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Abstract: In this paper we study a reactive flow through a capillary tube. The

solute particles are transported and diffused by the fluid. At the tube lateral boundary

they undergo an adsorption-desorption process. The transport and reaction parameters

are such that we have large, dominant Peclet and Damkohler numbers with respect to the

ratio of characteristic transversal and longitudinal lengths (the small parameter ε). Using

the anisotropic singular perturbation technique we derive the effective equations. In the

absence of the chemical reactions they coincide with Taylor’s dispersion model. The result

is compared with the turbulence closure modeling and with the center manifold approach.

Furthermore, we present a numerical justification of the model by a direct simulation.
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1 Introduction

In many processes involving reactive flows different phenomena are present
at different order of magnitude. It is fairly common that transport domi-
nates diffusion and that chemical reaction happen at different time scales
than convection/diffusion. Such processes are of importance in chemical
engineering, pollution studies etc.

In bringing the models to a non-dimensional form, the presence of dom-
inant Peclet and Damkohler numbers in reactive flows is observed. The
problems of interest arise in complex geometries like porous media or sys-
tems of capillary tubes.

Taylor’s dispersion is one of the most well-known examples of the role
of transport in dispersing a flow carrying a dissolved solute. The simplest
setting for observing it is the injection of a solute into a slit channel. The
solute is transported by Poiseuille’s flow. In fact this problem could be
studied in three distinct regimes: a) diffusion-dominated mixing, b) Taylor
dispersion-mediated mixing and c) chaotic advection.

In the first flow regime, the velocity is small and Peclet’s number is of
order one or smaller. Molecular diffusion plays the dominant role in solute
dispersion. This case is well-understood even for reactive flows (see e.g. [17],
[18], [19], [20], [21], [23], [24], [27] and references therein).

If the flow rate is increased so that Peclet’s number Pe>> 1, then there
is a time scale at which transversal molecular diffusion smears the contact
discontinuity into a plug. In [37], Taylor found an effective long-time axial
diffusivity, proportional to the square of the transversal Peclet number and
occurring in addition to the molecular diffusivity. After this pioneering
work of Taylor, a vast literature on the subject developed, with over 2000
citations to date. The most notable references are the paper [3] by Aris,
where Taylor’s intuitive approach was explained through moments expansion
and the lecture notes [11], where a probabilistic justification of Taylor’s
dispersion is given. In addition to these results, addressing the tube flow
with a dominant Peclet number and in the absence of chemical reactions,
there is a huge literature on mechanical dispersion for flows through porous
media. Since this is not the scope of our paper, we refer to the book [8] for
more details about the modeling. For the derivation of Taylor’s dispersion
in porous media using formal two-scale expansions, we refer to [4] and the
references therein.

In the third regime, we observe the turbulent mixing.
Our goal is the study of reactive flows through slit channels in the

regime of Taylor dispersion-mediated mixing and in this paper we will de-
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velop new effective models using the technique of anisotropic singular per-
turbations.

As already said, Taylor’s effective model contains a contribution in the
effective diffusion coefficient, which is proportional to the square of the
transversal Peclet number. Frequently this term is more important than
the original molecular diffusion. After his work, it is called Taylor’s dis-
persion coefficient and it is generally accepted and used in chemical en-
gineering numerical simulations. For the practical applications we refer to
the classical paper [35] by Rubin. The mathematical study of the models
from [35] was undertaken in [22].

Even with this enormous number of scientific papers on the subject,
mathematically rigorous results on the subject are rare. Let us mention just
ones aiming towards a rigorous justification of Taylor’s dispersion model
and its generalization to reactive flows. We could distinguish them by their
approach

• The averaging of the equations over the section leads to an infinite
system of equations for the moments. A parallel could be drawn with
the turbulence and in the article [30], Paine, Carbonell and Whitaker
used an ad-hoc closure approach borrowed from Launder’s ”single
point” closure schemes of turbulence modeling, for obtaining an effec-
tive model for reactive flows in capillary tubes. We will see that this
approach leads to correct general form of the effective equations, but
it does not give the effective coefficients. Furthermore, let us remark
that it is important to distinguish between the turbulent transport,
arising for very high Peclet numbers, and the Taylor dispersion arising
for dominant Peclet number, but smaller than some threshold value.

• The center manifold approach of Mercer and Roberts (see the article
[26] and the subsequent article [34] by Rosencrans) allowed to calculate
approximations at any order for the original Taylor’s model. Even if
the error estimate was not obtained, it gives a very plausible argument
for the validity of the effective model. This approach was applied to
reactive flows in the article [5] by Balakotaiah and Chang. A number
of effective models for different Damkohler numbers were obtained.
Some generalizations to reactive flows through porous media are in
[25] and the preliminary results on their mathematical justification
are in [2] .

• Another approach consisting of the Liapounov-Schmidt reduction cou-
pled with a perturbation argument is developed in the articles [6], [7]
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and [15]. It allows developing multi-mode hyperbolic upscaled models.

• More recent approach using the anisotropic singular perturbation is
the article [28] by Mikelić, Devigne and van Duijn. This approach
gives the error estimate for the approximation and, consequently, the
rigorous justification of the proposed effective models. It uses the
strategy introduced by Rubinstein and Mauri in [36] for obtaining the
effective models.

We continue by applying the later approach for reactive transport with
adsorption-desorption through a capillary tube.

2 Non-dimensional form of the problem and state-
ment of the results

We study the diffusion of the solute particles transported by the Poiseuille
velocity profile in a semi-infinite 2D channel. Solute particles are partici-
pants in a chemical reaction with the boundary of the channel. They don’t
interact between them. The simplest example is described by the following
model for the solute concentration c∗:

∂c∗

∂t∗
+ q(z)

∂c∗

∂x∗
−D∗∆x∗,zc

∗ = 0 in IR+ × (−H, H), (1)

where q(z) = Q∗(1 − (z/H)2) and Q∗ (velocity) and D∗ (molecular dif-
fusion) are positive constants. At the lateral boundaries z = ±H

−D∗∂zc
∗ =

∂ĉ

∂t∗
= k̂∗(c∗ − ĉ/Ke) on z = ±H, (2)

where k̂∗ represents the rate constant for adsorption and Ke the linear ad-
sorption equilibrium constant.

The natural way of analyzing this problem is to introduce the appropri-
ate scales. They would come from the characteristic concentration Ĉ, the
characteristic length LR, the characteristic velocity QR, the characteristic
diffusivity DR and the characteristic time TR. The characteristic length LR

coincides in fact with the ” observation distance”. Setting

cF =
c∗

cR
, x =

x∗

LR
, y =

z

H
, t =

t∗

TR
, Q =

Q∗

QR
, D =

D∗

DR
,

k =
k̂∗

kR
, cs =

ĉ

ĉR
, K =

Ke

KeR
,
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we obtain the dimensionless equations

∂cF

∂t
+

QRTR

LR
Q(1−y2)

∂cF

∂x
−DRTR

L2
R

D
∂2cF

∂x2
−DRTR

H2
D

∂2cF

∂y2
= 0 in Ω (3)

and

−DDR

H
cR

∂cF

∂y
=

ĉR

TR

∂cs

∂t
= kRk(cRcF − ĉRcs

KKeR
) at y = 1, (4)

where

Ω = (0, +∞)× (−1, 1), Γ+ = (0, +∞)× {1} and Γ = (0, +∞)× {−1, 1}.
(5)

This problem involves the following time scales:

TL = characteristic longitudinal time scale =LR/QR

TT = characteristic transversal time scale =H2/DR

TDE = KeR/kR (characteristic desorption time)

TA = ĉR/(cRkR) (characteristic adsorption time)

Treact = superficial chemical reaction time scale =H/kR

and the following characteristic non-dimensional numbers

Pe =
LRQR

DR
(Peclet number); Da =

LR

TAQR
(Damkohler number)

Further we set ε = H
LR

<< 1 and choose TR = TL.
Solving the full problem for arbitrary values of coefficients is costly and

one would like to find the effective (or averaged) values of the dispersion
coefficient and the transport velocity and an effective corresponding 1D
parabolic equation for the effective concentration.

We consider the case when KeR = H, TA ≈ TL ≈ TDE . We choose
Q = Q∗

QR
= O(1), and

TT

TL
=

HQR

DR
ε = O(ε2−α) = ε2 Pe.

Then the situation from Taylor’s article corresponds to the case when 0 ≤
α < 2, i.e. the transversal Peclet number is equal to (1

ε )α−1 and k̂∗ = 0 (no
chemistry). It is interesting to remark that in his paper Taylor has α = 1.6
and α = 1.9.
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Our domain is now the infinite strip Z+ = IR+ × (0, 1). Then using the
antisymmetry of cε = cF , our equations in their non-dimensional form are

∂cε

∂t
+ Q(1− y2)

∂cε

∂x
= Dεα∂xxcε + Dεα−2∂yyc

ε in Z+ (6)

cε(x, y, 0) = 1, (x, y) ∈ IR+ × (0, 1), (7)

−Dεα−2 ∂cε

∂y
=

TA

TDE

∂cε
s

∂t
=

TL

TDE
k(cε − TA

TDE
cε
s/K)|y=1 on Γ+ × (0, T ) (8)

∂yc
ε(x, 0, t) = 0, (x, t) ∈ IR+ × (0, T ) (9)

cε
s(0, t) = 0 and cε(0, y, t) = 0, (y, t) ∈ (0, 1)× (0, T ). (10)

We study the behavior of the solution to (6) -(10), with square integrable
gradient in x and y, when ε → 0 and try to obtain an effective problem.

