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Abstract

In this paper we investigate the pseudoparabolic equation

∂tc = div

{
k (c)

µ

(
− P ′

C (c)∇c + τ∇∂tc + gρen

)}
,

where τ is a positive constant, c is the moisture content, k is the hydraulic
conductivity and PC is the static capillary pressure. This equation describes
unsaturated flows in porous media with dynamic capillary pressure - sat-
uration relationship. In general, such models arise in a number of cases
when non-equilibrium thermodynamics or extended non-equilibrium ther-
modynamics are used to compute the flux.

For this equation existence of the travelling wave type solutions was ex-
tensively studied. Nevertheless, the existence seems to be known only for
the non-degenerate case, when k is strictly positive. We use the approach
from statistical hydrodynamics and construct the corresponding entropy
functional for the regularized problem. Such approach permits to get ex-
istence, for any time interval, of an appropriate weak solution with square
integrable first derivatives in x and in t and square integrable time deriva-
tive of the gradient. Negative part of such weak solution is small in L2-norm
with respect to x, uniformly in time, as the square root of the relative per-
meability at the value of the regularization parameter. Next we control the
regularized entropy. A fine balance between the regularized entropy and the
degeneracy of the capillary pressure permits to get an Lq uniform bound
for the time derivative of the gradient. These estimates permit passing to
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the limit when the regularization parameter tends to zero and obtaining the
existence of global nonnegative weak solution.

Keywords: degenerate nonlinear parabolic PDE, pseudoparabolic
equations, unsaturated flows
2010 MSC: 35K65, 35K70, 35Q35, 76S05

1. Introduction

Equations that describe unsaturated flow in porous media, are a spe-
cial case of the equations describing an immiscible two phase flow, with the
non-wetting fluid assumed to be stagnant. The model is based on mass and
momentum equations which are coupled to constitutive equations. Follow-
ing Bear (see [3], pages 487-488), the motion is described by Darcy’s law in
the following form

q = −k(c)ρg

µ
∇(

p

ρg
+ xn), (1)

where q is the volumetric flux, p is the pressure in the wetting phase and
the permeability k is a function of the moisture content c = ϕpS, where ϕp

is the porosity and S is the liquid phase saturation. ρ is the wetting phase
density and g is the gravity. Assuming no sources or sinks of moisture
within the unsaturated flow domain, the incompressible wetting phase and
a nondeformable porous medium, the mass conservation equation reduces
to

∂c

∂t
+ div q = 0. (2)

To close the system (1)− (2) we need the constitutive equation relating
the capillary pressure PC to the wetting phase saturation S. This impor-
tant constitutive equations is classically given as an algebraic relationship
between PC and S. Detailed discussion of the relationship could be found
e.g. in [3], pages 475-487. Recently, the relationship between PC and S
has been generalized on the basis of thermodynamical arguments by Gray
and Hassanizadeh (see [14],[15],[16],[17], [5] and references therein). They
derived the following extended relationship:

p = −PC(S) + f(S, ∂tS), (3)

where f is an unspecified function and PC is decreasing in S. Such relation-
ship includes dynamic effects and reduces to the classical relationship in the
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equilibrium situation. This kind of relationship could be also found in the
classical book by Barenblatt et al. [1]. Furthermore, in the paper [6] dy-
namic capillary pressure effects occur as upscaling of two-phase flows. The
same type of equations can occur in models that use Classical Irreversible
Thermodynamics or Extended Irreversible Thermodynamics.

The most simple way of accounting for dynamic memory effects is the
following modification of the capillary relation:

p = −PC(c) + τ∂tc (4)

where τ > 0 denotes the dynamic capillary coefficient. This coefficient may
depend on moisture content as well as on properties of the porous medium.
Experimental studies of the dynamic effect are reported in [27], [28], [29]
and [30], where also the values of τ were estimated. We suppose it constant.

After inserting (4) into the equations (1)-(2), we get the following non-
linear degenerate pseudoparabolic equation:

∂tc = div

{
k (c)

(
− P ′

C (c)∇c + τ∇∂tc + en

)}
, (5)

where all constants except τ are set to be equal to 1.
Mathematical study of pseudoparabolic PDEs goes back to works of

Showalter in seventies (see [26] and subsequent works). Nonlinear diffusion
equations with a pseudoparabolic regularizing term being the Laplacean of
the time derivative are considered in [23] and in [24]. Global existence of a
strong solution is proved by writing the problem as a linear elliptic operator,
acting on the time derivative, equal to the nonlinear diffusion term. In such
situation, the linear elliptic operator, acting on the time derivative, could
be inverted and then the standard geometric theory of nonlinear parabolic
equations (see e.g. [18]) is applicable.

