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Abstract

We study the homogenization problem for a convection-diffusion equation
in a periodic porous medium in the presence of chemical reaction on the pores
surface. Mathematically this model is described in terms of a solution to a
system of convection-diffusion equation in the medium and ordinary differ-
ential equation defined on the pores surface. These equations are coupled
through the boundary condition for the convection-diffusion problem.
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Under an appropriate choice of scaling factors (large Péclet and Damkohler
numbers), we obtain the homogenized problem in a moving frame whose ef-
fective velocity does actually depend on the chemical reaction.

1 Introduction

We consider saturated flow through a porous medium. The flow domain con-
tains a certain mass of solute, usually called tracer. Experimental works show
that the tracer gradually spreads with flow, but its spreading is not well
described by the simply averaged advection-diffusion equations for the con-
centration. This spreading phenomenon is called hydrodynamic dispersion.

Following [10], the hydrodynamic dispersion is the averaged macroscopic
picture of the motion of the tracer particles through the pore structure and
of the chemical reactions of the solute with the solid walls and with other
particles. It is caused by two basic transport phenomena involved: convection
and molecular diffusion. Their simultaneous presence in the pore structure
leads to a complex spreading of the tracer. The interaction between the
solid pore interfaces and the fluid is related to the adsorption or deposition
of tracer particles on the solid surface. Eventually, radioactive decay and
chemical reactions within the fluid may also cause concentration changes.

Due to the complexity of the problem, many results in the literature are
concerned with simple models of porous media being either bundles of cap-
illary tubes, or arrays of cells and so on. Such simplifications allow explicit
calculations. Taylor’s dispersion is one of the most well-known examples of
the role of transport in dispersing a flow carrying a dissolved solute. The
simplest setting for observing it, is the injection of a solute into a slit channel.
The solute is transported by Poiseuille’s flow. In this situation Taylor found
in [36] an explicit expression for the dispersion.

Actually the hydrodynamic dispersion could be studied in three distinct
regimes: a) diffusion-dominated mixing, b) Taylor dispersion-mediated mixing
and c) chaotic advection. In the first regime, the velocity is small and the
Péclet’s number Pe is of order one or smaller. Molecular diffusion plays the
dominant role in solute dispersion. This case is well-understood even for
reactive flows (see e.g. the papers [16], [18], [20], [21], [22], [17]). If the flow
rate is increased so that the Péclet’s number Pe is much larger than one,
then there is a time scale at which transversal molecular diffusion smears the
contact discontinuity into a plug. This is the regime under study in the present
paper. In addition to dominant Péclet’s number we also consider dominant
non-dimensional numbers linked to the chemistry, like Damkohler’s number.
Eventually the third regime, corresponding to turbulent mixing, is much more
delicate and is not considered here.

Our main contribution (see Theorem 3) is to give a rigorous derivation of a
macroscopic homogenized model explaining Taylor dispersion for a tracer in an
incompressible saturated flow through a periodic porous medium, undergoing
linear adsorption/desorption chemical reactions on the solid boundaries of the
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pores. Our main technical tool is the notion of two-scale convergence with
drift introduced in [23] and applied to convection-diffusion problems in [8]
and [14]. With respect to these two previous works the new feature in the
present work is the coupling of a convection-diffusion for the bulk solute with
an ordinary differential equation for surface concentration.

For the derivation of Taylor’s dispersion in porous media using formal
two-scale expansions, we refer to [9], [24], [35] and references therein. Vol-
ume averaging approach to the effective dispersion for reactive flows through
porous media requires an ad hoc closure hypothesis, as in [29].

Rigorous mathematical justification of Taylor’s dispersion in capillary tubes,
for classical Taylor’s case and for reactive flows, was undertaken in [25] and
[12]. In the case of oscillating coefficients (a mesoscopic porous medium),
with no chemical reactions, the rigorous study of dispersion for dominant
Péclet’s number, is in [34] and in [11]. The approach from [11] is based on
an expansion around the regular solutions for the underlying linear transport
equation. This approach requires compatible data but also gives an error es-
timate. In this paper we deal with the pore geometry and dominant Péclet’s
and Damköhler’s numbers and we think that the two-scale convergence with
drift is the right tool to address problems of such level of difficulty.

The contents of the paper is the following. In Section 2 we describe our
model and its scaling in terms of various geometrical and physical quantities.
Section 3 is devoted to the precise statement of our result, to some uniform
a priori estimates and several definitions of two-scale convergence with drift.
Section 4 is devoted to a weak convergence proof of our result based on passing
to the limit in the variational formulation of the problem with adequate test
functions. Finally Section 5 concludes the proof of our main theorem by
showing that the two-scale convergence is actually strong. It relies on a Γ-
convergence type result, namely on the convergence of the associated energy.
Let us finish this introduction by referring the less mathematically inclined
reader to another paper of us [4] where the rigorous two-scale convergence
with drift is replaced by simpler two-scale asymptotic expansions with drift
and which features some numerical computations of homogenized dispersion
tensors.