In the paragraph §3.1 we will give a detailed derivation of the effective
equations. Our technique is motivated by the paper [36] by J. Rubinstein
and R. Mauri, where the analysis is based on the hierarchy of time scales
and a corresponding 2-scale expansion. For k̂∗ = 0, our approach gives the
effective problem from Taylor’s paper [37]:





∂tc
Tay +

2Q

3
∂xcTay = (

D

Pe
+

8
945

Q2

D

TT

TL
)∂xxcTay,

in IR+ × (0, T ), cTay|x=0 = 1,

cTay|t=0 = 0, ∂xcTay ∈ L2(IR+ × (0, T )),

(11)

What is known concerning derivation of effective equations? Our ap-
proach and calculations performed in §3, gives the following non-dimensional
effective equations in (0,+∞)× (0, T ):

∂t(c +
TA

TDE
cs) + (

2Q

3
+

2Qk

45D

TT

TDE
)∂xc− (Dεα +

8
945

Q2

D
ε2−α)∂xxc =

2Qk

45DK

TA

TDE

TT

TDE
∂xcs (12)

(1 +
k

3D

TT

TDE
)∂tcs = k

TL

TA
(c +

2Q

45D
ε2−α∂xc− TA

TDE
cs/K) (13)

The system (12)-(13) could be compared with the corresponding non-dimen-
sional effective equations obtained by Paine, Carbonell and Whitaker in [30].
After substituting the equation (13) at the place of ∂tcs in (12), we see that
our effective equations (12)-(13) coincide with the effective non-dimensional
system (39)-(40), page 1784 from [30]. There is however a notable difference:

6



the system (39)-(40) from [30] contains the parameters A1, A2, K∗ and Sh
which depend nonlocally on c and cs. Instead we give explicit values of the
effective coefficients.

This case cannot be compared with the results from [5], since they have
a different time scale on the pages 61-73. Nevertheless, a comparison will
be possible in the case Ke = +∞.

In the references [7] and [15] Balakotaiah et al introduce a four-mode
hyperbolic model but with non-linear reactions, in 3D geometry and with
much bigger Damkohler’s number. The effective model cannot be directly
compared with our system (12)-(13). Nevertheless, in Sec. §3.1 we derive
a four-mode hyperbolic model, analogous to the models from [7] and [15].
We show that it is formally equivalent to our model at the order O(ε2(2−α)).
This shows the relationship between the upscaled models from [7] and [15]
developed by Balakotaiah et al and our results.

In its dimensional form our effective problem reads

∂t∗(c∗ +
ĉ

H
) + (

2Q∗

3
+

2Q∗DaT

45
)∂x∗c

∗ −D∗(1 +
8

945
Pe2

T )∂x∗x∗c
∗ =

2Q∗DaT

45Ke
∂x∗ ĉ (14)

(1 +
1
3
DaT )∂t∗ ĉ = k̂∗(c∗ +

2HPeT

45
∂x∗c

∗ − ĉ

Ke
) (15)

where PeT = Q∗H
D∗ is the transversal Peclet number and DaT = k̂∗H

D∗ is the
transversal Damkohler number.

Taking the transversal section mean gives

∂t∗(cmoy +
ĉmoy

H
) +

2Q∗

3
∂x∗c

moy −D∗∂x∗x∗c
moy = 0 (16)

∂t∗ ĉ = k̂∗(cmoy − ĉ

Ke
). (17)

We will compare numerically our effective equations (14)-(15) with the sys-
tem (16)-(17), but we have even stronger arguments in our favor.

Why we prefer our model to other models from the literature? Because
we are able to prove the error estimate. They were established in [28] for
the particular case when Ke = +∞ (the case of an irreversible, first order,
heterogeneous reaction).
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In this case the effective non-dimensional problem is

∂tc + Q
(2
3

+
4k

45D
ε2−α

)
∂xc + k

(
1− k

3D
ε2−α

)
c =

(Dεα +
8

945
Q2

D
ε2−α)∂xxc. (18)

Our result could be stated in dimensional form: Let us suppose that LR >
max{DR/QR, QRH2/DR,H}. Then the upscaled dimensional problem cor-
responding to the case Ke = +∞ reads

∂c∗,eff

∂t∗
+

(2
3

+
4
45

DaT

)
Q∗∂c∗,eff

∂x∗
+

k∗

H

(
1− 1

3
DaT

)
c∗,eff =

D∗
(
1 +

8
945

Pe2
T

)∂2c∗,eff

∂(x∗)2
. (19)

Let us now compare the physical concentration cε with the effective
concentration c. H(x) denotes Heaviside’s function.

Theorem 1. Let c be the unique solution of (18) and let ΩK = (0,K) ×
(0, 1), K > 0. Then we have

max
0≤t≤T

t3
∫

ΩK

|cε(x, y, t)− c(x, t)| dxdy ≤ Cε2−α (20)

(∫ T

0

∫

ΩK

t6|∂yc
ε(x, y, t)|2 dxdydt

)1/2

≤ C
(
ε2−5α/4H(1− α)+

ε3/2−3α/4H(α− 1)
)

(21)
( ∫ T

0

∫

ΩK

t6|∂x

(
cε(x, y, t)− c(x, t)

)|2
)1/2

≤

C
(
ε2−7α/4H(1− α) + ε3/2−5α/4H(α− 1)

)
. (22)

Furthermore, there exists a linear combination Ccor(x, y, t, ε) of products be-
tween polynomials in y and derivatives of c up to order 3, such that for all
δ > 0, we have

max
0≤t≤T

max
(x,y)∈Ω+

|t3(cε(x, y, t)− c(x, t)− Ccor(x, y, t))| ≤
{

Cε4−7α/2−δ, if α < 1,

Cε3/2−α−δ, if α ≥ 1.
(23)
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For details of the proof we refer to [28].

If we compare the non-dimensional effective equation (18) with the cor-
responding equation (57), page 1786, from [30], we find out that they have
the same form. Contrary to [30], we have calculated the effective coefficients
and we find them independent of the time and of the moments of c.

In the article [5] the surface reactions are much faster and do not corre-
spond to our problem. In order to compare two approaches we will present
in the paragraph §3.4 computations with our technique for the time scale
chosen in [5] and we will see that one gets identical results. This shows
that our approach through the anisotropic singular perturbation reproduces
exactly the results obtained using the center manifold technique.

2.1 Statement of the results in the case of nonlinear reactions

At sufficiently high concentrations of the transported solute particles, the
surface coverage becomes important and nonlinear laws for the rate of ad-
sorption should be used.

Now we study some of nonlinear cases. First, the condition (36) is re-
placed by

−D∗∂zc
∗ =

∂ĉ

∂t∗
= Φ̂(c∗)− k̂∗d ĉ on z = ±H, (24)

where k̂∗d represents the constant desorption rate. For simplicity we suppose
Φ̂(0) = 0. Examples of Φ̂ are





Φ̂(c) =
k∗1c

1 + k∗2c
, (Langmuir’s adsorption) ;

Φ̂(c) = k∗1c
k2 , (Freundlich’s adsorption).

(25)

Let us write non-dimensional forms for both nonlinear adsorption laws.
We start with Langmuir’s isotherm. In this case the adsorption speed

is k∗1, having the characteristic size k1R and k∗1 = k1Rk1. For the second
parameter we set k∗2cR = k2, where k2 is a dimensionless positive constant.
Let Φ(u) = k1u/(1 + k2u). The characteristic times linked with the surface
reactions are now:

TA = ĉR/(cRk1R) (characteristic adsorption time)

Treact = superficial chemical reaction time scale =H/k1R
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Then after a short calculation we get the non- dimensional form of (24):

−Dεα−2 ∂cε

∂y
=

TA

Treact

∂cε
s

∂t
=

TL

Treact
(Φ(cε)− k∗dTAcε

s)|y=1 on Γ+ × (0, T )

(26)
We suppose TL ≈ TA ≈ 1/k∗d and k1 and k2 of order 1.

Next we consider Freundlich’s isotherm. In this case it makes sense
to suppose that k∗1 = k1k1Rc1−k2

R and k1 and k2 of order 1. Then we get
once more (26) but with Φ(u) = k1u

k2 .
After the calculations from the section §3.2, we find out that the effective

equations in (0,+∞)× (0, T ):

∂t

(
c0
FN +

TA

Treact
ceff
sN

)
+

2Q

3
∂x

(
c0
FN +

1
15D

TT

Treact
Φ(c0

FN )
)

=

εα(D +
8

945
Q2

D
ε2(1−α))∂xxc0

FN +
2Q

45D
TATT k∗d
Treact

∂xceff
sN , (27)

∂tc
eff
sN =

TL

TA

(
Φ(c0

FN + ε2−αc1
FN |y=1)− k∗dTAc0

sN

)
, (28)

c1
FN |y=1 =

2
45

Q

D
∂xc0

FN − TA

3DTreact
∂tc

eff
sN , (29)

c0
FN |x=0 = 0, c0

FN |t=0 = 1, ceff
SN |t=0 = cs0. (30)

In its dimensional form our effective problem for the volume and surface
solute concentrations {c∗N , ĉN} reads

∂t∗(c∗N +
ĉN

H
) + ∂x∗(

2Q∗

3
c∗N +

PeT

15
Φ̂(c∗N )) =

D∗(1 +
8

945
Pe2

T )∂x∗x∗c
∗
N +

2k∗dPeT

45
∂x∗ ĉN (31)

∂t∗ ĉN = Φ̂(c∗N + PeT c̃1
N )− k∗d ĉN (32)

c̃1
N =

2H

45
∂x∗c

∗
N − 1

3
∂t∗ ĉN , (33)

where PeT =
Q∗H
D∗ is the transversal Peclet number.

Similar to the linear case, taking the mean over the transversal section
gives

∂t∗(c
moy
N +

ĉmoy
N

H
) +

2Q∗

3
∂x∗c

moy
N −D∗∂x∗x∗c

moy
N = 0 (34)

∂t∗ ĉN = Φ̂(cmoy
N )− k∗d ĉN . (35)
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We point out that for the non-negligible local Peclet number, taking the
simple mean over the section does not lead to a good approximation.

Here also we could propose four-mode models in the sense of [7] and [15].

2.2 Statement of the results in the case of an infinite adsorp-
tion rate

Here we concentrate our attention to the case when the adsorption rate
constant k̂∗ is infinitely large.

This means that the reaction at channel wall Γ∗ = {(x∗, z) : 0 < x∗ <
+∞, |z| = H} is described by the following flux equation

−D∗∂zc
∗ = Ke

∂c∗

∂t∗
on Γ∗, (36)

where Ke is, as before, the linear adsorption equilibrium constant. Now
we see that (2) is replaced by (36), which corresponds to taking the limit
k̂∗ →∞.

The characteristic times TA and TDE cannot be used anymore and we

introduce the new characteristic time TC =
KeR

εQR
, which has a meaning of

the superficial chemical reaction time scale. As before, we set ε = H
LR

<< 1
and choose TR = TL.