In our situation the dynamic capillary effects in unsaturated flows are
described by a degenerate non-linear second order elliptic operator, acting
on the time derivative, at the place of the Laplacean. The invertibility of
this nonlinear elliptic operator depends on the solution itself. Importance
of the model for multiphase and unsaturated flows through porous media
motivated a number of recent papers. Mostly they deal with the travelling
wave solutions. In this direction we mention the paper [19], where Hulshof
gives a detailed study of possible travelling wave solutions and in particular
of the behavior of such travelling waves near fronts where the concentration
is zero. Further studies of the travelling waves solutions to the equation (5)
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are in the papers [8] and [7]. For small- and waiting time behavior of the
equations one can consult [20].

Study of the capillarity limit for the linear relaxation model of the dy-
namic term is in [11]. It is important to mention that it leads to the
Buckley-Leverett equation with discontinuous solutions which do not satisfy
Oleinik’s entropy condition.

Nevertheless, the study of existence of a solution to the equation (5) was
not undertaken. For the nonlinear model from [16] there are only papers [4]
and [5], where the non-degeneracy was supposed and existence is local in
time. Another existence result, also local in time and for a related equation,
is in the paper [10], by Düll, where a related pseudoparabolic equation
modeling solvent uptake in polymeric solids was studied. Düll proved the
short time existence of a solution for the problem in R, supposing non-
negative compactly supported initial datum. In the above quoted works by
Beliaev and Düll, the problem was written as a system containing a linear
elliptic equation and an evolution equation. Nevertheless, it is not easy to
see how to get estimates global in time with such approach.

Finally, let us mention existence and uniqueness results in [25], for quasi-
linear pseudoparabolic equations with degeneration in the time derivative
term and including memory terms.

We consider the equation (5) in a an open, bounded and connected
domain Ω ⊂ Rn, with Lipschitz boundary ∂Ω. We decompose the boundary
∂Ω into Dirichlet part ∂DΩ and Neumann part ∂NΩ, with ∂Ω = ∂DΩ∪∂NΩ
and ∂DΩ∩∂NΩ = ∅. We suppose that ∂DΩ is measurable withHn−1(∂DΩ) >
0. Let QT = Ω× (0, T ), T > 0.

Following the classical textbook [3], we are looking for a solution to the
equation (5) satisfying the following initial-boundary conditions:

c = cD on ΓD = ∂DΩ× (0, T ), (6)

−k (c)
(− P ′

C (c)∇c + τ∇∂tc + en

) · ν = R on ΓN = ∂NΩ× (0, T ), (7)

c = ci(x) on Ω, (8)

where (0, T ), T > 0, is the time interval, ν is the outer normal of Ω, R is
the given flux, cD is the given moisture content at ΓD and ci is the initial
moisture content.

Our goal is to obtain a global existence of a weak solution, for any time
interval, in analogy of the study in [22] of a similar 1D model, describing
sequestration of the carbon dioxide in unminable coal seams. Result of this
type were obtained in [2] for a degenerate pseudo-parabolic regularization of
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a nonlinear forward-backward heat equation. As in [22], we observe that our
PDE allows a natural generalization of the classic Kullback entropy which
is given by E ′′(ϕ) = 1/k(ϕ). Following [21], we will use E ′(ϕ) as a test
function, with the hope to obtain a convenient a priori estimate. Formal
calculation gives the equality

∂t

∫

Ω

(E(c) +
τ

2
|∇c|2)dx−

∫

Ω

P ′
C(c)|∇c|2 dx = low order terms. (9)

This estimate has remarkable property that gradients are not multiplied by
k. Nevertheless, it is typical for unsaturated flows that k(0) = 0 and that
−P ′

C tends to infinity when c tends to zero. These degenerate coefficients
and presence of the initial and the boundary conditions lead to unbounded
non-integrable E ′. The equality (9) cannot be directly used and we can not
follow the approach from [13] to get the entropy estimates. As in [22], we
have to regularize and then to obtain the entropy estimate and an additional
estimate for the time derivative for the regularized problem. Consequently,
our calculations are more complicated than in the literature.

Study of the model requires to precise assumptions on the coefficients
and on the data:

(H1) After [3], we suppose that there are constants β > 0, Ck > 0, and a
non-negative function f ∈ C∞

0 (R) such that k is given by

k(z) =
Ck zβ

1 + Ck zβ f(z)
, z ∈ [0, 1]. (10)

Typical exemple is given by the Brooks–Corey relation

k(z) = Ckz
2/Λ+3, (11)

where Λ > 0 is the Brooks and Corey exponent.

(H2) Concerning the capillary pressure, we deal only with its derivative.
After [3], we suppose that there exist λ > 0, Cp > 0, Mp > 0, and an
arbitrary non-negative function g ∈ C∞

0 (R) such that −P ′
C is written

as

−P ′
C(z) =

Cp z−λ

1 + Mp zλ g(z)
z ∈ [0, 1]. (12)

Typical exemple is given again by the Brooks–Corey relation

−P ′
C(z) = Cpz

−1/Λ−1, (13)
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where Λ > 0 is, as above, the Brooks and Corey exponent.

Since we will construct a non-negative solution, there is no need to
extend −P ′

C to (−∞, 0). Extension for z > 1 is obvious.

