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Abstract

Coupled multiphase flow and geomechanics models are computationally costly and complex to
implement. In order to take advantage of petascale and future exascale computing power, paral-
lel domain decomposition offers an opportunity for decoupling realistic subsurface problems. The
basic idea is to reduce the complexity of these multiphysics problems by applying the coupling
only in those domains where it is needed. Thus, in classical poroelastic modeling, one needs to
take into account both the flow and geomechanics effects in the reservoir (pay zone). When the
flow-geomechanics-interactive pay zone and the geomechanics-only non-pay zone are in contact, the
natural question is what to set at their interface.

In this paper we undertake a rigorous derivation of the interface conditions between a poroelas-
tic medium (the pay zone) and an elastic body (the non-pay zone). We suppose that the poroelastic
medium contains a pore structure of the characteristic size ε and that the fluid/structure interaction
regime corresponds to diphasic Biot’s law. The question is challenging because the Biot’s equations
for the poroelastic part contain one unknown more than the Navier equations for the non-pay zone.
The solid part of the pay zone (the matrix) is elastic and the pores contain a viscous fluid. The fluid
is supposed viscous and slightly compressible. We study the case when the contrast of property is
of order ε2, i.e. the normal stress of the elastic matrix is of the same order as the fluid pressure.
We suppose a periodic matrix and obtain the a priori estimates. Then we let the characteristic size
of the inhomogeneities tend to zero and pass to the limit in the sense of the two-scale convergence.
The obtained effective equations represent a two-scale system for 3 displacements and 2 pressures,
coupled through the interface conditions with the Navier equations for the elastic displacement in the
non-pay zone. We prove uniqueness for the homogenized 2-scale system. Then we introduce several
auxiliary problems and obtain a problem without the fast scale. This new system is diphasic quasi-
static and corresponds to the diphasic effective behavior already observed in papers by M. Biot on the
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soil consolidation. In the effective equations it is possible to distinguish the effective displacements
of the fluid and the solid phase, respectively. The effective stress tensor contains an instantaneous
elasticity tensor and the pressure term. We give a detailed study of the effective equations and justify
the quasi-static Biot’s poroelasticity equations. Furthermore we prove that the appropriate interface
conditions at the interface between an elastic and a poroelastic medium are (i) the effective displace-
ment continuity, (ii) the effective normal stress continuity and (iii) the normal Darcy velocity zero
from the poroelastic side. In addition we determine the effective boundary conditions for the contact
between a poroelastic body and a rigid obstacle, giving us the effective outer boundary conditions.

1 Introduction

Fluid motion and solid deformation are inherently coupled. Unfortunately today current major commer-
cial simulators for multiphase flow in porous media only model porous flow while solid deformation
is normally integrated into a study in an ad hoc manner or must be included through complex itera-
tions between one software package that models fluid flow and a separate package that models solid
deformations. There are numerous field applications that would benefit from a better understanding and
integration of porous flow and solid deformation. Important applications in the geosciences include envi-
ronmental cleanup, petroleum production, solid waste disposal, and carbon sequestration, while similar
issues arise in the biosciences and chemical sciences as well. Examples of field applications include
surface subsidence, pore collapse, cavity generation, hydraulic fracturing, thermal fracturing, wellbore
collapse, sand production, fault activation, and disposal of drill cuttings. The above phenomena en-
tail both economic as well as environmental concerns. For example, surface subsidence related to both
consolidation of surface layers and fluid withdrawals from oil and gas reservoirs have had a significant
impact in the greater Houston area over the last century and have resulted in destruction to infrastructure,
buildings and private homes. Subsidence caused by oil and gas production also has been an issue of sub-
stantial economic importance in the North Sea oil fields. In some cases multi-billion dollar adjustments
have been required to production platforms due to the response to unexpected subsidence of the sea floor
driven by oil production. Another important related class of problems involves CO2 sequestration, which
is proposed as a key strategy for mitigating climate change driven by high levels of anthropogenic CO2
being added to the atmosphere. In a CO2 sequestration project, fluid is injected into a deep subsurface
reservoir (rather than being produced or extracted), so that inflation of the reservoir leads to uplift dis-
placement of the overlying surface. As long as a CO2 sequestration site is removed from faults, this
uplift is several centimeters, while its wavelength is in tens of kilometers, so that the uplift poses little
danger to buildings and infrastructure. Nevertheless the uplift displacements are of great interest for
non-intrusive monitoring of CO2 sequestration. Indeed, uplift can be measured with a sub-millimeter
precision using Interferometric Synthetic Aperture Radar (InSAR) technology [35]. The feasibility of
this approach has been established by measuring the uplift displacements over the first commercial scale
CO2 sequestration project conducted by BP in In Salah Algeria ([10], [35]). In contrast, intrusive moni-
toring via drill holes bored into the reservoir is expensive, with costs of several million dollars per well.
Furthermore, such wells are the most likely pathway for future leakage of sequestered CO2 back into
the atmosphere. Of course, if a CO2 sequestration site is close to a fault, one should be concerned about
triggering instability leading to large surface displacements that may result in significant losses.

With petascale and future exascale computing power, parallel domain decomposition offers an op-
portunity for treating multiscale and multiphysics phenomena for realistic subsurface field studies. This
is essential when modeling basin scale models such as those arising in carbon sequestration. To reduce
the computational complexity of multiphysics problems such as poroelasticity, one is motivated by the
observation that pore pressure variations and fluid content within the cap rock and higher layers are of-
tentimes unaffected by the injection or extraction of fluids within the reservoir. This leads to a domain
decomposition computational approach of discretizing the poroelastic and elastic models each indepen-
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Figure 1: Pay and no pay zone.

dently and defining an interface between the respective regions. In [16], a parallel domain decomposition
method was formulated for solving a linear elasticity system. Data across subdomains are transmitted
by jumps, as in Discontinuous Galerkin (DG) [17], using mortar finite elements. The global system is
reduced to a mortar interface problem and solved in parallel. In [18] building on this work we coupled
a time-dependent poroelastic medium (the pay zone) with an elastic body (the non-pay zone) model in
adjacent regions.

Typical example of a pay-zone for a petroleum reservoir (inserted in between non-pay zones) is
shown in Figure 1.

Each model was discretized independently on non-matching grids and the systems were coupled
using DG jumps and mortars. At each time step, an interface problem is solved, with subdomain solves
performed in parallel. We also proposed an algorithm where the computation of the displacement is
time-lagged. We showed that in each case, the matrix of the interface problem is positive definite. Error
estimates were established. This algorithm can also viewed as a multiscale method since the mortar
space can be chosen to be of higher order; see [18] for details.

In this paper we undertake a rigorous derivation of the interface conditions between the pay zone and
the non-pay zone. We suppose that the poroelastic medium contains a pore structure of the characteristic
size ε and that the fluid/structure interaction regime corresponds to diphasic Biot’s law. The question
is challenging because the Biot’s equations for the poroelastic part contain one unknown more than the
Navier equations for the non-pay zone. The solid part of the pay zone (the matrix) is elastic and the pores
contain a viscous fluid. We show through homogenization the mathematical correctness in the limit of
applying a multidomain or multiblock methodology for Biot systems for treating coupled geomechanical
and fluid flow problems. This approach generalizes to multiple subdomains.

We suppose that the poroelastic medium contains a pore structure of the characteristic size ε and
that the fluid/structure interaction regime corresponds to diphasic Biot’s law. The question is challenging
because the Biot’s equations for the poroelastic part contain one unknown more than the Navier equations
for the non-pay zone. The solid part of the pay zone (the matrix) is elastic and the pores contain a viscous
fluid. The fluid is supposed viscous and slightly compressible. We study the case when the contrast of
property is of order ε2, i.e. the normal stress of the elastic matrix is of the same order as the fluid pressure.
We suppose a periodic matrix and obtain the a priori estimates. Then we let the characteristic size of
the inhomogeneities tend to zero and pass to the limit in the sense of the two-scale convergence. The
obtained effective equations represent a two-scale system for 3 displacements and 2 pressures, coupled
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through the interface conditions with the Navier equations for the elastic displacement in the non-pay
zone.

The theory of flow-deformation coupling in porous media originated from the research of Biot on the
three-dimensional consolidation of saturated soft soil under loads. A collection of Biot’s seminal papers
can be found in [36]. In this paper our aim is to derive from the first principles

1. the quasi-static Biot’s system from consolidation theory,

2. the interface conditions between a poroelastic medium and an elastic medium,

3. the boundary conditions at a closed outer boundary for the quasi-static Biot system.

We start by recalling the fluid-structure interaction modeling.
We consider an incompressible fluid of density ρ f and dynamic viscosity η . It is initially contained

in a domain Ω f (0) ∈ C2. The fluid flow, in Eulerian description, is described by the incompressible
Navier-Stokes system

ρ f

(
∂tv+(v∇)v

)
= Div σ

F +ρF f in ΩF(t), (1.1)

div v = 0 in ΩF(t), (1.2)

v(x,0) = 0 in ΩF(0), (1.3)

where σF = 2ηD(v)− pI is the fluid stress tensor and D(v)i j = (∂xiv j + ∂x j vi)/2 is the rate of strain
tensor. f are exterior bulk forces, p the pressure and v the Eulerian velocity field (the spatial velocity).