Introducing the dimensionless numbers into the starting and considering
constant initial/boundary conditions yields the problem:

∂cε

∂t
+ Q(1− y2)

∂cε

∂x
= Dεα ∂2cε

∂x2
+ Dεα−2 ∂2cε

∂y2
in Ω+ × (0, T ) (37)

−Dεα−2 ∂cε

∂y
= −D

1
ε2Pe

∂cε

∂y
=

TC

TL
K

∂cε

∂t
on Γ+ × (0, T ) (38)

cε(x, y, 0) = 1 for (x, y) ∈ Ω+, (39)
cε(0, y, t) = 0 for (y, t) ∈ (0, 1)× (0, T ), (40)

∂cε

∂y
(x, 0, t) = 0, for (x, t) ∈ (0, +∞)× (0, T ). (41)

Further, we suppose that TC ≈ TL.
After the calculations from the subsection §3.3 we find that the effective
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problem for the concentration c∗,eff
K in its dimensional form reads

(1 + DaK)
∂c∗,eff

K

∂t∗
+

2Q∗

3
∂c∗,eff

K

∂x∗
=

D∗
(
1 +

4
135

Pe2
T [

2
7

+
DaK(2 + 7DaK)

(1 + DaK)2
]
)∂2c∗,eff

K

∂(x∗)2
. (42)

In (42) PeT =
Q∗H
D∗ is the transversal Peclet number and DaK =

Ke

H
is the

transversal Damkohler number.
The transversal section mean gives

(1 + DaK)∂t∗c
moy
K +

2Q∗

3
∂x∗c

moy
K −D∗∂x∗x∗c

moy
K = 0 (43)

Once more, for the non-negligible local Peclet and Damkohler numbers, tak-
ing the simple mean over the section does not lead to a good approximation
and our numerical simulations, presented in the last section, will confirm
these theoretical results. For an error estimate analogous to Theorem 1, we
refer to the articles [29] and [16].

We note the possible similarities of the effective model (42) with Golay’s
theory as presented in [30]. In the effective dispersion term this theory
predicts a rational function of Ke and we confirm it. Nevertheless, there is
a difference in particular coefficients.

3 Derivation of the effective models in the non-
dimensional form

In this section we will obtain the non-dimensional effective or upscaled
equations using a two-scale expansion with respect to the transversal
Peclet number ε2−α. Note that the transversal Peclet number is equal to
the ratio between the characteristic transversal time scale and longitudinal
time scale. Then we use Fredholm’s alternative1 to obtain the effective

1Comment for a non-mathematical reader: Fredholm’s alternative gives a necessary
and sufficient criteria for solvability of an equation, in the critical situation when we are
in a spectrum. For linear algebraic system Ax = b, it says that if 0 is an eigenvalue of
the matrix A, the system has a solution if and only if b is orthogonal to the eigenvectors
of A that correspond to the eigenvalue 0. Except the last example, that is borrowed from
[5], in all examples considered here 0 is a simple eigenvalue. Therefore the corresponding
boundary value problem in y-variable admits a solution if and only if the mean of the
right hand side with respect with respect to the transversal variable y is equal to the value
of the flux at y = 1. We refer to the textbooks as [39], for the Fredholm theory for the
partial differential equations.
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equations. However, they do not follow immediately. Direct application of
Fredholm’s alternative gives hyperbolic equations which are not satisfactory
for our model. In order to obtain a better approximation, we use the strategy
of Rubinstein and Mauri from [36] and embed the hyperbolic equation to
the next order equations. This approach leads to the effective equations
containing Taylor’s dispersion type terms. Since we are in the presence of
chemical reactions, dispersion is not caused only by the important Peclet
number, but also by the effects of the chemical reactions, entering through
Damkohler’s number.

3.1 Full linear model with adsorption-desorption

We start with the problem (6)-(10) and search for cε in the form

cε = c0
F (x, t; ε) + ε2−αc1

F (x, y, t) + ε2(2−α)c2
F (x, y, t) + . . . (44)

cε
s = c0

s(x, t; ε) + ε2−αc1
s(x, y, t) + ε2(2−α)c2

s(x, y, t) + . . . . (45)

After introducing (44) into the equation (6) we get

ε0
{

∂tc
0
F + Q(1− y2)∂xc0

F −D∂yyc
1
F

}
+ ε2−α

{
∂tc

1
F + Q(1− y2)∂xc1

F−

Dε2(α−1)∂xxc0
F −Dεα∂xxc1

F −D∂yyc
2
F

}
= O(ε2(2−α)) = O((

TT

TL
)2). (46)

At the lateral boundary y = 1, after introducing (45) into (8) we get:

(−D∂yc
1
F −

TA

TDE

∂c0
s

∂t
) + ε2−α(−D∂yc

2
F −

TA

TDE

∂c1
s

∂t
) + · · · = 0 (47)

( TA

TDE

∂c0
s

∂t
− TL

TDE
k(c0

F −
TA

TDE

c0
s

K
)
)

+ ε2−α
( TA

TDE

∂c1
s

∂t
−

TL

Treact
k(c1

F −
TA

TDE

c1
s

K
)
)

+ · · · = 0 (48)

To satisfy (46)-(48) for every ε ∈ (0, ε0), all coefficients in front of the powers
of ε2−α should be zero.

Equating the ε0 terms gives the problem




−D∂yyc
1
F = Q(y2 − 1/3)∂xc0

F −
(
∂tc

0
F + 2Q∂xc0

F /3
)

on (0, 1),

−D∂yc
1
F =

TA

TDE

∂c0
s

∂t
=

TL

TDE
k(c0

F −
TA

TDE

c0
s

K
) on y = 1,

and ∂yc
1
F = 0 on y = 0,

(49)
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for every (x, t) ∈ (0, +∞)× (0, T ). By Fredholm’s alternative, this problem
has a solution if and only if

∂tc
0
F + 2Q∂xc0

F /3 +
TA

TDE

∂c0
s

∂t
= 0 (50)

and
∂c0

s

∂t
=

TL

TA
k(c0

F −
TA

TDE

c0
s

K
) (51)

in (0,∞)× (0, T ). Unfortunately our initial and boundary data are incom-
patible and therefore the solution to this hyperbolic equation with a memory
is discontinuous. Since the asymptotic expansion for cε involves derivatives
of c0

F , system (50)- (51) does not suit our needs. In the case k = 0, consid-
ered in [10], this difficulty was overcome by assuming compatible initial and
boundary data. Such an assumption does not always suit the experimental
data and we proceed by following an idea from [36]. More precisely, we sup-
pose that expression (50) is of the next order in our asymptotic expansion,
i.e. that

∂tc
0
F + 2Q∂xc0

F /3 +
TA

TDE

∂c0
s

∂t
= O(ε2−α) in (0,+∞)× (0, T ). (52)

This hypothesis will be justified a posteriori, after getting an equation for
c0
F and c0

s.
Combining (49) and (50) and using hypothesis (52) gives





−D∂yyc
1
F = −Q(1/3− y2)∂xc0

F + TA
TDE

∂c0s
∂t on (0, 1),

−D∂yc
1
F =

TA

TDE

∂c0
s

∂t
=

TL

TDE
k(c0

F −
TA

TDE

c0
s

K
) on y = 1,

and ∂yc
1
F = 0 on y = 0,

(53)

for every (x, t) ∈ (0, +∞)× (0, T ). Consequently

c1
F (x, y, t) =

Q

D
(
y2

6
− y4

12
− 7

180
)∂xc0

F +
1
D

(
1
6
− y2

2
)

TA

TDE

∂c0
s

∂t
+ A(x, t), (54)

where A(x, t) is an arbitrary function.
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The problem corresponding to the order ε2−α is




−D∂yyc
2
F = εαD∂xxc1

F −Q(1− y2)∂xc1
F + Dε2(α−1)∂xxc0

F−

∂tc
1
F − εα−2

(
∂tc

0
F + 2Q∂xc0

F /3 +
TA

TDE

∂c0
s

∂t

)
on (0, 1),

−D∂yc
2
F =

TA

TDE

∂c1
s

∂t
=

TL

TDE
k(c1

F −
TA

TDE

c1
s

K
) on y = 1,

and ∂yc
2
F = 0 on y = 0,

(55)

for every (x, t) ∈ (0, +∞)× (0, T ). Note that in order have an expression for
c1
s compatible with (54), when adding an arbitrary function A(x, t) to c1

F in
(54), we should also add to c1

s a function B(x, t) satisfying

∂tB =
TLk

TA
(A− TA

TDE

B

K
). (56)

The problem (55) has a solution if and only if

∂tc
0
F + 2Q∂xc0

F /3 +
TA

TDE

∂c0
s

∂t
+ ε2−α TA

TDE

∂c1
s

∂t
+ ε2−α∂t(

∫ 1

0
c1
F dy)−

εαD∂xxc0
F + Qε2−α∂x(

∫ 1

0
(1− y2)c1

F dy)−Dε2∂xx(
∫ 1

0
c1
F dy) = 0 (57)

in (0, +∞)× (0, T ). Note that this is the equation for c0
F and c0

s. Next
let us remark that

∫ 1

0
c1
F dy = A(x, t), (58)

∫ 1

0
(1− y2)c1

F dy =
2
3
A(x, t)− Q

D

8
945

∂xc0
F +

2
45D

TA

TDE

∂c0
s

∂t
, (59)

and equation (57) becomes

∂t

(
c0
F +

TA

TDE
(c0

s + ε2−αc1
s)

)
+

2Q

3
∂xc0

F − εαD̃∂xxc0
F =

−ε2−α TA

TDE

2Q

45D
∂xtc

0
s − ε2−α

{ TA

TDE
∂tB + ∂tA +

2Q

3
∂xA−Dεα∂xxA

}
(60)

in (0,+∞)× (0, T ), with

D̃ = D +
8

945
Q2

D
ε2(1−α). (61)
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Let

L1{A,B} =
TA

TDE
∂tB + ∂tA +

2Q

3
∂xA−Dεα∂xxA (62)

L2{A,B} = ∂tB − TL

TA
(A− TA

TDE

B

K
). (63)

There is no clear criterion for choosing the functions A and B. Nevertheless,
if L2{A,B} = 0, it is possible to introduce the change of unknown functions
c0
F → c0

F + ε2−αA and c1
s → c1

s + B. Then the equation (60) differs only

by the term ε2(2−α) 2Q

45D
∂xtB from its variant with A = B = 0. Hence

{c0
F , c0

s + ε2−αc1
s} would change at order O(ε2(2−α)) and the contribution

appears at the next order in the expansion for cε. Optimal choice of {A,B}
could come only from higher order calculations. For simplicity we choose
A = B = 0. This choice simplifies the equation (60) and the boundary
condition at y = 1 to the following system of partial differential equations
on (0,+∞)× (0, T ):

∂t

(
c0
F +

TA

TDE
ceff
s

)
+

(2Q

3
+

2
45

TT

TDE

Qk

D

)
∂xc0

F =

εα(D +
8

945
Q2

D
ε2(1−α))∂xxc0

F +
2
45

TATT

(TDE)2
Qk

DK
∂xceff

s (64)

(1 +
TT

TDE

k

3D
)∂tc

eff
s =

TLk

TA

(
c0
F +

2
45

Q

D
ε2−α∂xc0

F −
TA

KTDE
ceff
s

)
(65)

where ceff
s = c0

s + ε2−αc1
s.