(H3) The product of the functions k and P ′
C is bounded on [0, 1]. Conse-

quently, β ≥ λ. We extend k and P ′
C to (1, +∞) by their values at

z = 1.

(H4) We assume that cD ∈ C1([0, T ]; H1(Ω)), 0 < cDmin ≤ cD(x, t) ≤ 1
a.e. on QT . The initial condition ci belongs to H1(Ω) and 0 ≤ ci ≤ 1
a.e. on Ω. Keeping cD strictly positive is essential for obtaining a
priori estimates. Similarly, we will impose in (H6) on initial data to
be non-zero almost everywhere.

(H5) We suppose that the flux on ∂NΩ verifies

R(x, t, z) = R0(x, t) ζ(z); R0 ∈ C1(Γ̄N × [0, T ])), with R0 ≥ 0;

ζ ∈ C∞
0 (R), ζ(z) ≥ 0, for z > 0, ζ(0) = 0,

and zζ(z) ≥ 0 for z < 0. (14)

It is important to have R compatible with degeneration of the liquid
phase.

We introduce now the definition of a weak solution. We have

Definition 1. Let

V = (z ∈ H1(Ω)
∣∣ z|∂DΩ = 0). (15)

Then the variational formulation corresponding to the problem (5) -(8) is

Find c ∈ H1(QT ) such that 0 ≤ c(x, t) a.e. on QT ;

c− cD ∈ L2(0, T ; V ), k(c)∇∂tc ∈ L2(QT ), and satisfying

−
∫ T

0

∫

Ω

c
∂v

∂t
dx dt−

∫

Ω

ci(x) v(x, 0) dx +

∫ T

0

∫

∂NΩ

R v dΓ dt

+

∫ T

0

∫

Ω

τ k(c)∇(∂tc)∇v dx dt−
∫ T

0

∫

Ω

k(c)P ′
C(c)∇c∇v dx dt

+

∫ T

0

∫

Ω

k(c) ∂xnv dx dt = 0. (16)

for all v ∈ H1(0, T ; V ) such that v|t=T = 0,
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In order to prove existence of at least one weak solution for problem (16),
we need a regularized problem. It corresponds to the regularized coefficients
k and P ′

C given by

kε(z) = k(ε + z+) and P ′
Cε(z) = P ′

C(ε + z+), z ∈ R, (17)

with ε > 0 and z+ = sup{z, 0}.
Now we introduce the definition of a weak solution for the regularized

problem by

Definition 2. The variational formulation corresponding to the regularized
problem (5) -(8) is

Find cε ∈ H1(QT ) such that cε − cD ∈ L2(0, T ; V ), ∇∂tcε ∈ L2(QT ) and satisfying

−
∫ T

0

∫

Ω

cε
∂v

∂t
dx dt−

∫

Ω

ci(x) v(x, 0) dx +

∫ T

0

∫

∂NΩ

R v dΓ dt

+

∫ T

0

∫

Ω

τ kε(cε)∇(∂tcε)∇v dx dt−
∫ T

0

∫

Ω

kε(cε)P
′
Cε(cε)∇cε∇v dx dt

+

∫ T

0

∫

Ω

k(cε) ∂xnv dx dt = 0. (18)

for all v ∈ H1(0, T ; V ) such that v|t=T = 0,

The results we prove in the paper are the following:

Theorem 3. Under the hypotheses (H1)- (H5) there is a weak solution cε

for the regularized problem (5) -(8), satisfying (18).

Theorem 4. Let us suppose the hypothesis

(H6) The initial moisture content satisfies the finite entropy condition

β > 2 and

∫

Ω

c2−β
i (x)dx < +∞. (19)

Under the hypotheses (H1)- (H6), there is a constant C > 0, independent
of ε, such that every weak solution cε for the regularized problem (5) -(8),
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satisfies :

‖c−ε ‖L∞(0,T ;L2(Ω)) ≤ Cεβ/2; meas {cε ≤ 0} ≤ Cεβ−2 (20)∥∥(|cε|+ ε)2−β
∥∥

L∞(0,T ;L1(Ω))
≤ C, β > 2 (21)

‖∇cε‖L∞(0,T ;L2(Ω)) ≤ C (22)

‖∂tcε‖L2(QT ) ≤ C (23)∥∥√
kε(cε)∇∂tcε

∥∥
L2(QT )

≤ C (24)
∥∥∥∥∇

∫ cε

0

√
−P ′

Cε(ξ)dξ

∥∥∥∥
L2(QT )

≤ C, (25)

where c−ε = inf{cε, 0}.
Theorem 5. Let us suppose the hypotheses (H1)-(H6). If, in addition,
the exponents β and λ verify

β ≥ λ > 4, for n = 1, 2. (26)

β ≥ λ > 2,
10

3
+

β

3
< λ, for n = 3, (27)

then there is a weak solution for the problem (5) -(8), satisfying (16).

Remark 6. We note that the condition (27) implies λ > 5 for n = 3.