Simultaneously with the fluid, we consider an elastic structure. The reference configuration Ωs(0)
is the elastic domain at t = 0. The deformation of the elastic structure is described in terms of its
displacement u(X , t) = Φ(X , t,0)−X , where Φ(X , t,s) denotes the Lagrangian flow (the configuration),
i.e. the position at time t of the particle located at X at time s. The deformation gradient is Fi j = ∂X j Φi.
Here the stress measures the force per unit nondeformed area and we use the first Piola-Kirchhoff stress
tensor P. It is linked to the Cauchy stress σ s by

P(X , t) = Jσ
s(x, t)F−τ , J = detF. (1.4)

Now the balance of momentum reads

ρre f
∂u(X , t)

∂ t
= Div P+ρre f u in Ωs(0) (1.5)

Since our structure is elastic, we can write the first Piola-Kirchhoff stress tensor P as P(X , t)= P̂(X ,F(x, t)),
where F is the deformation gradient. The stress-strain law for hyperelastic materials reads P̂i j = ρre f (∂W/∂Fi j),
where W (X ,F) is a stored energy function. For a frame indifferent, homogeneous and isotropic hypere-
lastic material we have

P = α0F +α1FFτF +α2FFτFFτF, (1.6)

where αi are functions of the invariants of FτF. For details we refer to [24] .
In [24] the linear elasticity is introduced as small displacements from a given deformation. We have

Pi j(X , t)≈∑
k,l

∂ P̂i j

∂Fk,l
(I)

∂uk

∂Xl
(X , t). The quantity Ci jkl(X) =

∂ P̂i j

∂Fk,l
(I) is the fourth order elasticity tensor. In

the special case of a homogeneous isotropic linear elastic material, there are constants λ and µs called
Lamé moduli such that Ci jkl = λδi jδkl + µs(δikδ jl + δilδ jk). We suppose that we deal with a linearly
elastic solid structure.

For the fluid and elastic domains we prescribe classical boundary conditions at a part of the boundary.
Nevertheless, we should discuss the interface conditions at the contact boundary between the fluid and
the solid structure.
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The fluid equations are coupled with the equations for the solid structure through the lateral bound-
ary conditions requiring continuity of velocity and continuity (balance) of forces. Depending on the size
of the displacement, the coupling is evaluated at the non-deformed interface Σ(0) in case when the de-
formations are expected to be small (i.e., linear coupling), or, at the deformed interface, Σ(t), when the
deformations are expected to be large (i.e., nonlinear coupling). In either case, the coupling is performed
in the Lagrangian framework, namely, with respect to the reference configuration Σ(0). More specifi-
cally, if we assume nonlinear coupling, then we require that the fluid velocity evaluated at the deformed
interface Σ(t) = {(X +u(X , t), t) | X ∈ Σ(0)} equals the Lagrangian velocity of the structure. This reads

v(X +u(X , t), t) =
∂v
∂ t

(X , t) on Σ(0), (1.7)

Next we consider balance of forces by requiring that σFn = σ sn on Σ(t) . The fluid contact force is
typically given in Eulerian coordinates. To perform the coupling in the Lagrangian framework we need
the equality σ s(x, t) = J−1P(X , t)Fτ . Hence we have(

σ
F(X +u(X , t), t)− J−1P(X , t)Fτ(X , t)

)
n(X +u(X , t), t) = 0 on Σ(0) (1.8)

To the system (1.1)-(1.3, (1.4), (1.5) , (1.6) , (1.7) and (1.8) , we add the initial data for the displacement

u = 0 on Σ(0)×{0}. (1.9)

and, boundary conditions of Dirichlet and Neumann type at outer boundary.

The nonlinear and nonlocal interface condition (1.7) is very difficult to handle and we will linearize
it supposing infinitesimal displacements around initial configuration. Similarly, a linearization will be
applied to the condition (1.8).

This paper is concentrated on the case which corresponds to the presence of both the fluid and elastic
matrix in the effective diphasic macroscopic behavior.

Original equations of Biot describe this particular situation and his heuristic modeling assures a kind
of Darcy law for the difference between effective velocities of the solid and fluid part. Asymptotic mod-
eling of this case attracted great attention in the literature and we mention only research undertaken by
Auriault [4], Burridge and Keller [9], Levy [22], Nguetseng [26], Sanchez-Palencia [28] . The approach
is to set the dimensionless viscosity to be µε2 and then to study the 2-scale asymptotic expansion. For the
fully dynamic high frequency regime and for a slightly compressible linear case, the rigorous results are
in the well-known book by Sanchez-Palencia [28] . This problem was one of the first applications of the
two-scale convergence method in the papers by Nguetseng [25] and [26]. The rigorous homogenization
using the two-scale convergence method (fast and slow scales separation) and comparison to the Biot’s
models ([6], [7] and [8]) is analyzed in the papers by Mikelić et al [12], [14] and [15].)

Contrary to the advanced theory of poroelasticity, modeling of the interface and/or boundary con-
ditions is generally done empirically. To the best of our knowledge, the major contribution is due to
Showalter and coworkers in [29], [30], [31], [32], [33] and [34]. The spirit of their approach is to accept
the macroscale poroelasticity equations as fundamental and then to propose boundary conditions which
lead to mathematically well-posed initial/boundary value problems. Once having well posed coupled
problems, it is possible to develop sophisticated numerical algorithms. We refer to the publications [16],
[17] and [18] by Wheeler and coworkers. For the fully nonlinear interface coupling we refer to [19].

However, the physical interpretation to be ascribed to these ad hoc interface and boundary conditions
seems obscure. There is a need of obtaining interface and boundary conditions from first principles,
which we undertake in this paper.

In Section 2 we formulate the geometry, state the linearized slightly compressible pore scale model
and state the upscaling result. Relationship of the derived homogenized model to the physical micro-
scopic problem is given in Theorem 1, which is a dimensional version of Theorem 3 in Section 6. It
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also contains the approximation through correctors in the corresponding norms. The main body of the
paper begins in Section 3 in which we carefully derive a non-dimensional form, in order to justify the
quasi-static approximation. In Section 4 we derive a priori estimates uniform with respect to ε . Since the
acceleration terms are small, these estimates require a careful attention. We prove Proposition 3 giving
us an adapted tool for handling incomplete estimates. It is based on the fine properties of the geometry
and on the second Korn inequality. Precise a priori estimates allow two-scale compactness, established
in Proposition 5. Here we take into the account the boundary conditions for Darcy type terms. The
fundamental result is obtained in Theorem 2, which provides the interface conditions and the effective
equations in the two-scale form. In Section 5 the fast and slow scales are separated and an effective quasi-
static Biot system is obtained, together with the effective interface and boundary conditions. Finally the
strong convergence of the correctors is proved in Section 6.

2 The pore scale model

2.1 Geometry

Structure of the porous media met in the nature is frequently very complicated. In order to model their
behavior it is necessary to make some hypothesis on it.

Here we make the following geometry assumptions:

• In general it is supposed that there are two connected phases, a solid and a fluid one. The solid
phase is deformable. In addition, the porous medium is assumed to be heterogeneous at the micro-
scopic (pore) level but statistically homogeneous at macroscopic level.

• The characteristic length of the non-homogeneities is `. Since the theory for the physical velocities,
pressures and other quantities is very complicated, one prefers working with averaged quantities
over characteristic volumes being of order `3.

A representative example of the above geometry is the periodic porous medium with connected fluid
and solid phases. It is obtained by a periodic arrangement of the pores. The formal description goes
along the following lines:

First we define the geometrical structure inside the unit cell Y =]0,1[3. Let Ys (the solid part) be a
closed subset of Ȳ and Y f =Y \Ys (the fluid part). Now we make periodic repetition of Ys over Rn and
set Y k

s = Ys + k, k ∈ Zn. Obviously the obtained closed set Es =
⋃

k∈Zn Y k
s is a closed subset of Rn and

E f = Rn\Es in an open set in Rn. Following Allaire [2] we make the following assumptions on Y f and
E f :

(H1) Y f is an open connected set of strictly positive measure, with a Lipschitz boundary and Ys has
strictly positive measure in Ȳ as well.

(H2) E f and the interior of Es are open sets with the boundary of class C0,1, which are locally located
on one side of their boundary. Moreover both E f and Es are connected.

For simplicity we consider the ”porous” domain (the pay zone) ΩL = (0,L)3. We suppose the pay-zone
is covered with a regular mesh of size `, each cell being a cube Y `

i , with 1≤ i≤ N(`) = L3`−3[1+0(1)].
Each cube Y `

i is homeomorphic to Y , by the linear homeomorphism Π`
i (that is set by translation and

homothety of ratio 1/`).
We define

Y `
Si
= (Π`

i )
−1(Ys) and Y `

fi
= (Π`

i )
−1(Y f )

For sufficiently small ` > 0 we consider the sets

T` = {k ∈ Z3|Y `
Sk
⊆ΩL}
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Figure 2: A pore with its solid part.

and define
Ωs =

⋃
k∈T`

Y `
Sk
, Γ = ∂Ωs \∂ΩL, Ω f = ΩL \Ωs.

The domains Ωs and Ω f represent, respectively, the solid and fluid parts of a porous medium ΩL. For
simplicity we suppose L/` ∈ N.