In fact it is possible to proceed differently and to ”hyperbolize” the
effective model. Following [6], [7] and [15] we set

Cm(x, t) =
∫ 1

0
(1− y2)(c0

F + ε2−αc1
F ) dy =

2
3
c0
F (x, t) + ε2−α

∫ 1

0
(1− y2)c1

F dy

(the mixing-cup concentration) (66)

Cw(x, t) = c0
F (x, t) + ε2−αc1

F (x, 1, t)
(the effective solute concentration at the wall) . (67)

Then if 1 < α < 2 we can drop the axial diffusion term εαD̃∂xxc0
F and write

(57) in the form
∂c0

F

∂t
+ Q

∂Cm

∂x
+

TA

TDE

∂ceff
s

∂t
= 0. (68)
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Next we have

TA

TDE

∂ceff
s

∂t
= −∂c0

F

∂t
− 2Q

3
∂C0

F

∂x
+O(ε2(2−α)) (69)

and after replacing ∂tc
0
s by the right hand side of (69) we get

c1
F (x, y, t) =

Q

D
(
y2

2
− y4

12
− 3

20
)∂xc0

F −
1
D

(
1
6
− y2

2
)∂tc

0
F , (70)

∫ 1

0
(1− y2)c1

F dy = −Q

D

4
105

∂xc0
F −

2
45D

∂tc
0
F , (71)

Cm(x, t) =
2
3
c0
F (x, t)− 1

D
ε2−α{ 4Q

105
∂xc0

F +
2
45

∂tc
0
F }, (72)

Cw(x, t) = c0
F (x, t) +

1
D

ε2−α{4Q

15
∂xc0

F +
1
3
∂tc

0
F }, (73)

Equation (65) now reads

TA

TDE
∂tc

eff
s =

TLk

TDE

(
Cw − TA

KTDE
ceff
s

)
. (74)

The system (68), (74), (72) and (73) is analogous to the four-mode hy-
perbolic model (60)-(63), page 324, from [7] and to the four-mode model
(90)-(93), page 233, from [15].

In this paper our goal is to have a generalization of Taylor’s dispersion
and we search for a parabolic operator for c0

F .

3.2 Nonlinear reactions

Now we study some nonlinear surface reactions.
We start with the problem (6)-(10), but with (8) replaced by (26) (i.e.

we have a nonlinear adsorption). As before we search for cε in the form

cε = c0
FN (x, t; ε) + ε2−αc1

FN (x, y, t) + ε2(2−α)c2
FN (x, y, t) + . . . (75)

cε
s = c0

sN (x, t; ε) + ε2−αc1
sN (x, y, t) + ε2(2−α)c2

sN (x, y, t). + . . . . (76)

After introducing (75)-(76) into the equation (6) we get once more equation
(46). To satisfy it for every ε ∈ (0, ε0), all coefficients in front of the powers
of ε should be zero.
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In addition we have the following equations for the boundary reactions
at y = 1:

(−D∂yc
1
FN − TA

Treact

∂c0
sN

∂t
) + ε2−α(−D∂yc

2
FN − TA

Treact

∂c1
sN

∂t
) + · · · = 0

(77)
( TA

Treact

∂c0
sN

∂t
− TL

Treact
(Φ(c0

FN )− k∗dTAc0
sN )

)
+ ε2−α

( TA

Treact

∂c1
sN

∂t
−

TL

Treact
(Φ′(c0

FN )c1
FN − k∗dTAc1

sN )
)

+ · · · = 0 (78)

As before, the ε0 terms give the problem




−D∂yyc
1
FN = Q(y2 − 1/3)∂xc0

FN − (
∂tc

0
FN + 2Q∂xc0

FN/3
)

on (0, 1),

−D∂yc
1
FN =

TA

Treact

∂c0
sN

∂t
=

TL

Treact
(Φ(c0

FN )− k∗dTAc0
sN ) on y = 1,

and ∂yc
1
FN = 0 on y = 0,

(79)
for every (x, t) ∈ (0, +∞)× (0, T ). By Fredholm’s alternative, this problem
has a solution if and only if

∂tc
0
FN + 2Q∂xc0

FN/3 +
TA

Treact

∂c0
sN

∂t
= 0 (80)

and
TA

Treact

∂c0
sN

∂t
=

TL

Treact
(Φ(c0

FN )− k∗dTAc0
sN ) (81)

in (0,∞) × (0, T ). Unfortunately our initial and boundary data are in-
compatible and therefore the solution to this hyperbolic equation with a
memory is discontinuous. Since the asymptotic expansion for cε involves
derivatives of c0

FN , system (80)- (81) does not suit our needs and, as in the
previous subsection, we proceed by following an idea from [36]. More pre-
cisely, we suppose that expression (80) is of the next order in our asymptotic
expansion, i.e. that

∂tc
0
FN + 2Q∂xc0

FN/3 +
TA

Treact

∂c0
sN

∂t
= O(ε2−α) in (0, +∞)× (0, T ). (82)

This hypothesis will be justified a posteriori, after getting an equation for
c0
FN and c0

sN .
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Combining (49) and (80) and using hypothesis (82) gives




−D∂yyc
1
FN = −Q(1/3− y2)∂xc0

FN +
TA

Treact

∂c0
sN

∂t
on (0, 1),

−D∂yc
1
FN =

TA

Treact

∂c0
sN

∂t
=

TL

Treact
(Φ(c0

FN )− k∗dTAc0
sN ) on y = 1,

and ∂yc
1
FN = 0 on y = 0,

(83)
for every (x, t) ∈ (0, +∞)× (0, T ). Consequently

c1
FN (x, y, t) =

Q

D
(
y2

6
− y4

12
− 7

180
)∂xc0

FN +
1
D

(
1
6
− y2

2
)

TA

Treact

∂c0
sN

∂t
+AN (x, t),

(84)
where AN (x, t) is an arbitrary function.

The problem corresponding to the order ε2−α is




−D∂yyc
2
FN = εαD∂xxc1

FN −Q(1− y2)∂xc1
FN + Dε2(α−1)∂xxc0

FN−

∂tc
1
FN − εα−2

(
∂tc

0
FN + 2Q∂xc0

FN/3 +
TA

Treact

∂c0
sN

∂t

)
on (0, 1),

−D∂yc
2
FN =

TA

Treact

∂c1
sN

∂t
=

TL

Treact
(Φ′(c0

FN )c1
FN − k∗dTAc1

sN ) on y = 1,

and ∂yc
2
FN = 0 on y = 0,

(85)
for every (x, t) ∈ (0,+∞)× (0, T ). Note that in order to have an expression
for c1

sN that is compatible with (84), when adding an arbitrary function
AN (x, t) to c1

FN in (54), we should also add to c1
sN a function BN (x, t)

satisfying

∂tBN =
TL

TA
(Φ(AN )− k∗dTABN ). (86)

The problem (85) has a solution if and only if

∂tc
0
FN + 2Q∂xc0

FN/3 +
TA

Treact

∂c0
sN

∂t
+ ε2−α TA

Treact

∂c1
sN

∂t
+ ε2−α∂t(

∫ 1

0
c1
FN dy)−

εαD∂xxc0
FN + Qε2−α∂x(

∫ 1

0
(1− y2)c1

FN dy)−Dε2∂xx(
∫ 1

0
c1
FNdy) = 0

(87)
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in (0,+∞) × (0, T ). 2 Note that this is the equation for c0
FN and c0

sN .
Next let us remark that ∫ 1

0
c1
FN dy = AN (x, t), (88)

∫ 1

0
(1− y2)c1

FN dy =
2
3
AN (x, t)− Q

D

8
945

∂xc0
FN +

2
45D

TA

Treact

∂c0
sN

∂t
, (89)

and equation (87) becomes

∂t

(
c0
FN +

TA

Treact
(c0

sN + ε2−αc1
sN )

)
+

2Q

3
∂xc0

FN − εαD̃∂xxc0
FN =

−ε2−α TA

Treact

2Q

45D
∂xtc

0
sN − ε2−α

{ TA

Treact
∂tBN + ∂tAN +

2Q

3
∂xAN −Dεα∂xxAN

}

(90)

in (0,+∞)× (0, T ), with

D̃ = D +
8

945
Q2

D
ε2(1−α). (91)

Let

L1{A,B} =
TA

Treact
∂tB + ∂tA +

2Q

3
∂xA−Dεα∂xxA (92)

L2{A,B} = ∂tB − TL

TA
(Φ(A)− k∗dTAB). (93)

There is no clear criterion for choosing the functions AN and BN . With the
same arguing as in §3.1 we choose AN = BN = 0. This choice simplifies
(90). The next simplification is to eliminate the term ∂xtc

0
sN using (81), i.e.