2 Statement of the problem and its

non-dimensional form

We consider diffusive transport of the solute particles transported by a station-
ary incompressible viscous flow through an idealized infinite porous medium.
The flow regime is assumed to be laminar through the fluid part Ωf of this
porous medium, which is supposed to be a network of interconnected channels
(in other words, we suppose that Ωf is a connected domain in Rn, n ≥ 2; usu-
ally in the applications n = 2, 3). The flow satisfies a slip (non penetrating)
condition on the fluid/solid interfaces and Ωf is saturated by the fluid. Solute
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particles are participants in a chemical reaction with the solid boundaries of
the pores. For simplicity we suppose that they do not interact between them.

Reactive transport of a single solute is described by the following model
for the solute concentration c∗:

∂c∗

∂t∗
+ v∗(x∗, t∗) · ∇x∗c

∗ −D∗∆x∗c
∗ = 0 in Ωf × (0, T ∗), (1)

where v∗ is the fluid velocity, and D∗ the molecular diffusion (a positive
constant). At the solid/fluid boundary ∂Ωf takes place an assumed linear
adsorption process, described by the following equations:

−D∗∇x∗c
∗ · n =

∂ĉ∗

∂t∗
= k̂∗(c∗ − ĉ∗

K∗ ) on ∂Ωf × (0, T ∗), (2)

where k̂∗ represents the rate constant for adsorption, K∗ the linear adsorption
equilibrium constant and n is the unit normal at ∂Ωf oriented outwards with
respect to Ωf . For more on mathematical modeling of adsorption/desorption
and references from the chemical engineering we refer to [15].

This system is generic and appears in numerous situations (see e.g. the
reference books [19], [30], or [32]). In the modeling variant [4] of this paper,
oriented to the chemical engineering readership, we explain in detail how to
reduce the linearized models for binary ion exchange, and linearized reactive
flow systems with m species to the system (1)-(2).

To make an asymptotic analysis of this problem we must first introduce
appropriate scales deduced from characteristic parameters such as the char-
acteristic concentration cR, the characteristic length LR, the characteristic
velocity VR, the characteristic diffusivity DR, the characteristic time TR, and
other characteristic quantities denoted by a R-index (meaning ”reference”).
Scaling in homogenization is an important issue (see e.g. [31], [33]). The char-
acteristic length LR coincides in fact with the ”observation distance”. We as-
sume that the typical heterogeneities in Ωf have a characteristic size ` << LR.

We set ε =
`

LR
<< 1 and the rescaled flow domain is now Ωε = Ωf/LR, with

notation reminding us that it contains pores of characteristic non-dimensional
size ε. Setting

uf =
c∗

cR
, x =

x∗

LR
, t =

t∗

TR
, v(x, t) =

1
VR

v∗(x∗, t∗), D =
D∗

DR
,

k =
k̂∗

kR
, vs =

ĉ∗

ĉR
, K =

K∗

KR
,

we obtain the dimensionless equations

∂uf

∂t
+

VRTR

LR
v(x, t) · ∇xuf − DRTR

L2
R

D∆xuf = 0 in Ωε × (0, T ) (3)

and

−DDR

LR
cR∇xuf · n =

ĉR

TR

∂vs

∂t
= kRk(cRuf − ĉRvs

KKR
) on ∂Ωε × (0, T ). (4)

This problem involves the following time scales:
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TL = characteristic global advection time scale =LR/VR

TD = characteristic global diffusion time scale =L2
R/DR

TDE = KR/kR (characteristic desorption time)

TA = ĉR/(cRkR) (characteristic adsorption time)

Treact = superficial chemical reaction time scale =LR/kR

and the following characteristic non-dimensional numbers

Pe =
LRVR

DR
=

TD

TL
(Péclet number);

Da =
LRkR

DR
=

TD

Treact
(Damkohler number)

We choose to study a regime for which TR = TD. Due to the complex ge-
ometry and in presence of dominant Péclet and Damkohler numbers, solving
the full problem for arbitrary values of coefficients is costly and practically
impossible. Consequently, one would like to find the effective (or averaged or
homogenized) values of the dispersion coefficient and the transport velocity
and an effective corresponding parabolic equation for the effective concentra-
tion, valid in an infinite homogeneous porous media.

Let us be a little more precise on the definition of Ωε. From now on we
assume that Ωε is an ε-periodic unbounded open subset of Rn. It is built
from Rn by removing a periodic distributions of solid obstacles which, after
rescaling, are all similar to the unit obstacle Σ0. More precisely, the unit
periodicity cell is identified with the flat unit torus Tn on which we consider
a smooth partition Σ0 ∪ Y 0 where Σ0 is the solid part and Y 0 is the fluid
part. The fluid part is assumed to be a smooth connected open subset (no
assumption is made on the solid part). We define Y j

ε = ε(Y 0 + j), Σj
ε =

ε(Σ0 + j), Sj
ε = ε(∂Σ0 + j), Ωε =

⋃
j∈Zn

Y j
ε and Sε = ∂Ωε.