It would be interesting to have L∞-bounds for weak solutions. Physical
moisture content should be always smaller or equal to ϕp, consequently the
dimensionless c should be element of [0, 1].

Such estimates for pseudoparabolic equations exist in the literature. A
classical reference is the paper [9] by DiBenedetto and Pierre, with general
comparison and maximum principle for a large class of pseudoparabolic
equations. Nevertheless, due to the position of the nonlinearity, our equa-
tion can not be written as a time derivative of of an elliptic operator applied
to the solution equals an elliptic operator of the solution, and getting L∞-
bounds, using methods from [9], is not clear.

Value c = 1 corresponds to the completely saturated flows, where we
have only the liquid phase. Modeling of the transition to the completely
saturated regime is out of scope of this paper. Note that in our situation
introducing Kirchhhoff’s potential does not solve the difficulty. Our model
is consistent with the single phase flow only for g = 0. In this case we can
suppose PC(1) = 0 without loosing generality and we have the following
result
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Theorem 7. Let us suppose the hypotheses of Theorem 5. In addition let
g = 0 , −PC(cD) + ∂tcD ≤ 0 and PC(1) = 0. Then there is a weak solution
for the problem (5) -(8), satisfying (16) and such that c(x, t) ≤ 1 a.e. on
QT .

2. Proof of Theorem 3

1 STEP

In this section, we will establish the existence of a weak solution for the
regularized problem (5) -(8), satisfying (18).

It is easy to see that

0 < mk 6 kε(S) 6 ‖k‖∞, (28)

0 < mkP 6 kε P ′
Cε(S) 6 ‖k P ′

C‖∞. (29)

Constants mk and mkP depend on ε.

2. STEP: Galerkin approximation

We solve the problem (18) by introducing the corresponding approxi-
mate problem. Let (ej)j∈N is a basis of V and let VN = span {e1, · · · , eN}.
The Galerkin approximation for the problem (18) reads as follows:

Find cεN = cD +
N∑

j=1

αj(t)ej(x), αj ∈ C1[0, T ] such that

∫

Ω

∂tcεN el dx +

∫

∂NΩ

R el dΓ−
∫

Ω

kε P ′
Cε(cεN)∇cεN∇el dx

+

∫

Ω

τ kε(cεN)∇(∂tcεN)∇el dx +

∫

Ω

k(cεN) ∂xnel dx = 0, (30)

for all l ∈ {1, . . . , N} and satisfying the initial condition

cεN(0) = cD(x, 0) + ΠN(ci − cD|t=0) (31)

ΠN is the projector on the finite-dimensional space VN .
We can rewrite (30) as

{
A(α)

dα

dt
= B(α)α + F(α, t),

αk(0) = (ek, ci − cD|t=0), k = 1, . . . , N.
(32)
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where

Al,j =

∫

Ω

ej el dx +

∫

Ω

τ kε(cεN)∇ej∇el dx (33)

Bl,j =

∫

Ω

kε P ′
Cε(cεN)∇ej∇el dx (34)

Fl =

∫

Ω

kε P ′
Cε(cεN)∇cD∇el dx−

∫

ΓN

R el dΓ−
∫

Ω

∂tcD el dx

−
∫

Ω

τ kε(cεN)∇(∂tcD)∇el dx−
∫

Ω

k(cεN) ∂xnel dx dt. (35)

Obviously, the matrix A = A(α) is symmetric positive definite matrix,
depending smoothly on α. As F = F (α, t) and B are continuously differ-
entiable functions of α and continuous functions of t, the Cauchy-Lipschitz
theorem implies that

Lemma 8. There exists TN > 0 such that the problem (30)-(31) has a
unique solution belonging to C1([0, TN ]; VN).

3 STEP: A priori estimates for the regularized problem

Proposition 9. Under the assumptions (H1)-(H5), the solution of the
approximate problem (30)-(31) exists for all times T < +∞ and belongs to
C1([0, T ]; VN).

Proof. We test (30) by ∂t(cεN − cD) and obtain

∫

Ω

(∂tcεN)2dx−
∫

Ω

∂tcεN ∂tcD dx +

∫

∂NΩ

R ∂tcεN dΓ−
∫

∂NΩ

R ∂tcD dΓ

+

∫

Ω

τ kε(cεN)∇(∂tcεN)∇(∂tcεN)dx−
∫

Ω

τ kε(cεN)∇(∂tcεN)∇(∂tcD)dx+
∫

Ω

k(cεN) ∂xn∂t(cεN − cD) dx−
∫

Ω

kε P ′
Cε(cεN)∇cεN∇(∂tcεN) dx

+

∫

Ω

kε P ′
Cε(cεN)∇cεN∇(∂tcD) dx = 0 (36)

Next

∇cεN(t)−∇cεN(0) =

∫ t

0

∂ξ∇cεN dξ,
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and consequently

‖∇cεN(t)‖2
L2(Ω) ≤ 2(‖∇ci‖2

L2(Ω) +

∥∥∥∥
∫ t

0

∂ξ∇cεN dξ

∥∥∥∥
2

L2(Ω)