TA

Treact

∂c0
sN

∂t
=

TL

Treact
(Φ(c0

FN )− k∗dTAc0
sN ). Then

ε2−α TA

Treact

2Q

45D
∂xtc

0
sN =

2Q

45D

TT

Treact
∂xΦ(c0

FN )− 2Q

45D
TT TAk∗d
Treact

∂xc0
sN (94)

and equation (90) reads

∂t

(
c0
FN +

TA

Treact
ceff
sN

)
+

2Q

3
∂x

(
c0
FN +

1
15D

TT

Treact
Φ(c0

FN )
)

=

εα(D +
8

945
Q2

D
ε2(1−α))∂xxc0

FN +
2Q

45D
TATT k∗d
Treact

∂xceff
sN in (0,+∞)× (0, T ),

(95)
2Note that Freundlich’s adsorption non-linearity is not differentiable since in most

applications 0 < k2 < 1. Nevertheless at the end we will get expressions which do not
involve derivative of Φ. Hence in manipulations we can use a smooth regularization of Φ.
Clearly, a lacking smoothness of Φ would deteriorate precision of the approximation.
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where ceff
sN = c0

s + ε2−αc1
s. Next, after putting together the expansions for

the ordinary differential equations from (83)-(85) for surface concentration
at y = 1, we obtain

∂tc
eff
sN =

TL

TA

(
Φ(c0

FN + ε2−αc1
FN |y=1)− k∗dTAceff

sN

)
(96)

c1
FN |y=1 =

2
45

Q

D
∂xc0

FN − TA

3DTreact
∂tc

eff
sN (97)

in (0,+∞)× (0, T )
The effective problem is now

∂t

(
c0
FN +

TA

Treact
ceff
sN

)
+

2Q

3
∂x

(
c0
FN +

1
15D

TT

Treact
Φ(c0

FN )
)

=

εα(D +
8

945
Q2

D
ε2(1−α))∂xxc0

FN +
2Q

45D
TATT k∗d
Treact

∂xceff
sN in (0,+∞)× (0, T ),

∂tc
eff
sN =

TL

TA

(
Φ(c0

FN + ε2−αc1
FN |y=1)− k∗dTAceff

sN

)
in (0,+∞)× (0, T ),

c1
FN |y=1 =

2
45

Q

D
∂xc0

FN − TA

3DTreact
∂tc

eff
sN in (0, +∞)× (0, T ),

c0
FN |x=0 = 0, c0

FN |t=0 = 1, ceff
SN |t=0 = cs0, ∂xc ∈ L2((0, +∞)× (0, T )).

(98)

3.3 Infinite adsorption rate

We start with the equations (37)-(38) and search for cε in the form

cε = c0
K(x, t; ε) + ε2−αc1

K(x, y, t) + ε2(2−α)c2
K(x, y, t) + . . . (99)

After introducing (44) into the equation (37) we get

ε0
{

∂tc
0
K + Q(1− y2)∂xc0

K −D∂yyc
1
K

}
+ εα−2

{
∂tc

1
K+

Q(1− y2)∂xc1
K −Dε2(α−1)∂xxc0

K −Dεα∂xxc1
K −D∂yyc

2
K

}
= O(ε2(2−α))

(100)

In order to have (100) for every ε ∈ (0, ε0), all coefficients in front of the
powers of ε should be zero.

The problem corresponding to the order ε0 is
{ −D∂yyc

1
K = −Q(1/3− y2)∂xc0

K − (
∂tc

0
K + 2Q∂xc0

K/3
)

on (0, 1),
∂yc

1
K = 0 on y = 0 and −D∂yc

1
K = K TC

TL
∂tc

0
K on y = 1

(101)
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for every (x, t) ∈ (0, +∞)× (0, T ). By the Fredholm’s alternative, the prob-
lem (101) has a solution if and only if

(1 + K
TC

TL
)∂tc

0
K + 2Q∂xc0

K/3 = 0 in (0, L)× (0, T ). (102)

Unfortunately our initial and boundary data are incompatible and the hy-
perbolic equation (102) has a discontinuous solution. Since the asymptotic
expansion for cε involves derivatives of c0

K , the equation (102) does not suit
our needs. As before, we proceed by following an idea from [36] and suppose
that

(1 + K
TC

TL
)∂tc

0
K + 2Q∂xc0

K/3 = O(ε2−α) in (0, +∞)× (0, T ). (103)

The hypothesis (103) will be justified a posteriori, after getting an equation
for c0

K .
Hence (101) reduces to




−D∂yyc

1
K = −Q(1/3− y2)∂xc0

K + K
TC

TL
∂tc

0
K on (0, 1),

∂yc
1
K = 0 on y = 0 and −D∂yc

1
K = K

TC

TL
∂tc

0
K on y = 1

(104)

for every (x, t) ∈ (0, +∞)× (0, T ), and we have

c1
K(x, y, t) =

Q

D
(
y2

6
− y4

12
− 7

180
)∂xc0

K+
K

D

TC

TL
(
1
6
−y2

2
)∂tc

0
K+C0K(x, t), (105)

where C0K is an arbitrary function.
Let us go to the next order. Then we have





−D∂yyc
2
K = −Q(1− y2)∂xc1

K + Dε2(α−1)∂xxc0
K − ∂tc

1
K+

Dεα∂xxc1
K − εα−2

(
(1 + K TC

TL
)∂tc

0
K + 2Q∂xc0

K/3
)

on (0, 1),

∂yc
2
K = 0 on y = 0 and −D∂yc

2
K = K

TC

TL
∂tc

1
K on y = 1

(106)

for every (x, t) ∈ (0, +∞)× (0, T ). The problem (106) has a solution if and
only if

∂tc
0
K + 2Q∂xc0

K/3 + K
TC

TL
(∂tc

0
K + ε2−α∂tc

1
K |y=1) + ε2−α∂t(

∫ 1

0
c1
K dy)−

εαD∂xxc0
K + Qε2−α∂x(

∫ 1

0
(1− y2)c1

K dy) = Dε2∂xx(
∫ 1

0
c1
K dy)

in (0, +∞)× (0, T ). (107)
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(107) is the equation for c0
K . Next let us remark that

∫ 1

0
c1
K dy = C0K(x, t), (108)

∫ 1

0
(1− y2)c1

K dy =
2
3
C0K(x, t)− Q

D

8
945

∂xc0
K +

2K

45D

TC

TL

∂c0
K

∂t
, (109)

∂c1
K

∂t
|y=1 =

2Q

45D
∂xtc

0
K − K

3D

TC

TL
∂ttc

0
K + ∂tC0K . (110)

In order to get a parabolic equation for c0
K we choose C0K such that ∂ttc

0
K

and ∂xtc
0
K do not appear in the effective equation. 3 Then C0K is of the

form C0K = a∂tc
0
K + b∂xc0

K and after a short calculation we find that

C0K(x, t) =
1

3D
(
TC

TL
)2

K2

1 + KTC/TL
∂tc

0
K − 2Q

45D
TC

TL

K(2 + 7KTC/TL)
(1 + KTC/TL)2

∂xc0
K .

(111)
Now c1

K takes the form

c1
K(x, y, t) =

Q

D
(
y2

6
− y4

12
− 7

180
− 2

45
TC

TL

K(2 + 7KTC/TL)
(1 + KTC/TL)2

)∂xc0
K+

K

D

TC

TL
(
1
6

+
1
3

TC

TL

K

1 + KTC/TL
− y2

2
)∂tc

0
K . (112)

For α ≥ 1, 2 ≥ 2(2−α) and we are allowed to drop the term of order O(ε2).
Now the equation (107) becomes

(1 + KTC/TL)∂tc
0
K +

2Q

3
∂xc0

K = εαD̃∂xxc0
K in (0, +∞)× (0, T ). (113)

with

D̃ = D +
8

945
Q2

D
ε2(1−α) +

4Q2

135D

TC

TL

K(2 + 7KTC/TL)
(1 + KTC/TL)2

ε2(1−α) (114)

3Note that this strategy differs from the approach in the previous section, and the
current effective equations cannot be obtained as a limit k̃∗ → 0 of the effective equations
obtained before. Nevertheless they are of the same order.
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Now the problem (106) becomes




−D∂yyc
2
K = −Q2

D
∂xxc0

K

{ 8
945

+ (1− y2)(
y2

6
− y4

12
− 7

180
)
}
+

∂xtc
0
K

QK̃

D

{ 2
45
− (1− y2)(

1
6
− y2

2
)
}

+
2QK̃

45D
(1− K̃(7K̃ + 2)

(1 + K̃)2
)∂xtc

0
K

−(
K̃2

3D
− K̃3

3D(1 + K̃)
)∂ttc

0
K − (

y2

6
− y4

12
− 7

180
)∂xtc

0
K

Q

D
+

QK̃(1
3 − y2)

D(1 + K̃)

(2Q

45
∂xxc0

K

7K̃ + 2
1 + K̃

− K̃

3
∂xtc

0
K

)− (
1
6
− y2

2
)∂ttc

0
K

K̃

D

}

on (0, 1), ∂yc
2
K = 0 on y = 0 and on y = 1

−D∂yc
2
K =

2K̃Q

45D
(1− K̃(7K̃ + 2)

(1 + K̃)2
)∂xtc

0
K − K̃2

3D
(1− K̃

1 + K̃
)∂ttc

0
K .

(115)
where K̃ = KTC/TL.

If we choose c2 such that
∫ 1
0 c2 dy = 0, then

c2(x, y, t) = −Q2

D2
∂xxc0

K

( 281
453600

+
23

1512
y2 − 37

2160
y4 +

1
120

y6 − 1
672

y8
)

+
Q

D2
∂xtc

0
K

( 31
7560

− 7
360

y2 +
y4

72
− y6

360

)
− Q

D2

(− y4

12
+

y2

6
−

7
180

)(2Q

45
∂xxc0

K

K̃(7K̃ + 2)
(1 + K̃)2

− K̃2

3(1 + K̃)
∂xtc

0
K

)
+

QK̃

D2
∂xtc

0
K

(y6

60
− y4

18
+

11y2

180
− 11

945
)

+
K̃

2D2
∂ttc

0
K

(− y4

12
+

y2

6
− 7

180
)−

(( K̃Q

45D2
+

QK̃

45D2

K̃(7K̃ + 2)
(1 + K̃)2

)
∂xtc

0
K − ( K̃2

6D2
− K̃3

6D2(1 + K̃)

)
∂ttc

0
K

)
(
1
3
− y2) (116)

3.4 An irreversible very fast 1st order reaction

The goal of this subsection is to compare our approach with the center
manifold technique from [5]. We study the 2D variant of the model from [5],
pages 58-61, and we keep the molecular diffusion. Then the corresponding
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analogue of the problem (6)-(10), with K = +∞, is

∂cε

∂t
+ Q(1− y2)

∂cε

∂x
= Dεα ∂2cε

∂x2
+ Dεα−2 ∂2cε

∂y2
(117)

−Dεα−2 ∂cε

∂y
|y=1 = kεα−2cε|y=1 and

∂cε

∂y
|y=0 = 0. (118)

Due to the very fast reaction, we expect fast decay of the solution in time.
We search for cε in the form

cε = e−λ0εα−2t(c0(x, t; ε)ψ0(y) + ε2−αc1 + ε2(2−α)c2 + . . . ) +O(e−λ1εα−2t).
(119)

After introducing (119) into the equation (117) we get

εα−2
{
− λ0c

0ψ0 −D∂yyψ0c
0
}

+ ε0
{

ψ0(y)(∂tc
0 + Q(1− y2)∂xc0)−

D∂yyc
1 − λ0c

1
}

+ ε2−α
{

∂tc
1 + Q(1− y2)∂xc1 −Dε2(α−1)∂xxc0ψ0(y)−

Dεα∂xxc1 −D∂yyc
2 − λ0c

2
}

= O(ε2(2−α)) = O((
TT

TL
)2). (120)

To satisfy (120) for every ε ∈ (0, ε0), all coefficients in front of the powers
of ε should be zero.