By assumption the porous medium ΩL is in contact with an elastic medium (the non-pay zone),
Ωel = (0,L)2× (−L,0). They are separated by a contact interface Σ = (0,L)2×{0}.

The complete domain under consideration is Ωtotal = ΩL∪Σ∪Ωel , shown in Figure 3 .

2.2 Pore level first principles fluid-structure model

We now introduce a dimensional form of the equations. The proposed first principle, pore level, model
is based on a set of characteristic values for the physical parameters. This leads to a reduced model,
allowing only the most important physics of the problem. The most important simplifications which
could be done were:

a) dropping the inertial term in the flow equation,

b) linearization due to the linear elastic nature of the solid skeleton and

c) linearization of the fluid-solid interface conditions.

Furthermore, there is a relationship between the non-dimensional numbers and the typical size of the
homogeneities. This plays a decisive role in the structure of the effective equations obtained in the limit
when the scale parameter ε tends to zero.

Our geometry corresponds to the initial Lagrangean configuration.
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Figure 3: Ωtotal , Pay zone (ΩL), Non-pay zone (Ωel), Interface Σ and Boundary Connditions.

More precisely, we suppose that the solid part of the porous medium ΩL is a linear elastic solid
continuum and start by recalling the basic equations:

Let e(w) be the strain tensor defined by

(e(w))i, j =
1
2

(
∂wi

∂x j
+

∂w j

∂xi

)
, i, j = 1,2,3

and σ(w) be the stress tensor
σ(w) = Ae(w). (2.1)

In the case when the solid structure is homogeneous and isotropic, the elasticity coefficients A are given
by the Lamé coefficients λ and µ and the stress tensor has the form:

σ(w) = λ∇ · (w)I +2µe(w) =
νΛ

(1+ν)(1−2ν)
∇ · (w)I +

Λ

1+ν
e(w), (2.2)

where Λ is Young’s modulus and ν Poisson’ ratio.

The pore space is filled with a slightly compressible viscous Newtonian fluid with viscosity η and
density ρ f . If the fluid bulk modulus is E f than the mass conservation equation has the form

1
ρ f E f

∂ p
∂ t

+ div
∂u f

∂ t
= 0, (2.3)

where p is the fluid pressure and u f is the fluid displacement.
We suppose that the momentum equation reduces to the non-stationary Stokes system in {∂tu f , p}.
Due to the linearization of the interface fluid/structure, we impose the displacements continuity and

the contact forces continuity at the fixed interface Γ. n is the exterior unit normal.
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Our system reads as follows:

ρ f
∂ 2u f

∂ t2 +∇p = η∆
∂u f

∂ t
+ρ f F in Ω f (2.4)

p
ρ f E f

+∇ ·u f = 0 in Ω f (2.5)

ρs
∂ 2us

∂ t2 = div(Ae(us))+ρsF in Ωs∪Ωel ∪ (Σ∩Ωs) (2.6)

us = u f on Γ∪ (Σ∩Ω f ) (displacement continuity at the interface) (2.7)

σ
f =−pI +2ηe(

∂u f

∂ t
) (fluid stress) (2.8)

σ
s = Ae(us) ( stress in solid) (2.9)

(−pI +2ηe(
∂u f

∂ t
))n = Ae(us)n on Γ∪ (Σ∩Ω f ). (2.10)

It is natural to set

u =

{
us, in Ωs∪Σ∪Ωel
u f , in Ω f .

(2.11)

We suppose that L >> ` and we include the nonhomogeneous boundary conditions in the forcing term
F. At t = 0 we suppose for simplicity that displacements and velocities are zero:

u|{t=0} = ∂tu|{t=0} = 0 on (0,L)2× (−L,L). (2.12)

Next we suppose that

{u, p} is periodic in (x1,x2) with period L; (2.13)

u = 0 on {x3 = L}∪{x3 =−L}. (2.14)

2.3 The rigorously obtained dimensional upscaled model and the interface conditions

Let the effective tensorial coefficients AH , BH and K be defined by (5.6), (5.7) and (5.9), respectively.
Following the results from Section 5, they are positive definite and symmetric. Let the constant M be
defined by M = κco|Y f |+M0, with M0 given by (5.11). They have the following meaning in Biot’s
theory:

SYMBOL QUANTITY UNITY
K = K`2 permeability Darcy
|Y f |I−BH pressure-storage coupling coefficient dimensionless
ρs solid grain density kg/m3

η fluid viscosity kg/m sec
|Y f | porosity 0 < |Y f |< 1
M combined porosity and compressibility of the fluid and solid dimensionless
G = AHΛ Gassman’s tensor Pa

Table 1: Effective coefficients

Then in the limit when ε = `/Lobs→ 0, the system (2.4)-(2.14) can be approximated by the following
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Figure 4: Interface Conditions.

elliptic-parabolic system of PDEs, valid on (0,L)2× (−L,L):

σ
por = G ex(u)}− (|Y f |I−BH)p0 in (0,L)3× (0,T ),(the total poroelasticity tensor), (2.15)

− div x{σ por}= ρ̄F(x, t) in (0,L)3× (0,T ), (2.16)

σ
el = Aex(u) in (0,L)3× (0,T ),(the elasticity tensor), (2.17)

− div x{σ el}= ρsF(x, t) in (0,L)2× (−L,0)× (0,T ), (2.18)

[u]Σ = 0 and σ
pore3|Σ = σ

ele3|Σ for all t ∈ (0,T ), (the displacements-stress interface conditions),
(2.19)

vD =
K

η
(ρ f F−∇x p0) in (0,L)3× (0,T ), (Darcy’s law for effective relative velocity), (2.20)

∂t
(M

Λ
p0 + div x((|Y f |I−BH)u

)
+ div x{vD}= 0 in (0,L)3× (0,T ), (2.21)

vD · e3 = 0 on (Σ∪{x3 = L})× (0,T ), (the non-penetration condition at the interface), (2.22)

p0|t=0 = 0 on (0,L)3; u = 0 on {x3 =±L}× (0,T ), (2.23)

{u, p0} is periodic in (x1,x2) with period L. (2.24)

Remark 1 The expression M
Λ

p0 + div x((|Y f |I−BH)u represents the change in the effective porosity.

The interface conditions are summarized in Figure 4. The properties are summarized below:

Proposition 1 Let F ∈ H2
0 (R+;L2(Ω)3). Let Lobs ≈ L be the observation length and let VL = {ϕ ∈

H1(ΩL) | ϕ is periodic in (x1,x2) with period L}. The homogenized equations read (2.15)-(2.24) or in
variational form

Find {u, p0} ∈ H2(0,T ;V )×H2(0,T ;V1) such that∫
ΩL

(
G ex(u)− (|Y f |I−BH)p0I

)
: ex(ϕ) dx+

∫
Ωel

Aex(u) : ex(ϕ) dx =∫
ΩL

ρ̄Fϕ dx+
∫

Ωel

ρsFϕ dx, ϕ ∈VL; (2.25)

∂

∂ t

∫
ΩL

M
Λ

p0
ξ dx+

∫
ΩL

(|Y f |I−BH)ξ : ex(
∂u
∂ t

) dx−
∫

ΩL

K

η
(ρ f F−∇x p0)∇ξ dx = 0, ∀ξ ∈VL (2.26)

p0|t=0 = 0 on ΩL. (2.27)

System (2.25)-(2.27) has a unique solution.
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Proof. It is sufficient to establish uniqueness. For F = 0 we set ϕ = u and ξ = p0 in (2.25)-(2.27) and
add the resulting equalities. We thus obtain∫

ΩL

G ex(u) : ex(u) dx+
∫

Ωel

Aex(u) : ex(u) dx+
M
2Λ

d
dt

∫
ΩL

(p0(t))2 dx+∫
ΩL

K

η
∇p0(t) ·∇p0(t) dx = 0, (2.28)

implying u = 0 and p0 = 0.

Theorem 1 Let the functions {wi j,w0,qi}, i, j = 1,2,3, be given by 5.1, 5.2 and 5.4, respectively. Let

F ∈ H2
0 (R+;L2(Ω)3). Then, in the limit ε =

`

Lobs
→ 0, we have

∫ t

0

∫
Ω f

∣∣∣∣∣`∂t∇u f (x,τ)−
3

∑
j=1

∇yq j(
x
`
)
`2

η
(Fj(x,τ)ρ f −

∂ p0(x,τ)
∂x j

)

∣∣∣∣∣
2

ηdxdτ

Λ`4Lobs
→ 0; (2.29)

∫ t

0

∫
Ω f

∣∣∣∣∣∂tu f (x,τ)−∂tu(x,τ)−
3

∑
j=1

q j(
x
`
)
`2

η
(Fj(x,τ)ψ f −

∂ p0(x,τ)
∂x j

)

∣∣∣∣∣
2

ηdxdτ

Λ`4Lobs
→ 0; (2.30)

∫ t

0

∫
Ω f

∣∣∣∣ div u f (x,τ)+
p0(x,τ)
ρ f E f

∣∣∣∣2 Λdxdτ

ηL3
obs
→ 0. (2.31)

Furthermore, for every t > 0 the limit ε =
`

Lobs
→ 0 yields

1
L3

obs

∫
Ωs

|us(x, t)−u(x, t)|2 dx≤C
`4

L2
obs

; (2.32)

∫
Ωs

Ae
(
us(x, t)−u(x, t)− `

3

∑
i, j=1

ei j(u(x, t))wi j(
x
`
)− `p0(x, t)w0(

x
`
)
)

: e
(
us(x, t)−u(x, t)− `p0(x, t)w0(

x
`
)

−`
3

∑
i, j=1

ei j(u(x, t))wi j(
x
`
)
)

dx+
∫

Ωel

Ae(us(x, t)−u(x, t)) : e(us(x, t)−u(x, t))
dx

Λ`2L2
obs
→ 0. (2.33)

We next establish Theorem 3, which is a dimensionless version of Theorem 1.