) ≤

C + Ct

∫ t

0

∥∥∥∥∂ξ∇cεN

∥∥∥∥
2

L2(Ω)

dξ (37)

Now we use the assumptions (H1)-(H5), the estimates (28)-(29), (37) and
the Trace theorem (see [12]) to conclude that (36) implies

∫

Ω

(∂tcεN)2dx + mk

∫

Ω

τ kε(cεN)|∇(∂tcεN)|2dx

≤ C + C
‖k P ′

C‖2
∞

mk

t

∫ t

0

∫

Ω

∣∣∇(∂ξcεN)
∣∣2dx dξ, (38)

Using Gronwall’s inequality we obtain from (38) that

max
0≤t≤TN

∫

Ω

|∇(∂tcεN)|2dx ≤ C. (39)

Hence the maximal solution for the approximate problem (30)-(31) exists
for all times T < +∞ and belongs to C1([0, T ]; VN).

We consider by now the problem on [0, T ], T > 0. A direct consequence of
the calculations from the proof of Proposition 9 are the following estimates:

Corollary 10. Under the hypotheses (H1)-(H5), there is a constant C
independent of N such that

‖∇cεN‖L2(0, T ; L2(Ω)n) ≤ C (40)

‖∂tcεN‖L2(0, T ; L2(Ω)) ≤ C (41)

‖
√

kε(cεN)∇ (∂tcεN)‖L2(0, T ; L2(Ω)n) 6 C (42)

Proposition 11. Under the hypotheses (H1)-(H5), the solution cεN of
the approximate problem (30)-(31) converge to a function cε ∈ H1(QT ),
∂t∇cε ∈ L2(QT ) , satisfying equation (18) in the limit when N → +∞.

Proof. By the weak compactness and by the Aubin-Lions compactness the-
orem we can extract a subsequence {cεN}, denoted again by the same sub-
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scripts, and cε ∈ H1(QT ), ∂t∇cε ∈ L2(QT ) such that we have

cεN → cε weakly in L2(QT )

∇cεN → ∇cε weakly in L2(QT )

∂tcεN → ∂tcε weakly in L2(QT )

∇ (∂tcεN) → ∇ (∂tcε) weakly in L2(QT )

cεN → cε strongly in L2(QT ) and a.e. on QT ,

when N → ∞. It is straightforward to prove that the limit function cε

satisfies equation (18) and the initial and boundary conditions.

3. Proof of Theorem 4

1. STEP
We test the variational equation (18) by

ψ =

∫ cε

cD

dξ

kε(ξ)
∈ V.

ψ is linked to the regularized entropy, corresponding to 1/kε(cε). We get

∫ t

0

∫

Ω

∂tcε

∫ cε

cD

dξ

kε(ξ)
dx dt +

∫ t

0

∫

∂NΩ

R

∫ cε

cD

dξ

kε(ξ)
dΓ dt

+

∫ t

0

∫

Ω

τ kε(cε)∇(∂tcε)(
∇cε

kε(cε)
− ∇cD

kε(cD)
)dx dt

−
∫ t

0

∫

Ω

kε(cε)P
′
Cε(cε)∇cε(

∇cε

kε(cε)
− ∇cD

kε(cD)
)dx dt

+

∫ t

0

∫

Ω

k(cε) (
∂xncε

kε(cε)
− ∂xncD

kε(cD)
)dx dt = 0 (43)

Now, we focus on the first term in (43). It transforms as follows:

∂tcε

∫ cε

cD

dξ

kε(ξ)
= ∂t(cε

∫ cε

cD

dξ

kε(ξ)
−

∫ cε

0

ξ dξ

kε(ξ)
) + cε

∂tcD

kε(cD)
. (44)

It is natural to set now for the regularized entropy density

Eε(v) =

∫ v

0

∫ u

cD

dξ

kε(ξ)
du = v

∫ v

cD

dξ

kε(ξ)
−

∫ v

0

ξ dξ

kε(ξ)
+ an affine function of v.
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Nevertheless we should be careful with its behavior when ε → +0. By (10),
we have 1/kε(u) = (ε + u)−β/Ck + O(1), 1 ≥ u ≥ 0. Consequently, for
1 ≥ u ≥ 0, the principal part of the entropy density is

cε

∫ cε

cD

dξ

kε(ξ)
−

∫ cε

0

ξ dξ

kε(ξ)
=

(cε + ε)2−β + (β − 2)cε(cD + ε)1−β − ε2−β

Ck (1− β)(2− β)
+ O(1).

(45)

Now we set for the entropy density Eε(v) = Ψε(v) + Gε(v), where

Ψε(u) =





u2ε−β

2Ck

+
u{(ε + cD)1−β − ε1−β}

Ck(β − 1)
+

ε2−β

Ck (1− β)(2− β)
, for u < 0;

(u + ε)2−β + (β − 2)u(cD + ε)1−β

Ck (1− β)(2− β)
, for 0 ≤ u ≤ 1;

(u− 1)2(1 + ε)−β

2Ck

+
u

Ck(β − 1)
{(ε + cD)1−β − (1 + ε)1−β}

+
(1 + ε)2−β + (β − 2)(1 + ε)1−β

Ck (1− β)(2− β)
, for u > 1.