The problem corresponding to the order εα−2 is
{ −D∂yyψ0 = λ0ψ0) on (0, 1),

∂yψ0 = 0 on y = 0 and −D∂yψ0 = kψ0 on y = 1,
(121)

for every (x, t) ∈ (0, +∞) × (0, T ). This spectral problem4has one dimen-

sional proper space, spanned by ψ0(y) =
√

2 cos(

√
λ0

D
y), where the eigen-

value λ0 is the first positive root of the equation

√
λ0

D
tan(

√
λ0

D
) =

k

D
.

Next, the ε0 problem reads
{ −D∂yyc

1 − λ0c
1 = −ψ0(y)

(
Q(1− y2)∂xc0 + ∂tc

0
)

on (0, 1),
∂yc

1 = 0 on y = 0 and −D∂yc
1 = kc1 on y = 1,

(122)

By Fredholm’s alternative, this problem has a solution if and only if

∂tc
0 + Q(

∫ 1

0
ψ2

0(y)(1− y2) dy)∂xc0 = 0 (123)

4References for spectral problems for partial differential equations are e.g. [38] and [39]
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in (0,∞) × (0, T ). As before, our initial and boundary data are incom-
patible and therefore the solution to this linear transport equation does not
suit our needs. We proceed by using again the idea in [36] and suppose that
expression (123) is of the next order in our asymptotic expansion:

ψ(y)(∂tc
0 + Q(

∫ 1

0
ψ2

0(y)(1− y2) dy)∂xc0) = O(ε2−α) in (0, +∞)× (0, T ),

(124)
and justify it a posteriori, after getting an equation for c0. Following [5] we
set α00 =

∫ 1
0 ψ2

0(y)(1− y2) dy.
Combining (122) and (123) and using hypothesis (124) leads us to con-

sider{ −D∂yyc
1 − λ0c

1 = −Qψ0(y)
(
(1− y2)− α00

)
∂xc0 on (0, 1),

−D∂yc
1 = kc1 on y = 1, and ∂yc

1 = 0 on y = 0,
(125)

for every (x, t) ∈ (0, +∞)× (0, T ). Consequently

c1(x, y, t) = Q∂xc0q0(y) + ψ0(y)A(x, t), (126)

where A is arbitrary and q0 is the solution for (125) with Q∂xc replaced by
1, such that

∫ 1
0 ψ0(y)q0(y) dy = 0.

The problem corresponding to the order ε2−α is




−D∂yyc
2 − λ0c

2 = −∂tc
1 −Q(1− y2)∂xc1 + Dε2(α−1)∂xxc0ψ0(y)

+εαD∂xxc1 − εα−2ψ0(y)
(
∂tc

0 + Qα00∂xc0
)

on (0, 1),

−D∂yc
2 = kc2 on y = 1 and ∂yc

2 = 0 on y = 0,
(127)

for every (x, t) ∈ (0, +∞)× (0, T ). This problem has a solution if and only
if

∂tc
0 + Qα00∂xc0 − (

εαD −Q2(
∫ 1

0
ψ0(y)q0(y)(1− y2) dy)

)
∂xxc0 = 0 (128)

in (0, +∞) × (0, T ). We note that the arbitrary function A enters into
(128) as ∂tA+Qα00∂xA and this term is of higher order for reasonable choice
of A. We take A = 0.

Next, we note that, through Hilbert-Schmidt expansion5, q0 is given by

q0(y) = −
+∞∑

k=1

α0kψk(y)
λk − λ0

, (129)

5For an elementary presentation of the Hilbert-Schmidt expansion see [38]
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where {λk, ψk}k≥0 is the orthonormal basis defined by the spectral problem
(121). Now we see that

∫ 1

0
ψ0(y)q0(y)(1− y2) dy = −

+∞∑

k=1

α2
0k

λk − λ0

and Taylor’s contribution to the effective diffusion coefficient is strictly posi-
tive. We note that this result confirms the calculations from [5], pages 58-61.
Since

λ0 =
TL

Treact
kψ0(1),

in the limit when Treact >> TT we obtain the effective equation (18). In
fact our calculations indicate the relationship between the center manifold
approach and approach using Bloch’s waves and a factorization principle for
the two-scale convergence (see the recent papers [1] and [2], by G. Allaire
and A.-L. Raphael).

4 Numerical Tests

For carrying out the numerical tests we have chosen the data from the
original paper by Taylor [37]. Analogous data are taken in the presence of
chemistry.

The representative case considered in [37] is his case (B), where the lon-
gitudinal transport time L/u0 is much bigger than the transversal diffusive
time a2/D. The problem of a diffusive transport of a solute was studied ex-
perimentally and analytically. Two basically different cases were subjected
to experimental verification in Taylor’s paper:

Case (B1) Solute of mass M concentrated at a point x = 0 at time t = 0.
The effective concentration is given by

Cm(x, t) =
M

2a2
√

π3kt
exp{−(x− u0t/2)2/(4kt)} (130)

Case (B2) Dissolved material of uniform concentration C0 enters the pipe
at x = 0, starting at time t = 0. Initially, the concentration of the
solvent was zero.

Clearly, it is Taylor’s case (B2) which is well suited for the numerical sim-
ulations and it dictates the choice of the initial/boundary value conditions:

c∗|x∗=0 = cR and c∗|t∗=0 = 0. (131)
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In the presence of the boundary concentration ĉ we choose the following
initial condition

ĉ|t∗=0 = 0. (132)

Originally this problem is formulated in a semi-infinite channel. In our
numerical computations we have considered a finite one of length 2LR. At
the outflow we have imposed a homogeneous Neumann boundary condition

∂x∗c
∗|x∗=2LR

= 0. (133)

In a similar fashion, taking a homogeneous Neumann condition in the z∗

direction along the x∗ axis z∗ = 0, the anti-symmetry of the concentrations
allows considering only the upper half of the channel.

In each of the cases we will solve the full physical problem numerically.
Its section average will be compared with the solution the proposed effective
one dimensional model with Taylor’s dispersion. Finally, if one makes the
unjustified hypothesis that the average of a product is equal to the product
of averages, averaging over sections gives an one dimensional model which
we call the ”simple mean”. We will make a comparison with the solution of
that problem as well.

Numerical solution of the full physical problem is costly, due to dominant
Peclet and Damkohler numbers. We solve it using two independent methods.

PARAMETERS VALUES
Width of the slit : H 2.635 · 10−4 m,
Characteristic length : LR 0.319 m
ε = H/LR 0.826 · 10−3

characteristic velocity: Q∗ 4.2647 · 10−5 m/sec

diffusion coefficient: D∗ 1.436 · 10−10 m2/sec,
longitudinal Peclet number: Pe = LRQ∗

D∗ = 0.94738 · 105

α = log Pe/ log(1/ε) = 1.614172
transversal Peclet number: PeT = HQ∗

D∗ = 0.7825358 · 102

Table 1: Case A. Parameter values for the longest time example (t∗ = 11220
sec) from Taylor’s paper.

In the first approach we use the package FreeFem++ by Pironneau,
Hecht and Le Hyaric. For more information we refer to [31] . For the problem
(6)-(10) the method of characteristics from [32] is used. We present a very
short description of the method:
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• Discretization in time :
The first order operator is discretized using the method of character-
istics. More precisely, the equation (6) is written as:

∂c

∂t
+ (~q.∇)c = Dεα∂xxc + Dεα−2∂yyc = f(x, y, t) (134)

Let cm be an approximation for the solution c at a time mδt. Then the
one step backward convection scheme by the method of characteristics
reads as follows:

1
δt

(cm+1(x, y)− cm(x− q(y)δt, y)) = fm(x, y)

• Space discretization:
One of the characteristics of our problem is the presence of a smeared
front. In order to track it correctly, the Lagrange P1 finite elements,
with adaptive mesh, are used. The mesh is adapted in the neighbor-
hood of front after every 10 time steps.

Second method consists of a straightforward discretization method: first
order (Euler) explicit in time and finite differences in space. Both the time
step and the grid size are kept constant and satisfying the CFL condition to
ensure the stability of the calculations. To deal with the transport part we
have considered the minmod slope limiting method based on the first order
upwind flux and the higher order Richtmyer scheme (see, for example [33],
Chapter 14). We call this method (SlopeLimit).

A similar procedure is considered for the upscaled, one dimensional prob-
lems, obtained either by our approach or by taking the simple mean. It is
refined in the situations when we have explicit formulas for the solution,
using the direct numerical evaluation of the error function erf.

4.1 Examples from Taylor’s article (no chemistry)

First let us note that in Taylor’s article [37] the problem is axially symmetric
with zero flux at the lateral boundary. The solute is transported by Poiseuille
velocity.

For simplicity we will consider the flow through the two-dimensional slit
Ω∗ = (0,+∞)× (0,H). In order to have a two dimensional problem equiva-
lent to the case (B) from Taylor’s article, we reformulate the characteristic
velocity and the radius. Obviously we have

Q∗ =
3
4
u0, H = a

√
35
32

. (135)
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Then we start with

4.1.1 CASE A: 1st example from Taylor’s paper with the time
of flow: t∗ = 11220 sec

x∗ cTay cmoy 1
H

∫ H

0
c∗ dz (SlopeLimit) 1

H

∫ H

0
c∗ dz (FreeFem++)

0 1 1 1 1

0.3 0.930 0.968 0.97 0.945

0.308 0.805 0.863 0.888 0.885

0.313 0.685 0.725 0.775 0.844

0.314 0.659 0.695 0.75 0.821

0.317 0.571 0.588 0.665 0.69

0.324 0.359 0.329 0.439 0.58

0.3255 0.317 0.279 0.39 0.5625

0.33 0.206 0.155 0.256 0.427

0.3365 0.094 0.05 0.115 0.2957

0.337 0.088 0.048 0.107 0.2677

0.3385 0.070 0.035 0.085 0.2398

0.34 0.057 0.025 0.067 0.1839

0.344 0.029 0.009 0.033 0.0993

0.3475 0.016 0.003 0.016 0.04544

Table 2: Comparison between the concentrations cTay, cmoy and
1
H

∫ H

0
c∗ dz

for the Case A at the time t∗ = 11220 sec.

