the same as the
ambient pressue Pext. The inner vessel radius R = 3.1mm and the vessel wall thickness
is h = 0.9mm. The vessel length is taken to be L = 10cm, and the Young’s modulus of
elasticity E = 105Pa. In both figures one can notice the “squeezing” of the structure near
the inlet where the pressure difference between the ambient pressure and the lumen pressure
(transmural pressure) is the highest, leading to the largest deformation. The two pictures
in Figure 8.1 correspond to the incompressible and a slightly compressible structure. We
considered the case of a slightly compressible structure since it has been noted in [16] that
arterial walls are not trully incompressible. The figure on the left shows the deformation for
an incompressible structure with σ = 0.5 while the figure on the right shows the deformation
for a slightly compressible structure with σ = 0.49. Both results have been calculated for
the outlet pressure equal to the ambient pressure. Notice how the location of the fluid-
structure interface differs in the two cases. In the incompressible case (left figure) the fluid-
structure interface at the outlet boundary is not displaced, while in the compressible case,
the displacement near the outlet is negative. This is in agreement with our calculation, in
particular, with equation (5.8).
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Figure 8.1: The figure shows a cross-section of a thick cylindrical structure along the length
of the cylinder (fixed polar angle ϑ). The deformed structure is shown in dashed lines, while
the reference configuration, which is pre-stressed but unloaded, is shown in solid lines. The
figure on the left corresponds to the Poisson ratio σ = 0.5 (the incompressible case) and the
figure on the right corresponds to the Poisson ratio σ = 0.49 (the almost incompressible case).
Notice the negative displacement near the ”outlet” of the almost compressible structure.

Remark. For a related numerical comparison of the solution to the reduced equations with
the full 2D Finite Element Method calculations with different values of ε, please see [19].
Reference [19] discusses the flow through a long and narrow 2D pore in a porous medium with
elastic walls. The pores were not pre-stressed, which considerably simplifies the calculations.
However, similar ideas to those presented in this manuscript, were used in the derivation of
the effective models in [19]. The focus of the work in [19] was on the numerical comparison
between the reduced and the full model solutions, justifying the methodology used in the
problem reduction. Excellent agreement was obtained.

Acknowledgement. The authors would like to thank Raffaella Rizzoni and Gianpetro Del
Piero (Department of Engineering, University of Ferrara) for useful discussions.
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[4] S. Čanić and E-H. Kim, Mathematical analysis of the quasilinear effects in a hyperbolic

model of blood flow through compliant axi–symmetric vessels, Mathematical Methods in
the Applied Sciences, 26(14) (2003), pp. 1161–1186.
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