3 The dimensionless model

SYMBOL QUANTITY CHARACTERISTIC VALUE
Λ Young’s modulus 7e9 Pa
ρ f fluid density 1e3 kg/m3

ρs solid grain density 2.65e3 kg/m3

η fluid viscosity 1e−3 kg/m sec
` typical pore size 1e−5 m
d characteristic displacement d < `

Lobs observation length 5000 m
ε small parameter ε = `/Lobs = 0.2e−8
P characteristic fluid pressure P = Λε

E f pore fluid bulk modulus 1e6 Pa

Table 2: Data description
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3.1 Derivation of the dimensionless equations

Let Tc be the characteristic time, Lobs the observation length, Λ be the characteristic size of the elastic
moduli and P the characteristic fluid pressure. For the elastic displacement we suppose that its charac-
teristic size is d = ` and expect that it is not oscillatory at the leading order. In the porous medium we
expect the pressure to be the dominant part of the fluid stress and to balance the elastic contact force
at the interfaces. Consequently, the dimensionless small parameter is ε = `/Lobs = d/Lobs and (2.10)
implies that

P = Λε. (3.1)

With this choice and for simplicity, changing the variables and the unknowns by

t→ Tct, x→ Lobsx, Ωs→Ω
ε
s , Ω f →Ω

ε
f ,Ωel → LobsΩel ,Σ→ LΣ, A→ ΛA, Γ→ LΓ

ε ,

ΩL→ LobsΩ1, u→ `uε ,F→ F0F and p→ Ppε (3.2)

the system (2.4)-(2.6) becomes

κs
∂ 2uε

s

∂ t2 = div(Ae(uε
s ))+

ρsL2
obsF0

Λ`
F in Ω

ε
s ∪Ωel (3.3)

κ f
∂ 2uε

f

∂ t2 +∇pε =
η

ΛTc
∆

∂uε
f

∂ t
+

ρ f L2
obsF0

Λ`
F in Ω

ε
f , (3.4)

κco pε + div uε
f = 0 in Ω

ε
f , (3.5)

with
κco =

Λ

ρ f E f
, κ f =

ρ f

Λ

(Lobs

Tc

)2
, κs =

ρs

Λ

(Lobs

Tc

)2
. (3.6)

Next we choose the characteristic time by setting

Tc = η/(Λε
2) (Terzaghi’s time). (3.7)

We note that with such a choice of Tc the velocity of the solid structure deformation `/Tc equals the Darcy

velocity
`2P

ηLobs
=

`Λε2

η
. Hence the velocity in both fluid and solid are of the same order and we expect

to keep track of both of them after the upscaling process. We note that the choice of Tc is equivalent to

the choice of the dimensionless size parameter ε = `/Lobs =

√
η

ΛTc
.

In applications to large reservoirs we anticipate that Lobs of significant size and Tc not too short. With
our data from Table 3 we have Tc = 0.41 days. We note that Tc increases as L2

obs.
Therefore we then observe that the coefficients describing acceleration in dimensionless form satisfy

κ f =
ρ f

Λ

(Lobs

Tc

)2
= ρ f Λ(

`ε

η
)2 =

ρ f `
2

ηTc
= 0.28 e−8 = κ

0
f ε, κ

0
f = O(1);

κs =
ρs

Λ

(Lobs

Tc

)2
= ρsΛ(

`ε

η
)2 =

ρs`
2

ηTc
= 0.742 e−8 = κ

0
s ε, κ

0
s = O(1);

κco =
Λ

ρ f E f
= 7 = O(1).

(3.8)

Concerning the forcing terms, we have

ψ f = ρ f
F0L2

obs
`Λ

= O(1) = ψs = ρs
F0L2

obs
`Λ

. (3.9)
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Summarizing the above results we obtained the following dimensionless system of PDEs in Ω = Ω1 ∪
Σ∪Ωel :

εκ
0
f
∂ 2uε

∂ t2 +∇pε = ε
2
∆

∂uε

∂ t
+ψ f F in Ω

ε
f (3.10)

κco pε +∇ ·uε = 0 in Ω
ε
f (3.11)

εκ
0
s

∂ 2uε

∂ t2 = div(Ae(uε))+ψsF in Ω
ε
s ∪Ωel ∪ (Σ∩Ωε

s ) (3.12)

[uε ] = 0 on Γ
ε ∪ (Σ∩Ωε

f ) (3.13)

σ
f ,ε =−pε I +2ε

2e(
∂uε

∂ t
) in Ω

ε
f (3.14)

σ
s,ε = Ae(uε) in Ω

ε
s ∪Ωel ∪ (Σ∩Ωε

s ) (3.15)

(−pε I +2ε
2e(

∂uε

∂ t
))n = Ae(uε)n on Γ

ε ∪ (Σ∩Ωε
f ), (3.16)

uε |{t=0} = ∂tuε |{t=0} = 0 on ΩL∪Σ∪Ωel, (3.17)

uε = 0 on {x3 = L/Lobs}∪{x3 =−L/Lobs}, (3.18)

{uε , pε} is periodic in (x1,x2) with period
L

Lobs
. (3.19)

Let Ω = Ω1∪Σ∪Ωel . The functional space corresponding to (3.10)-(3.19) is

V =

{
ϕ ∈ H1(Ω)3 | ϕ is periodic in (x1,x2) with period

L
Lobs

and ϕ = 0 on {x3 = L/Lobs}∪{x3 =−L/Lobs}
}

(3.20)

The variational formulation which corresponds to (3.10)-(3.19) is given by:

Find uε ∈ H1(0,T ;V ) with
d2uε

dt2 ∈ L2(0,T ;L2(Ω)3) such that

d2

dt2

∫
Ω

εκ
εuε(t)ϕ dx+

d
dt

∫
Ωε

f

2ε
2e(uε(t)) : e(ϕ)dx

+
∫

Ωε
s∪Ωel∪(Σ∩Ωε

s )

Ae(uε(t)) : e(ϕ)dx+
∫

Ωε
f

divuε

κco
divϕ dx =

∫
Ω

ψ
εFϕ dx,

∀ϕ ∈ H1
per(Ω)3, (a.e.) in ]0,T [, (3.21)

where
κ

ε = κ
0
f χΩε

f
+κ

0
s χΩε

s
, ψ

ε = ψ f χΩε
f
+ψsχΩε

s
(3.22)

and with initial conditions (3.17).

4 Uniform a priori estimates and two-scale convergence result

4.1 A Priori Estimates for (3.21), (3.17)

For proving the a priori estimates, we need the following auxiliary results:

Lemma 1 (see e.g. [28]) Let ϕ ∈V (Ωε
f ) = {ϕ ∈H1(Ωε

f )
3 |ϕ = 0 on Γε | ϕ is periodic in (x1,x2) with

period L/Lobs }. Then we have

‖ϕ‖L2(Ωε
f )

3 ≤Cε‖∇xϕ‖L2(Ωε
f )

9 . (4.1)
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Next let ϕ ∈ H1(Ω1)
3 be periodic in (x1,x2) with period L/Lobs and such that ϕ = 0 on {x3 = a}∩Ωε

s

for some a ∈ [0,L/Lobs] . Then we have

‖ϕ‖L2({x3=a})3 ≤Cε
1/2‖e(ϕ)‖L2(Ω1)9 . (4.2)

Lemma 2 (see [27]) Under the hypothesis on the geometry from subsection 2.1, there is a linear exten-
sion operator Pε : H1(Ωε

s )
3→ H1(Ω1)

3 such that

Pεη = η , ∀η ∈R = {η ∈ R3 | η =

a1
a2
a3

+
 0 b1 b2
−b1 0 b3
−b2 −b3 0

x1
x2
x3

} (rigid body motions) (4.3)

||Pεv||H1(Ω1)3 ≤ c1||v||H1(Ωε
s )

3 , (4.4)

||Pεv||L2(Ω1)3 + ||e(Pεv)||L2(Ω1)9 ≤ c2

(
||v||L2(Ωε

s )
3 + ||e(v)||L2(Ωε

s )
9

)
(4.5)

||∇Pεv||L2(Ω1)9 ≤ c3||∇v||L2(Ωε
s )

9 , (4.6)

||e(Pεv)||L2(Ω1)9 ≤ c4||e(v)||L2(Ωε
s )

9 (4.7)

for every v ∈ H1(Ωε
s )

3, with the constants c1, . . . ,c4 independent on ε and v.

Proposition 2 Let ξ ∈C([0,T ],H1(Ω1))
3 such that

ξ |t=0 = 0, ξ is periodic in (x1,x2) with period L/Lobs and ξ = 0, for a.e. (t,x)∈ (0,T )×{x3 =L/Lobs}.