Here we are in absence of the chemistry i.e. kR = 0. We solve

1. The 2D problem (1), (2), (131). It is solved using the FreeFM++
package and with (SlopeLimit). On the images the solution is denoted
(pbreel).

2. The effective problem

∂t∗c
Tay +

2Q∗

3
∂x∗c

Tay = D∗(1 +
8

945
Pe2

T )∂x∗x∗c
Tay for x, t > 0,

(136)

cTay|x=0 = 1 and cTay|t=0 = 0. (137)

On the images its solution is denoted by (taylor).

3. The problem obtained by taking the simple mean over the vertical
section:

∂t∗c
moy +

2Q∗

3
∂x∗c

moy −D∗∂x∗x∗c
moy = 0 in (0, +∞)× (0, T ) (138)
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Figure 1: Comparison between concentration from Taylor’s paper (taylor),
from the original problem (pbreel) and the simple average (moyenne) at
t = 11220 sec.

with initial/boundary conditions (137). On the images its solution is
denoted by (moyenne).

Parameter values are on Table 1.
We note that Table 2 is analogous to Table 2, page 196 from Taylor’s

article [37].
Note that in the absence of the chemical reactions we can solve explicitly

the problems (136)-(137), respectively (138) - (137). With Q̄ = 2Q∗
3 and

D̄ = D∗(1 + 8
945Pe2

T ), the solution for (136)-(137) reads

cTay(x, t) = 1− 1√
π

[
exp{Q̄x

D̄
}

∫ ∞

(x+Q̄t)/(2
√

D̄t)
e−η2

dη+
∫ ∞

(x−Q̄t)/(2
√

D̄t)
e−η2

dη
]

(139)
For the problem (138),(137), everything is analogous.
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4.1.2 CASE B: 2nd example from Taylor’s paper with the time
of flow: t∗ = 240 sec

PARAMETERS VALUES
Width of the slit : H 2.635 · 10−4 m,
Characteristic length : LR 0.632 m
ε = H/LR 0.41693 · 10−3

characteristic velocity: Q∗ 0.393 · 10−2 m/sec

diffusion coefficient: D∗ 0.6 · 10−9 m2/sec,
longitudinal Peclet number: Pe = LRQ∗

D∗ = 4.1396 · 106

α = log Pe/ log(1/ε) = 1.95769
transversal Peclet number: PeT = HQ∗

D∗ = 1.72592 · 103

Table 3: Case B. Parameter values for the characteristic time 240 seconds
for the 2nd example from Taylor’s paper

We solve the same equations as in §4.1.1. Since α is very close to the
threshold value α∗ = 2, the difference between the solution to the effective
equation obtained by taking the simple mean, at one side, and the solutions
to the original problem and to our upscaled equation, are spectacular. Our
model approximates fairly well the physical solution even without adding
the correctors (see Table 4). Parameters are given on Table 3.

Since no chemistry is considered here, an explicit solution can be given
in this case as well and it is given by (139). The results are presented
in Table 4 and Figure 2. Figures 1 and 2 show clearly the advantage of
the upscaled model over the model obtained by taking the simple mean
over the vertical section. Presence of the important enhanced diffusion is
very important for numerical schemes. Note that in the case considered
in §4.1.2, the transversal Peclet number is 10 times larger then in the case
§4.1.1, explaining the difference in the quality of the approximation.

4.2 Examples with the linear surface adsorption-desorption
reactions

In the case of the full two-dimensional problem with linear surface adsorption-
desorption reactions(1), (2), (131), (132), we present two tests.
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solution for the original problem (pbreel), the solution to the upscaled prob-
lem (taylor) and the solution for the problem obtained by taking a simple
section average (moyenne) at t∗ = 240 sec.
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x∗ cTay cmoy 1
H

∫ H

0
c∗ dz (SlopeLimit) 1

H

∫ H

0
c∗ dz (FreeFem++)

0 1 1 1 1

0.45 0.986 1 0.99 0.98438

0.537 0.876 1 0.89 0.942785

0.58 0.741 0.993 0.758 0.751335

0.605 0.636 0.882 0.65 0.675492

0.638 0.484 0.327 0.49 0.501282

0.667 0.351 0.033 0.348 0.456008

0.68 0.296 0.007 0.288 0.323355

0.711 0.182 0. 0.166 0.20671

0.74 0.106 0. 0.086 0.116112

0.75 0.086 0. 0.065 0.0926387

0.76 0.069 0. 0.049 0.0723552

0.77 0.055 0. 0.035 0.0549984

0.795 0.029 0. 0.014 0.0407674

0.804 0.023 0. 0.009 0.0201409

Table 4: Comparison between the concentrations cTay, cmoy and
1
H

∫ H

0
c∗ dz

for the Case B, corresponding to the 2nd example from Taylor’s paper, at
the time t∗ = 240 sec.

4.2.1 Linear surface adsorption-desorption reactions. Case A2
with the times of flow: t∗ = 100, t∗ = 211 and t∗ = 350 sec

This first case is with slightly modified data of the Case A from §4.1.1. We
just modify the width of the channel, the diffusivity and choose a shorter
time of the flow.

We note that our scaling impose k̂∗ = εQ∗ and Ke = H. This gives
DaT = εPeT . Now the system to solve is (14)-(15):

∂t∗(c∗ +
ĉ

H
) + (

2Q∗

3
+

2Q∗DaT

45
)∂x∗c

∗ −D∗(1 +
8

945
Pe2

T )∂x∗x∗c
∗ =

2Q∗DaT

45Ke
∂x∗ ĉ

(1 +
1
3
DaT )∂t∗ ĉ = k̂∗(c∗ +

2HPeT

45
∂x∗c

∗ − ĉ

Ke
)

and no explicit solution is known. We should compare between the solutions
to (1) -(2) with the initial/boundary conditions (137), ĉ|t=0 = 0 (giving us
all together (pbreel3)) and (14)-(15) (giving us (eff)) and (16)-(17) (giving
us (moy)), with the same initial/boundary conditions.

The results are shown on the Tables 6, 7 and 8 and on the Figures 3, 4
and 5.
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PARAMETERS VALUES
Width of the slit : H 0.5 · 10−2 m,
Characteristic length : LR 0.632 m
ε = H/LR 0.7911 · 10−2

characteristic velocity: Q∗ 0.3 · 10−2 m/sec

diffusion coefficient: D∗ 0.2 · 10−6 m2/sec,
longitudinal Peclet number: Pe = LRQ∗

D∗ = 9.48 · 103

α = log Pe/ log(1/ε) = 1.670972
transversal Peclet number: PeT = HQ∗

D∗ = 75
characteristic reaction velocity: k̂∗ = εQ∗ = 0.237 · 10−4 m/sec

transversal Damkohler number: DaT = εHQ∗
D∗ = 0.5933

Table 5: Full linear surface adsorption-desorption problem: parameter val-
ues at the case A2: diffusive transport with surface reaction

Note that the solution to the problem obtained by taking the simple
section average develops a physically incorrect contact discontinuity. Also
our upscaled problem gives a good approximation for the original two-
dimensional problem, which is not the case with the simple mean.

Adding correctors would get us even closer to the solution for the two-
dimensional problem.

Figures 3, 4 and 5 show the simulation by FreeFm++ in the case §4.2.1.
Advantage of our approach is again fairly clear and the errors of the model
obtained by taking a simple mean persist in time.

4.2.2 Linear surface adsorption-desorption reactions. Case B2
with the times of flow: t∗ = 240 sec

In this case we consider the data of Case B, §4.1.2, as are given in Table 3.
The results are shown in Figure 6.

4.3 An example with the 1st order irreversible surface reac-
tion

In this situation we take K = Ke
H → +∞. The equation (1) does not change

but the boundary condition (2) becomes

−D∗∂zc
∗ =

∂ĉ

∂t∗
= k̂∗c∗ on z = ±H, (140)
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Figure 3: Comparison between the volume concentrations cTay,
1
H

∫ H

0
c∗ dz

and cmoy for the linear surface adsorption-desorption reactions, Case A2,
obtained using our effective problem (eff), average of the section of the
concentration from the original problem (pbreel3) and the concentration
coming from the simple average (moy) at time t∗ = 100 sec.
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Figure 4: Comparison between the volume concentrations cTay,
1
H

∫ H

0
c∗ dz

and cmoy for the linear surface adsorption-desorption reactions, Case A2,
obtained using our effective problem (eff), average of the section of the
concentration from the original problem (pbreel3) and the concentration
coming from the simple average (moy) at time t∗ = 211 sec.
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Figure 5: Comparison between the volume concentrations cTay,
1
H

∫ H

0
c∗ dz

and cmoy for the linear surface adsorption-desorption reactions, Case A2,
obtained using our effective problem (eff), average of the section of the
concentration from the original problem (pbreel3) and the concentration
coming from the simple average (moy) at time t∗ = 350 sec.
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Figure 6: Volume concentrations (linear surface adsorption-desorption re-
actions,Case B2) : Comparison between concentration obtained using our
effective problem (eff), average of the section of the concentration from the
original problem (Full) and the concentration coming from the simple aver-
age (moy) at t = 240 sec.
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x∗ cTay cmoy 1
H

∫ H

0
c∗ dz

0 1 1 1

0.01 0.98669465 0.990034274 0.97837

0.05 0.950946235 0.950663125 0.92873

0.1 0.903593771 0.896561247 0.876323

0.2 0.79700151 0.776023352 0.7669

0.225 0.759276074 0.745201145 0.728739

0.25 0.715756063 0.71148785 0.678978

0.275 0.65174438 0.696567508 0.613898

0.29 0.603878726 0.693955625 0.566586

0.3 0.567950276 0.590067563 0.532094

0.31 0.539037927 0.371543232 0.495586

0.32 0.498188037 0.213820021 0.457112

0.35 0.377225997 0.00495647031 0.333673

0.4 0.172223512 2.41496286E-07 0.134612

0.45 0.0591622065 3.07462138E-13 0.0160686

Table 6: Comparison between the volume concentrations cTay, cmoy and
1
H

∫ H

0
c∗ dz for the linear surface adsorption-desorption reactions, Case

A2, at the time t∗ = 100 sec.