(46)
and Gε is a smooth bounded real function on R, bounded uniformly with
respect to ε. We note that

Ψε(u) ≥ Ψ0
ε(u) =





u2ε−β

2Ck

+
ε2−β

Ck (1− β)(2− β)
, for u < 0;

(u + ε)2−β

Ck (1− β)(2− β)
, for 0 ≤ u ≤ 1;

(u− 1)2(1 + ε)−β

2Ck

+
(1 + ε)2−β

Ck (1− β)(2− β)
, for u > 1,

(47)
and that Ψ0

ε(u) ≥ C(|u|+ ε)2−β.
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Next we insert (46) and (44) into (43) and obtain
∫

Ω

Eε(cε(x, t)) dx +
τ

2

∫

Ω

|∇cε(x, t)|2dx−
∫ t

0

∫

Ω

P ′
Cε(cε)|∇cε|2 dx dt =

∫

Ω

Eε(ci(x)) dx +
τ

2

∫

Ω

|∇ci(x)|2dx−
∫ t

0

∫

Ω

cε
∂tcD

kε(cD)
dx dt

−
∫ t

0

∫

Ω

kε(cε)

kε(cD)
P ′

Cε(cε)∇cε∇cD dx dt−
∫ t

0

∫

∂NΩ

R

∫ cε

cD

dξ

kε(ξ)
dΓ dt

−
∫ t

0

∫

Ω

k(cε)

kε(cε)
∂xncε dx dt +

∫ t

0

∫

Ω

k(cε)

kε(cD)
∂xncD dx dt

+

∫ t

0

∫

Ω

τ
kε(cε)

kε(cD)
∇(∂tcε)∇cD dx dt (48)

We note that∫

Ω

Eε(ci(x)) dx ≤ C(1 +

∫

Ω

c2−β
i (x)dx +

∫

Ω

ci(x)c1−β
D (x, 0)dx) < +∞, (49)

by the hypothesis (H6)). Next using the hypothesis (H5) we have
∫ t

0

∫

∂NΩ

R

∫ cε

0

dξ

kε(ξ)
dΓ dt ≥ 0.

Now using the Cauchy-Schwartz inequality, (49) and hypotheses (H1)-
(H6) we find out that (48) implies

∫

Ω

Ψ0
ε(cε) dx +

τ

2

∫

Ω

|∇cε|2dx +

∫ t

0

∫

Ω

∣∣∣∣∇
∫ cε

0

√
−P ′

Cε(ξ)dξ

∣∣∣∣
2

dx dt

≤ C(δ) + δ

∫ t

0

∫

Ω

τ kε(cε)|∇(∂tcε)|2 dx dt, (50)

where δ > 0 is small.

2 STEP
Our next step is to test the variational equation (18) by ∂tcε−∂tcD. We

get
∫ t

0

∫

Ω

∂tcε (∂tcε − ∂tcD) dx dt +

∫ t

0

∫

∂NΩ

R (∂tcε − ∂tcD) dΓ dt+

∫ t

0

∫

Ω

τ kε(cε)∇(∂tcε)∇∂t(cε − cD)dx dt +

∫ t

0

∫

Ω

k(cε) ∂xn∂t(cε − cD)dx dt

−
∫ t

0

∫

Ω

kε(cε)P
′
Cε(cε)∇cε∇(∂tcε − ∂tcD)dx dt = 0 (51)
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In (51) only non-trivial estimate is for the boundary flux. It reads

|
∫ t

0

∫

∂NΩ

R ∂t(cε − cD) dΓ dt| = |
∫ t

0

∫

∂NΩ

R0(x, t)∂t(cε − cD)ζ(cε) dΓ dt|

≤ |
∫ t

0

∫

∂NΩ

R0(x, ξ)∂tcD(x, ξ)ζ(cε) dΓ dξ|+

|
∫

∂NΩ

R0(x, 0)

∫ ci

0

ζ(ξ) dξ dΓ |+ |
∫

∂NΩ

R0(x, t)

∫ cε(t)

0

ζ(ξ) dξ dΓ |+

|
∫ t

0

∫

∂NΩ

∂tR0(x, ξ)

∫ cε(t)

0

ζ(ξ) dξ dΓdt| ≤ C. (52)

Using the hypotheses (H1)-(H6), the Trace theorem (see e.g. [12]), (52)
and the Cauchy-Schwartz inequality, we obtain the following inequality

∫ t

0

∫

Ω

(∂tcε)
2 dx dt +

∫ t

0

∫

Ω

τ kε(cε)|∇(∂tcε)|2 dx dt ≤ C(1+

∥∥k P ′
c

∥∥
∞

∫ t

0

∫

Ω

∣∣∣∣∇
∫ cε

0

√
−P ′

C ε(ξ)dξ

∣∣∣∣
2

dx dt + sup
t∈(0,T )

∫

Ω

|∇cε|2 dx). (53)

By (50) we have

∫ t

0

∫

Ω

∣∣∣∣∇
∫ cε

0

√
−P ′

C ε(ξ)dξ

∣∣∣∣
2

dx dt + sup
t∈(0,T )

∫

Ω

|∇cε|2 dx

≤ C + δ

∫ t

0

∫

Ω

τ kε(cε)|∇(∂tcε)|2dx dt with small δ. (54)

After inserting (54) into (53), we conclude that there exists constants inde-
pendent of ε such that (23)-(25) hold true.