Then the following estimate holds for all t ∈ [0,T ], with a constant C independent of ε ,

||ξ (t)||L2(Ω1)3 ≤C
{
||e(ξ (t))||L2(Ωε

s )
9 + ε

∫ t

0
||e(∂τξ (τ)||L2(Ωε

f )
9dτ

}
. (4.8)

Remark 2 We prove (4.8) using a particular H1-extension. Nevertheless, we note that this extension
will not satisfy the boundary conditions at the outer boundary and at the interface. This makes the proof
non-trivial.

Proof. For convenience of the reader we provide a proof similar to one from [20]. For every t ∈ [0,T ],
let ξ̂ (t) = Pεξ be the H1-extension of ξ

∣∣
Ωε

s
to Ω1, as in Lemma 2. Let ω(t) = ξ̂ (t)− ξ (t) on Ωε

f and

0 elsewhere. Then for every t ∈ (0,T ), we have ω(t) ∈ H1(Ωε
f )

3 and ω(t) is periodic in (x1,x2). Due
to the periodicity, only possible rigid body motion is translation by a constant vector. Thus Poincare’s
inequality (4.1) together with the Second Korn Inequality imply that

||ω(t)||L2(Ωε
f )

3 ≤Cε||∇ω(t)||L2(Ωε
f )

9 ≤Cε||e(ω(t))||L2(Ωε
f )

9 , (4.9)

for all t ∈ (0,T ). Using (4.2), (4.9), and the properties of the extension ξ̂ we obtain

||ξ (t)||L2(Ωε
f )

3 ≤ ||ξ̂ (t)||L2(Ωε
f )

3 +Cε

{
||e(ξ̂ (t))||L2(Ωε

f )
9 + ||e(ξ (t))||L2(Ωε

f )
9

}
≤C|

∫
{x3=L/Lobs}

ξ̂ (t) dS|+C||e(ξ (t))||L2(Ωε
s )

9 +Cε||e(ξ (t))||L2(Ωε
f )

9

≤C||e(ξ (t))||L2(Ωε
s )

9 +Cε||e(ξ (t))||L2(Ωε
f )

9 (4.10)

Next, we remark that using ξ (0) = 0, we have

||e(ξ (t))||L2(Ωε
f )

9 ≤ ||
∫ t

0
e(∂τξ (τ))dτ||L2(Ωε

f )
9 ≤

∫ t

0
||e(∂τξ (τ))||L2(Ωε

f )
9dτ. (4.11)

Estimates (4.10), and (4.11) now imply (4.8), and the proposition is proved.
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Proposition 3 Let Ω̃ε
s = Ωε

s ∪Ωel ∪ (Σ∩Ωε
s ) and let us suppose F ∈ H2

0 (R+;L2(Ω)3) . Then we have

∥∥∂ 3uε

∂ t3

∥∥
L∞(0,T ;L2(Ω)3)

+
∥∥e
(

∂ 2uε

∂ t2

)∥∥
L∞(0,T ;L2(Ω̃ε

s )
9)
+
∥∥ div

∂ 3uε

∂ t3

∥∥
L∞(0,T ;L2(Ωε

f )
9)
≤C, (4.12)

∥∥e
(

∂ 3uε

∂ t3

)∥∥
L2(0,T ;L2(Ωε

f )
9)
≤ C

ε
. (4.13)

Proof. We take ϕ = ∂tuε as test function in (3.21). This yields

1
2

d
dt

(∫
Ω

εκ
ε |∂tuε(t)|2 dx+

∫
Ω̃ε

s

Ae(uε(t)) : e(uε(t))dx+
∫

Ωε
f

| div uε |2

κco
dx
)
+

∫
Ωε

f

2ε
2|e(∂tuε(t))|2 dx =

∫
Ω

ψ
εF∂tuε(t)dx (4.14)

Let ûε be the H1-extension of uε as in [11], [1] , [21] and [27]. We apply Proposition 2 to obtain

|
∫ t

0

∫
Ω

ψ
εF∂τuε(τ)dxdτ| ≤ |

∫
Ω

ψ
εFuε(t)dx|+ |

∫ t

0

∫
Ω

ψ
ε
∂τFuε(τ)dxdτ|

≤C
(∥∥e(uε(t))

∥∥
L2(Ω̃ε

s )
9 + ε

∫ t

0

∥∥e
(

∂uε

∂τ

)∥∥
L2(Ωε

f )
9 dxdτ +C1

∫ t

0

∥∥e(uε(t))
∥∥

L2(Ω̃ε
s )

9 dxdτ

)
. (4.15)

The equality (4.15) implies the estimate

∥∥e(uε)
∥∥

L∞(0,T ;L2(Ω̃ε
s )

9)
+
∥∥ div

∂uε

∂ t

∥∥
L∞(0,T ;L2(Ωε

f )
9)
+ ε
∥∥e
(

∂uε

∂ t

)∥∥
L2(0,T ;L2(Ωε

f )
9)
≤C. (4.16)

Next let ω(t) = ûε(t)−uε(t) on Ωε
f and 0 elsewhere. Then for every t ∈ (0,T ), we have ω(t)∈H1(Ωε

f )
3

and ω(t) is periodic in (x1,x2). Due to the periodicity, only possible rigid body motion is translation by
a constant vector. Thus Poincare’s inequality (4.1) together with the Second Korn Inequality imply

||ω(t)||L2(Ωε
f )

3 ≤Cε||∇ω(t)||L2(Ωε
f )

9 ≤Cε||e(ω(t))||L2(Ωε
f )

9 , (4.17)

for all t ∈ (0,T ). The estimate (4.17) gives

∥∥∂uε

∂ t

∥∥
L∞(0,T ;L2(Ω)3)

≤C. (4.18)

It remains to consider the time derivatives of one order higher.
At t = 0 we have

εκ
0
f
∂ 2uε

∂ t2 |t=0 = ε
2
∆

∂uε

∂ t
|t=0 +ψ f F|t=0−

1
κco

∇ div uε |t=0 = 0 in Ω
ε
f ,

εκ
0
s

∂ 2uε

∂ t2 |t=0 = div(Ae(uε))|t=0 +ψsF|t=0 = 0 in Ω̃ε
s ,

(4.19)

implying that
∂ 2uε

∂ t2 |t=0 = 0 in Ω.

After taking a derivative with respect to time in (3.21) and repeating the above calculations with F
replaced by ∂tF, we obtain the estimate (4.13) for the intermediate time derivatives. After iterating once
more the procedure we get (4.13).

15



4.2 Strong and two-scale convergence for the solution to the ε-problem

The fluid displacement corresponding to the velocity field is oscillatory and the appropriate convergence
is the two-scale convergence, developed in [3] and [25]. We recall its definition and basic properties.

Definition 1 A bounded sequence {wε} ⊂ L2(Ω) is said to two-scale converge to a limit w∈ L2(Ω×Y )
if for any σ ∈C∞(Ω;C∞

per (Y )) (”per” denotes 1-periodicity) one has

lim
ε→0

∫
Ω

wε(x)σ(x,
x
ε
) dx =

∫
Ω

∫
Y

w(x,y)σ(x,y) dy dx.

Next, we give various useful properties of two-scale convergence.

Proposition 4 ([3]) 1. From each bounded sequence {wε} in L2(Ω) one can extract a subsequence
which two-scale converges to a limit w ∈ L2(Ω×Y ).

2. Let wε and ε∇wε be bounded sequences in L2(Ω). Then there exists a function w∈L2
(
Ω;H1

per(Y )
)

and a subsequence such that both wε and ε∇wε two-scale converge to w and ∇yw, respectively.

3. Let wε two-scale converge to w∈ L2(Ω×Y ). Then wε converges weakly in L2(Ω) to
∫

Y w(x,y)dy.

4. Let λ ∈ L∞
per(Y ),λ ε = λ (x/ε) and let a sequence {wε} ⊂ L2(Ω) two-scale converge to a limit

w ∈ L2(Ω×Y ). Then λ εwε two-scale converges to the limit λw.

Using the a priori estimates and the notion of two-scale convergence, we are able to prove our main
convergence result for the solutions of the system (3.21). For this, we need to refine the basic properties
of the 2-scale convergence.

If we have two different estimates for gradients in the solid and in the fluid part, then we need the
corresponding two-scale compactness result. It reads

Proposition 5 Let {wε} ⊂ H1(Ω1)
3 be a sequence such that

||wε ||L2(Ω1)3 ≤C, ||∇wε ||L2(Ωε
s )

9 ≤C, || div wε ||L2(Ωε
f )
≤C and ||∇wε ||L2(Ωε

f )
9 ≤

C
ε
.