The system (14)-(15) becomes




∂t∗c
∗ + (

2Q∗

3
+

4Q∗DaT

45
)∂x∗c

∗+

k̂∗

H
(1− DaT

3
)c∗ −D∗(1 +

8
945

Pe2
T )∂x∗x∗c

∗ = 0

in (0, +∞)× (0, T )

(141)

and the equation corresponding to a simple mean reads




∂t∗c
moy +

2Q∗

3
∂x∗c

moy +
k̂∗

H
cmoy −D∗∂x∗x∗c

moy = 0

in (0,+∞)× (0, T ) (142)

We impose k̂∗ = Q∗/400.
For this particular reactive flow, the problem (141) has an explicit solu-

tion for the following initial/boundary data:

c∗|x∗=0 = 0 and c∗|t∗=0 = 1. (143)
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x∗ cTay cmoy 1
H

∫ H

0
c∗ dz

0 1 1 1

0.01 0.989694187 0.994090699 0.986112

0.05 0.967015027 0.971961203 0.952705

0.1 0.934075267 0.936547842 0.91569

0.2 0.861407801 0.857677963 0.836403

0.3 0.781074907 0.765463212 0.750173

0.4 0.694746658 0.662811744 0.662342

0.5 0.600404621 0.553304147 0.574491

0.55 0.544239838 0.497265165 0.521332

0.6 0.474489299 0.438951289 0.452928

0.65 0.386694802 0.318097632 0.366176

0.7 0.284796763 0.0115430139 0.269368

0.75 0.183421956 1.67295192E-05 0.172172

0.8 0.100489679 3.46962941E-09 0.088037

0.9 0.017165388 1.93051599E-19 0.00981583

Table 7: Comparison between the volume concentrations cTay, cmoy and
1
H

∫ H

0
c∗ dz for the linear surface adsorption-desorption reactions, Case

A2, at the time t∗ = 211 sec.

It reads

c∗(x∗, t∗) = e−k1t∗


1− 1√

π


e

2Q1x∗
3D1

∫ +∞

x+2t∗Q1/3

2
√

D1t∗

e−η2
dη +

∫ +∞

x−2t∗Q1/3

2
√

D1t∗

e−η2
dη







(144)

where k1 =
k̂∗

H
(1− DaT

3
), Q1 = Q∗(1 +

2DaT

15
and D1 = D∗(1 +

8
945

Pe2
T ).

For the problem (142) we also impose the initial/boundary condition

(143) and cmoy is given by the formula (144) as well, but with k1 =
k̂∗

H
,

Q1 = Q∗ and D1 = D∗.
The data are given in Table 9, whereas the results are shown in Tables 10,

11 and 12 and in Figures 7, 8 and 9, corresponding to the times t∗ = 50, 70
and 100 sec.

We see that the solution to the problem obtained by taking a simple
mean over the vertical section has incorrect amplitude.
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Figure 7: Case of the 1st order irreversible surface reaction (K = +∞):
Comparison between concentration obtained using our effective problem
(eff), average of the section of the concentration from the original prob-
lem (pbreel3) and the concentration coming from the simple average (moy)
at t = 50 sec.
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Figure 8: Case of the 1st order irreversible surface reaction (K = +∞):
Comparison between concentration obtained using our effective problem
(eff), average of the section of the concentration from the original prob-
lem (pbreel) and the concentration coming from the simple average (moy)
at t = 70 sec.
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Figure 9: Case of the 1st order irreversible surface reaction (K = +∞):
Comparison between concentration obtained using our effective problem
(eff), average of the section of the concentration from the original prob-
lem (pbreel) and the concentration coming from the simple average (moy)
at t = 100 sec.
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x∗ cTay cmoy 1
H

∫ H

0
c∗ dz

0 1 1 1

0.1 0.95909192 0.965613038 0.9484

0.2 0.911441678 0.919474858 0.897755

0.4 0.794454955 0.793564942 0.775743

0.6 0.657701569 0.631584001 0.624061

0.7 0.583632368 0.542316066 0.545435

0.8 0.508150772 0.453470264 0.469133

0.9 0.431290446 0.363040727 0.39611

1. 0.34825939 0.276213033 0.319716

1.05 0.298816871 0.237173717 0.273235

1.1 0.247412008 0.109554202 0.224233

1.15 0.19336287 0.00589796516 0.175742

1.2 0.140469463 3.17192071E-05 0.128868

1.3 0.058066265 5.57849169E-12 0.0512471

1.4 0.0152972824 4.65348193E-21 0.0131282

Table 8: Comparison between the volume concentrations cTay, cmoy and
1
H

∫ H

0
c∗ dz for the linear surface adsorption-desorption reactions, Case

A2, at the time t∗ = 350 sec.

4.4 Numerical experiments in the case of an infinite adsorp-
tion rate

In this subsection we solve the equation (42)

(1 + DaK)
∂c∗,eff

K

∂t∗
+

2Q∗

3
∂c∗,eff

K

∂x∗
=

D∗
(
1 +

4
135

Pe2
T [

2
7

+
DaK(2 + 7DaK)

(1 + DaK)2
]
)∂2c∗,eff

K

∂(x∗)2
.

with the initial/boundary data

c∗,eff
K |x∗=0 = 0 and c∗,eff

K |t∗=0 = 1. (145)

Parameters are shown on the Table 13.
Results are shown at Tables 14, 15 and 16 and on corresponding Figures

10, 11 and 12, at times t∗ = 863, 2877 and 5755 sec.
Once more the model obtained by the simple averaging over vertical

section gives an approximation which is not good and which gets worse
during time evolution.
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Figure 10: Case of an infinite adsorption rate k̂∗ = +∞: Comparison be-
tween concentration obtained using our effective problem (eff), average of
the section of the concentration from the original problem (pbreel3) and the
concentration coming from the simple average (moy) at t = 863 sec.
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Figure 11: Case of an infinite adsorption rate k̂∗ = +∞: Comparison be-
tween concentration obtained using our effective problem (eff), average of
the section of the concentration from the original problem (pbreel3) and the
concentration coming from the simple average (moy) at t = 2877 sec.
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Figure 12: Case of an infinite adsorption rate k̂∗ = +∞: Comparison be-
tween concentration obtained using our effective problem (eff), average of
the section of the concentration from the original problem (pbreel3) and the
concentration coming from the simple average (moy) at t = 5755 sec.
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PARAMETERS VALUES

Width of the slit : H 2.635 · 10−4 m,

Characteristic length : LR 0.632 m

ε = H/LR 0.41693 · 10−3

characteristic velocity: Q∗ 0.393 · 10−2 m/sec

diffusion coefficient: D∗ 1.2 · 10−8 m2/sec,

longitudinal Peclet number: Pe = LRQ∗
D∗ = 2.0698 · 105

α = log Pe/ log(1/ε) = 1.572789

transversal Peclet number: PeT = HQ∗
D∗ = 86.296

Table 9: Parameter values in the case of the 1st order irreversible surface
reaction (K = +∞)

5 Conclusions and perspectives

In this article we have justified by direct numerical simulation the effective
(or upscaled) equations obtained using the techniques of anisotropic singular
perturbation for the partial differential equations describing reactive flows
through a slit under dominant Peclet and Damkohler numbers.

In order to have a good comparison with classical Taylor’s paper we were
forcing our models to be parabolic, when it was possible.

Nevertheless, there is the possibility of obtaining hyperbolic models, at
same order of precision, O(ε2(2−α)). We note that such models where derived
by Balakotaiah and Chang in [6] for a number of practical situations. In the
articles [7] and [15], Balakotaiah et al used the Liapounov-Schmidt reduction
coupled with perturbation, to develop multi-mode models, which exhibit hy-
perbolic behavior. Our comparison calculation from Sec. §3.1 shows that
formally multi-mode models are of the same order as our parabolic effective
equations. This was already argued in [6]. It would be interesting to calcu-
late the error estimate for the multi-mode hyperbolic models, introduced by
Balakotaiah et al, and to compare the approximations on mathematically
rigorous way.

Furthermore, there is approach by Camacho using a viewpoint of Irre-
versible Thermodynamics and leading to the Telegraph equation. For more
details we refer to [12], [13], [14] and to the doctoral thesis [9]. We plan
to address this subject in the near future and extend our results in this
direction.
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x∗ cTay cmoy 1
H

∫ H

0
c∗ dz

0 0 0 0
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∫ H

0
c∗ dz

at the time t∗ = 50 sec.

TU Eindhoven in Spring 2006, supported by the Visitors Grant B-61-602 of
the Netherlands Organisation for Scientific Research (NWO).

The research of C.J. van Duijn and I.S. Pop was supported by the Dutch
government through the national program BSIK: knowledge and research
capacity, in the ICT project BRICKS (http://www.bsik-bricks.nl), theme
MSV1.
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sion efficace pour des problèmes de Chimie-Transport: Changement d’échelle
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[23] U.Hornung, W.Jäger, Diffusion, convection, adsorption, and reaction of
chemicals in porous media, J. Differential Equations , Vol. 92 (1991),
p. 199-225.

[24] P. Knabner, C.J. van Duijn, S. Hengst, An analysis of crystal dissolu-
tion fronts in flows through porous media. Part 1: Compatible boundary
conditions , Adv. Water Resour., Vol. 18 (1995), p. 171-185.

[25] R. Mauri, Dispersion, convection and reaction in porous media , Phys.
Fluids A, Vol. 3 (1991), p. 743-755.

[26] G.N. Mercer, A.J. Roberts, A centre manifold description of contami-
nant dispersion in channels with varying flow profiles , SIAM J. Appl.
Math. , Vol. 50 (1990), p. 1547-1565.
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[29] A. Mikelić , C. Rosier, Rigorous upscaling of the infinite adsorption rate
reactive flow under dominant Peclet number through a pore, Ann. Univ
Ferrara Sez. VII Sci. Mat., Vol. 53 (2007).

[30] M.A. Paine, R.G. Carbonell, S. Whitaker, Dispersion in pulsed systems
– I, Heterogeneous reaction and reversible adsorption in capillary tubes,
Chemical Engineering Science, Vol. 38 (1983), p. 1781-1793.

[31] O. Pironneau, F. Hecht, A. Le Hyaric, FreeFem++ version 2.15-1,
http://www.freefem.org/ff++/.
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