Inserting (25) into (50) gives the estimate (22). Finally, (47) gives the
entropy estimate (21) and the approximative positivity estimate (20). This
proves Theorem 4.

4. Proof of Theorem 5

For passing to the limit ε → 0, we miss only an estimate on ∇(∂tcε) in
Lr0(QT ), for some r0 > 1, independent of ε.
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Proposition 12. Let n ≤ 3 and let us suppose the hypotheses (H1)-(H6).
Then under the assumptions (26)–(27) any weak solution cε for the regular-
ized problem (5) -(8), satisfies

‖∇(∂tcε)‖Lr0 (QT ) ≤ C, with r0 ∈ (1, 2), (55)

where the constants C and r0 do not depend on ε.

Proof. First, by (12) we have −P ′
C(y) = Cp y−λ + O(1), y > 0. Then the

condition sup
y
−k(y) P ′

C(y) < +∞ implies that

β ≥ λ. (56)

Next we note that

P ′
C(ε + c+

ε )|∇cε|2 = P ′
C(ε + c+

ε )|∇c+
ε |2 + P ′

C(ε)|∇c−ε |2,

where c+
ε = sup{cε, 0}. Hence estimate (24) reads

−
∫

QT

P ′
C(ε + c+

ε )|∇c+
ε |2 dxdt−

∫

QT

P ′
C(ε)|∇c−ε |2 dxdt ≤ C.

The leading order part of

∫ c+ε

0

√
−P ′

Cε(ξ) dξ is

∫ c+ε

0

√
Cp(ξ + ε)−λ/2 dξ =

√
Cp

1− λ/2
((c+

ε + ε)1−λ/2 − ε1−λ/2).

Therefore instead of considering

∫ c+ε

0

√
−P ′

Cε(ξ)dξ we take the function

√
Cp

1− λ/2
ε1−λ/2+

∫ c+ε

0

√
−P ′

Cε(ξ)dξ.

and the estimate (25) implies

∇(c+
ε + ε)1−λ/2 ∈ L2(QT ). (57)

Next we use that cε = cD on ΓD and (57) and Poincaré’s inequality for
H1(Ω) (see e.g. [12]) imply

(c+
ε + ε)1−λ/2 ∈ L2(0, T ; H1(Ω)). (58)
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Now we apply Sobolev embedding theorems (see again [12]) and obtain

(c+
ε + ε)1−λ/2 ∈ L2(0, T ; C(Ω̄)) for n = 1, (59)

(c+
ε + ε)1−λ/2 ∈ L2(0, T ; Lr(Ω)), ∀ r ∈ (1, +∞), for n = 2, (60)

(c+
ε + ε)1−λ/2 ∈ L2(0, T ; L

2 n
n−2 (Ω)), for n > 2. (61)

By the entropy estimate (21), (c+
ε + ε)2−β ∈ L∞(0, T ; L1(Ω)), and we

would like to conclude that (21) and (58) imply k−γ
ε ∈ L1(QT ) for some

γ > 1. Idea is to achieve this integrability by interpolating between (58)
and (21). We will considered separately the cases n = 1, 2, and 3, respec-
tively.

We start with the case n = 3 and we undertake to estimate the integral∫

Ω

(c+
ε + ε)−γ βdx with γ > 1. For 6 > θ > 0, we use Hölder’s inequality

with p =
6

θ
and p1 =

6

6− θ
, to obtain the estimate

∫

Ω

(c+
ε + ε)−γ βdx =

∫

Ω

(c+
ε + ε)(1−λ/2)θ(c+

ε + ε)(2−β)θ1dx

≤ (

∫

Ω

(c+
ε + ε)(1−λ/2)6dx)θ/6(

∫

Ω

(c+
ε + ε)(2−β)6 θ1/(6−θ)dx)(6−θ)/6

Due to (21), we have θ1 = 1− θ/6. Next, from (61) with n = 3, we have

(

∫

Ω

(c+
ε + ε)(1−λ/2)6dx)1/3 ∈ L1(0, T ),

and we find that θ = 2. Finally, we see that (21) and (58) imply
∫ T

0

∫

Ω

(c+
ε + ε)−γβ dxdt ≤

∫ T

0

(

∫

Ω

(c+
ε + ε)(1−λ/2)6dx)1/3dt ·

max
0≤t≤T

∫

Ω

(c+
ε + ε)2−βdx < +∞

The above calculation gives us γ:

−γ β = (1− λ

2
) 2 + (2− β)

2

3
=

10

3
− λ− 2 β

3

Therefore γ > 1 if and only if β ≥ λ > 2 and

−1

β
(
10

3
− λ− 2 β

3
) > 1 ⇐⇒ 10

3
+

β

3
< λ (62)
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If n = 2, we apply Hölder’s inequality with arbitrary finite r > 2 and
with p = r/θ, 1/p1 = 1 − θ/r. Again we get θ = 2 and θ1 = 1 − 2/r.
Hence now

−γ β = (1− λ

2
) 2 + (2− β)(1− 2

r
) = 4− 4

r
− λ− β(1− 2

r
). (63)

In order to have γ > 1, we conclude that for n = 2, λ and β should satisfy
β ≥ λ > 4.

For n = 1, from the estimates (59) and (21) we get
∫

Ω

(c+
ε + ε)−γ βdx =

∫

Ω

(c+
ε + ε)(1−λ/2) 2(c+

ε + ε)2−βdx

≤ (max
x∈Ω̄

(c+
ε + ε)1−λ/2)2

∫

Ω

(c+
ε + ε)2−βdx ∈ L1(0, T )

In order to have γ > 1, λ and β should satisfy

−γ β = 4− λ− β < −β i.e. β ≥ λ > 4. (64)

Now we are in situation to establish an estimate in Lq(QT ), q > 1, for
∇(∂tcε). It follows by applying Hölder’s inequality:

∫ T

0

∫

Ω

|∇(∂tcε)|qdx dt =

∫ T

0

∫

Ω

∣∣k1/2
ε ∇(∂tcε)

∣∣q k−q/2
ε dx dt

≤ (

∫ T

0

∫

Ω

kε |∇(∂tcε)|2dx dt)2/q · (
∫ T

0

∫

Ω

k−q/(2−q)
ε dx dt)1−2/q. (65)

For n = 3, (62) gives q(3) =
2(3λ + 2β − 10)

3λ + 5β − 10
. For n = 2, β ≥ λ > 4 implies

that there exists r ≥ 2 such that λ > 4 + 2(β − 2)/r. Then using (63), we
obtain q(2) = 2(4− λ− β + 2(β − 2)/r)/(4− λ− 2β + 2(β − 2)/r) ∈ (1, 2).
Finally, for n = 1, we have q(1) = 2(4− λ− β)/(4− λ− 2β) ∈ (1, 2). Now
k−q/(2−q)

ε ∈ L1(QT ), for q = q(n) defined above and (55) holds true.

Now the estimates (20)-(25) and (55) imply that there exists a subse-
quence of cε, denoted by the same subscripts, and c ∈ H1(QT ), ∂t∇c ∈
Lr0(QT ), for some r0 ∈ (1, 2) such that





cε → c, strongly in L2(QT )
cε ⇀ c, weakly in H1(QT )
∇∂tcε ⇀ ∇∂tc, weakly in Lr0(QT ),
c−ε = inf{cε, 0} → c− = 0, strongly in L2(QT ).

(66)
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Next the estimate (24) implies that, after passing to a subsequence,

√
kε(cε)∇∂tcε ⇀ q weakly in L2(QT ), as ε → 0.

Furthermore, ∇∂tcε ⇀ ∇∂tc weakly in Lr0(QT ) and
√

kε(cε) →
√

k(c)

strongly in Lr(QT ), as ε → 0, for all r < ∞. Hence q =
√

k(c)∇∂tc ∈
Lr(QT ), for all r < r0, and

√
k(c)∇∂tc ∈ L2(QT ).

It is straightforward to check that c is a weak solution for the problem
(5) -(8), satisfying (16). This completes the proof of Theorem 5.

5. Proof of Theorem 7

Let p = −PC(c) + τ∂tc. Then p satisfies the variational equation

∫ t

0

∫

Ω

p v dx dξ + τ

∫ t

0

∫

∂NΩ

R v dΓ dξ+

τ

∫ t

0

∫

Ω

k(c)∇p∇v dx dξ = −
∫ t

0

∫

Ω

PC v dx dξ . (67)

for all v ∈ L2(0, T ; V ).
Next we test (67) by p+ and get p ≤ 0 a.e. on QT .
Therefore we have ∂tc ≤ PC(c) and c ∈ C[0, T ] a.e. on Ω. Let us

suppose that at the instant t = t1 c reaches value 1 on a subset of Ω of
positive measure. c is a continuous function of t with values in L2(Ω). If it
crosses the value 1 after reaching it for t = t1, then

c(x, t)− c(x, t1) ≤ 1

τ

∫ t

t1

PC(c(x, ξ)) d ξ = 0

for x from a subset of Ω of positive measure. This contradicts the hypothesis
that c(t) > 1 and therefore c(x, t) ≤ 1 a.e. on QT which proves the Theorem.
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