Then there exist functions w∈H1(Ω1)
3, v∈ L2(Ω1;H1

per (Y f )
3), v= 0 on Ω1×Y s, divyv= 0 in Ω1×Y f ,

divx
∫
Y f

v dy ∈ L2(Ω1) and u1 ∈ L2(Ω1;H1
per (Ys)

3/R) such that, up to a subsequence,

wε → w(x)+χY f (y)v(x,y) in the 2-scale sense, (4.20)

χΩε
s
∇wε → χYs(y)[∇xw(x)+∇yu1(x,y)] in the 2-scale sense, (4.21)

εχΩε
f
∇wε → χY f (y)∇yv(x,y) in the 2-scale sense. (4.22)

If in addition for every ϕ ∈C∞(Ω1) and every ζ ∈ H1
per(Y )3, such that supp ζ ⊂ Y f , we have

|
∫

Ω1

div wε
ϕ(x)div yζ (

x
ε
) dx| ≤Cε, (4.23)

then the following convergence hold:

χΩε
f
div wε → χY f (y)

(
div xw(x)+

1
|Y f |

div x

∫
Y f

v dy− 1
|Y f |

∫
Ys

div y u1(x,y) dy
)

in the 2-scale sense. (4.24)

Finally, if wε |{x3=L/Lobs} = 0, then w|{x3=L/Lobs} = 0 and
∫
Y f

v|{x3=L/Lobs} dy e3 = 0.
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Proof. Most of the assertions are known and for proof we refer to [3] (Lemma 4.7),[13] and [12]. It
remains to establish that divx

∫
Y f

v dy ∈ L2(Ω1), the convergence (4.24) and to prove the last assertion.
We start with the former.

We know that div wε has a 2-scale limit G ∈ L2(Ω1). Next we have

G|Ys = div xw(x)+div yu1(x,y) and div xwε ⇀
∫

Y
G dy = div xw(x)+div x

∫
Y f

v dy

and we conclude that divx
∫
Y f

v dy ∈ L2(Ω1).
Next using the estimate (4.23) we observe that G does not depend on y on Y f and

G|Y f = div xw(x)− 1
|Y f |

∫
Ys

div yu1(x,y) dy+
1
|Y f |

div x

∫
Y f

v(x,y) dy,

thus establishing (4.24).

Now let us prove the last assertion. We extend wε |Ωε
s

to Ωε
f using the operator Pε from Lemma 2.

Pεwε = 0 on {x3 =L/Lobs}∩Ωε
s and by the inequality (4.2) from Lemma 1 we have that ||Pεwε ||L2({x3=L/Lobs})3 ≤√

ε . Since Pεwε→w weakly in H1(Ω1), we conclude that w= 0 on {x3 =L/Lobs}. Finally wε |{x3=L/Lobs}e
3

is uniformly bounded in H−1/2({x3 = L/Lobs}) and we obtain
∫
Y f

v|{x3=L/Lobs} dy e3 = 0.

In Theorem 2 the reader is referred to Figures 3 and 4 and the geometry and variables are rescaled in
(3.2).

Theorem 2 Let uε be the variational solution of (3.21), let ψ̄ = |Y f |ψ f + |Ys|ψs and let −κco pε = χΩε
f

div uε . Then there exist limits (u0,u1,v, p0,u0
el) ∈ H2(0,T ;H1(Ω1)

3)×H2(0,T ;L2(Ω1;H1
per (Ys)

3/R))
×H3(0,T ;L2(Ω1; H1

per (Y f )
3))×H3(0,T ;L2(Ω1))×H1(0,T ;H1(Ωel)

3), which are periodic in (x1,x2)
with period L/Lobs, such that for all t ∈ (0,T ) we have

v = 0 on Ω1×Y s, div yv = 0 in Ω1×Y f , div x

∫
Y f

v dy ∈ L2(Ω1) (4.25)

and the convergence of the following holds

(uε , ∂tuε)→ (u0 +χY f (y)v, ∂tu0 +χY f (y)∂tv) in the 2-scale sense in Ω1; (4.26)

χΩε
s
(∇uε , ∇∂tuε)→ χYs(y)(∇xu0 +∇yu1, ∇x∂tu0 +∇y∂tu1) in the 2-scale sense in Ω1; (4.27)

εχΩε
f
∇∂tuε → χY f (y)∇y∂tv(x,y, t) in the 2-scale sense in Ω1; (4.28)

χΩε
f
div uε =−κco pε → χY f (y)

(
div xu0(x, t)+

1
|Y f |

div x

∫
Y f

v(x,y, t) dy− 1
|Y f |

∫
Ys

div y u1(x,y, t) dy
)

=−χY f (y)κco p0(x, t) in the 2-scale sense in Ω1; (4.29)

χΩε
f
∂t pε → χY f (y)∂t p0(x, t) in the 2-scale sense in Ω1; (4.30)

χΩel u
ε → u0

el(x, t) weakly in H2((0,T )×Ωel)
3. (4.31)

Furthermore, (u0,u1,v, p0,u0
el) satisfies the system

κco|Y f |∂t p0(x, t)+ |Y f | divxu0(x, t)+
∫

Y f

∂tv(x,y, t) dy−
∫

Ys

div y∂tu1(x,y, t) dy = 0

in Ω1× (0,T ) (4.32)
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∫
Ωel

Aex(u0
el) : ex(ϕ) dx+

∫
Ω1

∫
Ys

A(ex(u0)+ ey(u1)) : ex(ϕ) dydx−|Y f |
∫

Ω1

p0 divxϕ dx =

∫
Ω1

ψ̄Fϕ dx+
∫

Ωel

ψsFϕ dx , ∀ϕ ∈V ; (4.33)∫
Ω1

∫
Ys

A(ex(u0)+ ey(u1)) : ey(ψ) dydx−
∫

Ω1

∫
Y f

p0 divyψ dydx = 0, ∀ψ ∈ L2(Ω1,H1
per (Y ))3; (4.34)

2
∫

Ω1

∫
Y f

ey

(
∂v
∂ t

)
: ey(ζ ) dydx−

∫
Ω1

∫
Y f

p0 divxζ dydx =
∫

Ω1

∫
Y f

ψ f Fζ dydx, ∀ζ ∈ L2(Ω1,H1
per (Y ))3,

such that ζ = 0 on Ω1× Ȳs, divx

∫
Y f

ζ dy ∈ L2(Ω1),
∫

Y f

ζ dy · e3|Σ∪{x3=L/Lobs} = 0

and divyζ = 0 on Ω1×Y f , (4.35)

with the interface, boundary and initial conditions

u0 = u0
el a.e on Σ× (0,T ); u0 = 0 on {x3 = L/Lobs}× (0,T ); u0

el = 0 on {x3 =−L/Lobs}× (0,T );
(4.36)∫

Y f

v dy · e3 = 0 on (Σ∪{x3 = L/Lobs})× (0,T ); v|{t=0} = 0, p0|{t=0} = 0. (4.37)

Thus (u0,u1,v, p0,u0
el) is the unique solution of the two-scale homogenized problem (4.33)-(4.37), with

periodic boundary conditions in (x1,x2); Finally the whole sequence converges.

Remark 3 As well-known in the homogenization theory, the results do not depend on the outer boundary
conditions. The periodicity in (x1,x2) was chosen for the sake of simplicity.

Proof. The convergences (4.26)-(4.31), respectively, are direct consequences of the a priori estimates
(4.12)-(4.13) from Proposition 3 and Proposition 5 .

Passing to the limit ε→ 0 in the variational formulation (3.21) follows the proof of analogous result in
[12]. Here we assume that all test functions are periodic in (x1,x2) with period L/Lobs and ϕ ∈C∞(Ω̄)3,
ϕ|{x3=± L

Lobs
} = 0, ψ ∈ C∞

0 (Ω1;C∞
per (Y ))3 and ζ ∈ C∞

0 (Ω1;C∞
per (Y ))3, where suppζ ⊂ Ω1 ×Y f and

divyζ = 0 in Ω1×Y f .
Then we have for every t ∈ (0,T )

ε
d2

dt2

∫
Ω1

κ
εuε

(
ϕ(x)+ζ (x,

x
ε
)+ εψ(x,

x
ε
)
)

dx→ 0; (4.38)

ε

∫
Ω

2χΩε
f
e
(

∂uε

∂ t

)
: e
(

εϕ + ε
2
ψ(x,

x
ε
)+ εζ (x,

x
ε
)
)

dx →
∫

Ω1

∫
Y f

2ey

(
∂v
∂ t

)
: ey (ζ ) dydx; (4.39)

∫
Ω

χ
Ω̃ε

s
Ae(uε) : e

(
ϕ + εψ

(
x,

x
ε

)
+ζ (x,

x
ε
)
)

dx →
∫

Ω1

∫
Ys

A
(
ex(u0)+

ey(u1)
)

: (ex(ϕ)+ ey(ψ)) dydx+
∫

Ωel

Aex(u0
el) : ex(ϕ) dx; (4.40)∫

Ω1

χΩε
f

div uε

κco
div(ϕ + εψ(x,

x
ε
)+ζ (x,

x
ε
))→−

∫
Ω

∫
Y

p0( divxϕ + divyψ + divxζ ) dydx (4.41)

∫
Ω

ψ
εF
(

ϕ + εψ

(
x,

x
ε

)
+ζ

(
x,

x
ε

))
→
∫
Ω

ψ̄Fϕ dx+
∫
Ω

∫
Y f

ψ f Fζ dydx, (4.42)

Hence, the variational formulation (3.21), in the limit leads to the equations (4.32)-(4.35), where the test
functions ϕ(x), εψ

(
x, x

ε

)
or ζ

(
x, x

ε

)
are used respectively.
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In order to get the first equality in (4.36), we extend uε |Ωel to Ω1 using the H1-extension from [27],
satisfying the properties from Lemma 2. Let us denote the extension ûε

el . Then uε − ûε
el = 0 on Σ.

We extend (uε − ûε
el)|Ωε

s
to Ωε

f again using the operator Pε from Lemma 2. Here Pε(uε − ûε
el)(t) = 0

on Σ∩Ωε
s and by the inequality (4.2) from Lemma 1 we have ||Pε(uε − ûε

el)(t)||L2(Σ)3 ≤
√

ε . Since
Pεuε(t) ⇀ u0(t) weakly in H1(Ω1) and ûε

el(t) ⇀ u0
el(t) weakly in H1(Ωel), we conclude that u0(t) =

u0
el(t) on Σ. Finally [uε(t)]|Σe3 is uniformly bounded in H−1/2(Σ) and we get

∫
Y f

v(t)|Σ dy e3 = 0. The
traces on the boundaries {x3 = ±L/Lobs} are calculated analogously to the above calculation and as in
the proof of Proposition 3.

Concerning the initial values, we have pε |t=0 = 0 and pε is uniformly bounded in H3(0,T ;L2(Ω1)).
Hence p0|t=0 = 0. Using (4.33) and (4.34), we conclude that u0 = 0 = u1 and u0

el = 0. Since χΩε
f
uε |t=0 =

0→ χY f (y)(u0|t=0 +v|t=0) = 0, we obtain that v|t=0 = 0, which proves (4.37).

In order to prove uniqueness, it is enough to study the problem (4.32)-(4.37) with F = 0. Let u(t) =
χΩ1u0(t)+ χΩel u0

el(t) ∈ H1(Ω)3. Now we take ϕ = u(t), ψ = u1(t) and ζ = v(t). We add the resulting
equations (4.33) and (4.34), apply (4.32) and obtain∫

Ωel

Aex(u0
el(t)) : ex(u0

el(t)) dx+
∫

Ω1

∫
Ys

A(ex(u0(t))+ ey(u1(t))) : (ex(u0(t))+ ey(u1(t))) dydx+

2
∫

Ω1

∫
Y f

ey

(
∂v(t)

∂ t

)
: ey (v(t)) dydx+ |Y f |κco

∫
Ω1

|p0|2 dx = 0. (4.43)

Since v(0) = 0, we get v(t) = 0 and p0(t) = 0. Next ex(u0
el) = 0 implies u0

el = 0 and ex(u0) = 0 implies
u0 = 0. In the last step, ey(u1) = 0 implies that u1 is a constant vector. With the uniqueness proof we
have achieved the proof of the Theorem.

Remark 4 Passing from the pore level fluid/structure problem to the macroscopic quasi-static Biot
system, involves appearance of an initial time layer. Initial conditions for the displacement u and for
the velocity ∂tu are lost. We get the globally defined initial condition for the pressure. For simplicity,
we start with zero initial conditions and highly compatible forcing term at t = 0. These assumptions
guarantee that the initial time layer does not appear.

Corollary 1 Let (u0,u1,v, p0,u0
el) be the unique solution of the two-scale homogenized problem (4.33)-

(4.37), with periodic boundary conditions in (x1,x2). Then it satisfies the following differential system

κco|Y f |∂t p0(x, t)+ |Y f | divxu0(x, t)+
∫

Y f

∂tv(x,y, t) dy−
∫

Ys

div y∂tu1(x,y, t) dy = 0

in Ω1× (0,T ) (4.44)

− div x

(∫
Ys

A(ex(u0(t))+ ey(u1(t))) dy
)
+ |Y f |∇x p0 = ψ̄F(t) in Ω1× (0,T ) (4.45)

− div x

(
A(ex(u0

el(t))
)
= ψsF(t) in Ωel× (0,T ) (4.46)

− div y

(
A(ex(u0(t))+ ey(u1(t))

)
= 0 in ΩL×Ys× (0,T ) (4.47)

A(ex(u0(t))+ ey(u1(t))n+ p0(t)n = 0 on ΩL× (∂Ys \∂Y )× (0,T ) (4.48)(∫
Ys

A(ex(u0(t))+ ey(u1(t))) dy−|Y f |p0I
)

e3 = A(ex(u0
el(t))e

3 on Σ× (0,T ) (4.49)

u0(t) = u0
el(t) on Σ× (0,T ) and u0(t)|{x3=±L/Lobs} = 0 (4.50)
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−∆y
∂v(t)

∂ t
+∇yπ = ψ f F(t)−∇x p0(t) in ΩL×Y f × (0,T ) (4.51)

divy
∂v(t)

∂ t
= 0 in ΩL×Y f × (0,T ) and

∂v(t)
∂ t

= 0 on ΩL× (∂Y f \∂Y )× (0,T ) (4.52)∫
Y f

v(t) dy · e3 = 0 on (Σ∪{x3 = L/Lobs})× (0,T ) (4.53)

v|t=0 = 0 in ΩL×Y f and p0|t=0 = 0 in Ω1. (4.54)

5 Derivation of the effective equations for {u, p0}

The system (4.33)-(4.37) is too complicated to be used directly and it is important to separate the fast and
slow scales, if possible. Scale separation for the dynamical diphasic system in Laplace’s time domain
was treated in [28]. We proceed as in [12], that is we seek for {u1,v} in the particular form, that we will
be precisely defined below. Since our system is quasi-static, the decomposition calculations are simpler
than in the dynamic case.

For the decomposition we need the following auxiliary problems:
For i, j = 1, . . . ,3, find 1−periodic vector valued function wi j ∈H1(Ys)

3,
∫
Ys

wi j(y)dy = 0, satisfying


divy

{
A
(

ei⊗ e j + e j⊗ ei

2
+ ey(wi j)

)}
= 0 in Ys,

A(
ei⊗ e j + e j⊗ ei

2
+ ey(wi j))n = 0 on ∂Ys \∂Y ,

(5.1)

and find 1−periodic vector valued function w0 ∈ H1(Ys)
3,
∫
Ys

w0(y)dy = 0, satisfying

− divy
{

Aey(w0)
}
= 0 in Ys,

Aey(w0)n =−n on ∂Ys \∂Y .
(5.2)

Due to the periodicity, the problems (5.1) and (5.2) have a unique solution with regularity depending
only on the smoothness of the geometry. With the assumptions made, wi j, w0 are in H2(Ys)

3.
Thus, we decompose u1 as

u1(x,y, t) = p0(x, t)w0(y)+∑
i, j

(
ex(u0(x, t))

)
i j wi j(y). (5.3)

Applying (5.3) we see that (4.47) and (4.48) are always satisfied.
The cell problem corresponding to v is

−∆qi +∇π
i = ei in Y f ,

divyqi = 0 in Y f ,

qi|∂Y f \∂Y = 0, {qi,π i} is 1-periodic.

(5.4)

∂tv has the representation in terms of the {qi,π i}:

∂v
∂ t

=
3

∑
j=1

q j(y)(ψ f Fj(x, t)−
∂ p0(x, t)

∂x j
). (5.5)

Applying (5.5) into (4.51)-(4.53), we see that it is exactly satisfied.
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The cell problems define the effective coefficients:

AH
kli j :=

∫
Ys

A
(

ei⊗ e j + e j⊗ ei

2
+ ey(wi j)

)
dy


kl

(the dimensionless Gassman tensor), (5.6)

BH :=
∫
Ys

Aey(w0) dy, (5.7)

C H
i j :=

∫
Ys

divywi j(y)dy, (5.8)

Ki j :=
∫
Y f

q j
i (y)dy (the permeability tensor). (5.9)

Proposition 6 The tensors AH , BH and K, defined by (5.6), (5.7) and (5.9), respectively, are positive
definite and symmetric. Furthermore, C H = BH and

∫
Ys

div yw0(y) dy < 0.

Proof. For the properties of the tensors AH , BH and K we refer to the book of Sanchez-Palencia [28],
pages 129-190. Concerning the last assertion, it is easy to see that

BH
i j =

∫
Ys

(Aey(w0)(y))i j dy =
1
2

∫
Ys

Aey(w0)(y) : (ei⊗ e j + e j⊗ ei) dy

=−
∫

Ys

Aey(w0)(y) : ey(wi j) dy =
∫

Ys

div ywi j(y) dy = C H
i j . (5.10)

Finally,

M0 =−
∫

Ys

div yw0(y) dy =
∫

Ys

Aey(w0) : ey(w0)> 0. (5.11)

Now we use that

div x{(|Y f |I−BH)∂tu}= (|Y f |I−BH) : ex(∂tu), (5.12)

and obtain the initial-boundary problem for {u, p0}:

− div x{AHex(u)}+ div x{(|Y f |I−BH)p0}= ψ̄F(x, t) in Ω1× (0,T ), (5.13)

− div x{Aex(u)}= ψsF(x, t) in Ωel× (0,T ), (5.14)

[u]Σ = 0 and
(
AHex(u)+(|Y f |I−BH)p0I

)
e3|Σ = Aex(u)e3|Σ for all t ∈ (0,T ), (5.15)

M∂t p0 + div x{K(ψ f F−∇x p0)+(|Y f |I−BH)∂tu}= 0 in Ω1× (0,T ), (5.16)

K(ψ f F−∇x p0) · e3 = 0 on (Σ∪{x3 = L/Lobs})× (0,T ), (5.17)

p0|t=0 = 0 on Ω1; u = 0 on {x3 =±L/Lobs}× (0,T ), (5.18)

{u, p0} is periodic in (x1,x2) with period L/Lobs. (5.19)

In (5.16), M = |Y f |κco +M0 = |Y f |κco−
∫
Ys

div yw0(y) dy > 0.

Proposition 7 Let V1 = {ϕ ∈ H1(Ω1) | ϕ is periodic in (x1,x2) with period L/Lobs}. The homogenized
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equations given by (5.13)-(5.19) or in equivalent variational form

Find {u, p0} ∈ H2(0,T ;V )×H2(0,T ;V1) such that∫
Ω1

(
AHex(u)− (|Y f |I−BH)p0I

)
: ex(ϕ) dx+

∫
Ωel

Aex(u) : ex(ϕ) dx =∫
Ω1

ψ̄Fϕ dx+
∫

Ωel

ψsFϕ dx, ϕ ∈V ; (5.20)

∂

∂ t

∫
Ω1

Mp0
ξ dx+

∫
Ω1

(|Y f |I−BH)ξ : ex(
∂u
∂ t

) dx−
∫

Ω1

K(ψ f F−∇x p0)∇ξ dx = 0, ∀ξ ∈V1 (5.21)

p0|t=0 = 0 on Ω1. (5.22)

System (5.20) through (5.22) has a unique solution, which defines through (5.3)-(5.5) the unique solution
to the two-scale homogenized problem (4.33)-(4.37).

Proof. See the proof of Proposition 1.

6 Strong convergence and correctors

Besides the standard convergences of the microscopic variables to the effective ones, we also prove the
following convergences of the energies.

Proposition 8 We have the following convergences in energy,

lim
ε→0

ε
2
∫ t

0

∫
Ωε

f

|∇∂tuε |2 dxdτ =
∫ t

0

∫
Ω1×Y f

|∂t∇yv(x,y, t)|2 dydxdτ, (6.1)

lim
ε→0

(∫
Ωε

s

Ae(uε(t)) : e(uε(t)) dx+
∫

Ωel

Ae(uε(t)) : e(uε(t)) dx
)
=

∫
Ω1

AHe(u(t)) : e(u(t)) dx+
∫

Ωel

Ae(u(t)) : e(u(t)) dx−
∫
Ys

div yw0(y) dy
2

∫
Ω1

(p0(t))2 dx; (6.2)

lim
ε→0

∫
Ωε

f

| div uε(t)|2 dx = κ
2
co|Y f |

∫
Ω1

(p0(t))2 dx (6.3)

Proof. The proof is standard (see Theorem 2.6 in [3]). We start from the energy equality corresponding
to the variational equation (3.21):

ε

2

∫
Ω

κ
ε |∂tuε(t)|2 dx+ ε

2
∫ t

0

∫
Ωε

f

|∇∂tuε |2 dxdτ +
1
2

∫
Ωε

s

Ae(uε(t)) : e(uε(t)) dx

+
1

2κco

∫
Ωε

f

| div uε(t)|2 dx+
1
2

∫
Ωel

Ae(uε(t)) : e(uε(t)) dx =∫ t

0

∫
Ω1

ψ
εF(τ)∂tuε(τ) dxdτ +

∫ t

0

∫
Ωel

ψsF(τ)∂tuε(τ) dxdτ. (6.4)

For the homogenized variational problem (5.20)-(5.21) the energy equality reads

1
2

∫
Ω1

AHe(u(t)) : e(u(t)) dx+
1
2

∫
Ωel

Ae(u(t)) : e(u(t)) dx+
κco|Y f |−

∫
Ys

div yw0(y) dy
2

∫
Ω1

(p0(t))2 dx+∫ t

0

∫
Ω1×Y f

|∂t∇yv(x,y, t)|2 dydxdτ =
∫ t

0

∫
Ω1

ψ̄F(t)∂tu(τ) dxdτ+∫ t

0

∫
Ωel

ψsF(t)∂tu(τ) dxdτ +
∫ t

0

∫
Ω1

ψ f F(t)(
∫

Y f

∂tv(τ) dy) dxdτ. (6.5)
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We note that ∫
Ω1×Y f

|∂t∇yv(x,y, t)|2 dydx =
3

∑
i, j=1

∫
Ω1

Ki j(ψ f Fi−
∂ p0

∂xi
)(ψ f Fj−

∂ p0

∂x j
) dx.

In (6.4) we observe the convergence of the right hand side to the right hand side of (6.5). Next we use
the lower semicontinuity of the left hand side with respect to the two-scale convergence and the equality
(6.5) to conclude (6.1)-(6.3).

Theorem 3 The following strong two-scale convergences hold

lim
ε→0

∫ t

0

∫
Ωε

f

∣∣∣∣∣ε∂t∇uε(x,τ)−
3

∑
j=1

∇yq j(
x
ε
)(Fj(x,τ)ψ f −

∂ p0(x,τ)
∂x j

)

∣∣∣∣∣
2

dxdτ = 0; (6.6)

lim
ε→0

∫ t

0

∫
Ωε

f

∣∣∣∣∣∂tuε(x,τ)−∂tu(x,τ)−
3

∑
j=1

q j(
x
ε
)(Fj(x,τ)ψ f −

∂ p0(x,τ)
∂x j

)

∣∣∣∣∣
2

dxdτ = 0; (6.7)

lim
ε→0

∫ t

0

∫
Ωε

f

∣∣ div uε(x,τ)+κco p0(x,τ)
∣∣2 dxdτ = 0; (6.8)

and

lim
ε→0

(∫
Ωε

s

∣∣∣∣∣A1/2e
(
uε(x, t)−u(x, t)− ε

3

∑
i, j=1

ei j(u(x, t))wi j(
x
ε
)− ε p0(x, t)w0(

x
ε
)
)∣∣∣∣∣

2

dx+

∫
Ωel

∣∣∣A1/2e(uε(x, t)−u(x, t))
∣∣∣2 dx

)
= 0. (6.9)

Proof. We first remark that the regularity of the solutions of the cell problems (5.1), (5.2) and (5.4)
implies that the functions w0(x/ε), wi j(x/ε), q j(x/ε) and vε(x, t) = v(x,x/ε, t) are measurable and well
defined. We have∫ t

0

∫
Ωε

f

ε
2|∇∂tvε −∇∂tuε |2 dxdτ =

∫ t

0

∫
Ωε

f

|[∇y∂tv](x,
x
ε
,τ)|2 dxdτ +

∫ t

0

∫
Ωε

ε
2|∇∂tuε |2 dxdτ

−2
∫

Ωε
f

ε[∇y∂tv](x,
x
ε
,τ) ·∇∂tuε(x,τ)dxdτ +O(ε). (6.10)

Using Proposition 8 for the second term in the right hand side of (6.10) and passing to the two-scale limit
in the third term in the right hand side of (6.10), we deduce (6.6).

Using the scaled Poincaré inequality (4.1) in Ωε
f (see Lemma 1) yields (6.7).

Proof of (6.8) goes along the same lines and is based on (6.3).
Finally, even if there is an effective coefficients jump on Σ, u is H2 in space in Ω1. Hence the proof

of (6.9) is analogous and based on (6.2).
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[1] ACERBI, E., CHIADÒ PIAT, V., DAL MASO, G., PERCIVALE D. An extension theorem from con-
nected sets, and homogenization in general periodic domains. Nonlinear Anal., TMA, 18 481–496
(1992)

[2] G. ALLAIRE. Homogenization of the Stokes flow in a connected porous medium, Asympt. Anal. 2
(1989), 203-222.

23



[3] G. ALLAIRE. Homogenization and two-scale convergence, SIAM J. Math. Anal. 23.6 (1992), 1482-
1518.

[4] J.-L. AURIAULT. Poroelastic media, Homogenization and Porous Media, editor U. Hornung, Inter-
disciplinary Applied Mathematics, Springer, Berlin, (1997), 163-182.

[5] S. BADIA, A. QUAINI, A. QUARTERONI, Coupling Biot and Navier-Stokes equations for modelling
fluid-poroelastic media interaction. J. Comput. Phys. 228 (2009), no. 21, 7986–8014,

[6] M.A. BIOT. Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Lower fre-
quency range, and II. Higher frequency range, J. Acoust Soc. Am. 28(2) (1956), 168-178 and 179-
191.

[7] M.A. BIOT. Generalized theory of acoustic propagation in porous dissipative media, Jour. Acoustic
Soc. Amer. 34 (1962), 1254-1264.

[8] M.A. BIOT. Mechanics of deformation and acoustic propagation in porous media, Jour. Applied
Physics 33 (1962), 1482-1498.

[9] R. BURRIDGE AND J.B. KELLER. Poroelasticity equations derived from microstructure, Jour.
Acoustic Soc. Amer. 70 (1981), 1140-1146.

[10] F. CASU, S. BUCKLEY, M. MANZO, A. PEPE AND R. LANARI, Large scale InSAR deformation
time series: Phoenix and Houston Case Studies, Geoscience and Remote Sensing Symp., 2005,
IGARSS’05, Proceedings, 2005 (IEEE Int., 2005), pp. 5240–5243.

[11] D. CIORANESCU, J. SAINT JEAN PAULIN, Homogenization in open sets with holes, J. Math. Anal.
Appl. 71 (1979), no. 2, 590–607.

[12] T. CLOPEAU, J.L. FERRIN, R.P. GILBERT, A. MIKELIĆ Homogenizing the acoustic properties of
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