The equations for uε = uf and vε = vs in their non-dimensional form read
(with the velocity vε = v)

∂uε

∂t
+ Pevε(x, t) · ∇xuε = D∆xuε in Ωε × (0, T ) (5)

uε(x, 0) = u0(x), x ∈ Ωε, (6)

−D∇xuε · n =
TA

Treact

∂vε

∂t
=

TD

Treact
k(uε − TA

TDE

vε

K
) on ∂Ωε × (0, T ) (7)

vε(x, 0) = v0(x), x ∈ ∂Ωε. (8)

In Section 3.1 we shall make some further assumptions on the scaling of the
above adimensional system in terms of the geometrical small parameter ε.

3 Main results

3.1 Assumptions and main convergence theorem

In the present work we make the following two hypothesis.
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(H1)

Pe =
1
ε
, Da =

TD

Treact
=

1
ε
,

TA

Treact
= ε,

TA

TDE
= 1. (9)

(H2) The velocity field is periodic and incompressible, i.e.

vε(x, t) = b
(x

ε

)

with a periodic divergence–free vector field b(y) satisfying

| b(y) | ∈ L∞(Rn), divyb(y) = 0 in Y 0, b(y) · n(y) = 0 on ∂Σ0.

The initial data are chosen such that u0(x) ∈ L2(Rn) and v0(x) ∈ H1(Rn).
Taking into account (9), we rewrite problem (5)-(8) as follows

∂tuε +
1
ε
b
(x

ε

) · ∇uε −D∆uε = 0 in Ωε × (0, T ), (10)

−D

ε

∂uε

∂n
= ∂tvε =

k

ε2

(
uε − vε

K

)
on ∂Ωε × (0, T ), (11)

uε(x, 0) = u0(x), vε(x, 0) = v0(x), (12)

where we recall that K and k are positive constants. The variational formula-
tion of (10)-(11) is: find uε(t, x) ∈ L2((0, T );H1(Ωε))∩C0([0, T ];L2(Ωε)) and
vε(t, x) ∈ C0([0, T ]; L2(∂Ωε)) such that, for any test functions φ(x) ∈ H1(Ωε),
ψ(x) ∈ L2(∂Ωε), and a.e. in time,

d

dt

∫

Ωε

uεφ +
1
ε

∫

Ωε

b
(x

ε

) · ∇uεφ +
∫

Ωε

D∇uε · ∇φ +
k

ε

∫

∂Ωε

(
uε − vε

K

)
φ = 0,

d

dt

∫

∂Ωε

vεψ − k

ε2

∫

∂Ωε

(
uε − vε

K

)
ψ = 0,

together with the initial condition (12).

Remark 1. If the velocity field b(y) is not divergence-free and/or does not
satisfy the no-penetration condition b(y) · n(y) = 0 on ∂Σ0, it is still possible
to homogenize (10)-(12) by using first a factorization principle in the spirit
of [8].

Remark 2. We do not know how to extend our analysis to the case of
a macroscopically modulated velocity field b(x, y). Actually we believe the
asymptotic behavior could be completely different, according to the precise as-
sumptions on b(x, y). For example, in [6] (for a convection-diffusion equation)
and [7] (for a self-adjoint diffusion equation) it was shown, under specific ge-
ometric assumptions on the macroscopic dependence of the coefficients, that a
localization effect can take place at a lengthscale of

√
ε. However the general

case is still open and it is very likely that localization does not always happen.
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To simplify the presentation we use an extension operator from the perfo-
rated domain Ωε into Rn (although it is not necessary). As was proved in [1],
there exists such an extension operator T ε from H1(Ωε) in H1(Rn) satisfying
T εψ|Ωε = ψ and the inequalities

‖ψ‖L2(Rn) ≤ C‖ψ‖L2(Ωε), ‖∇ψ‖L2(Rn) ≤ C‖∇ψ‖L2(Ωε)

with a constant C independent of ε, for any ψ ∈ H1(Ωε). We keep for the
extended function T εψε the same notation ψε. Our main result is the following
strong convergence.

Theorem 3. The sequence {uε, vε} of solutions to (10)-(12) satisfies

uε(t, x) = u

(
t, x− b̄

ε
t

)
+ru

ε (t, x), vε(t, x) = Ku

(
t, x− b̄

ε
t

)
+rv

ε (t, x) (13)

with

lim
ε→0

∫ T

0

∫

Rn

|ru
ε (t, x)|2 dt dx = 0 and lim

ε→0
ε

∫ T

0

∫

∂Ωε

|rv
ε (t, x)|2 dt dx = 0,

where b̄ is the so-called effective drift (a constant vector) given by

b̄ = (|Y 0|+ |∂Σ0|n−1K)−1

∫

Y 0

b(y)dy

and u(x, t) is the unique solution of the homogenized problem




(|Y 0|+ K|∂Σ0|n−1)∂tu = divx

(
A∗∇xu

)
in Rn × (0, T ),

u(x, 0) =
|Y 0|u0(x) + |∂Σ0|n−1v

0(x)
|Y 0|+ K|∂Σ0|n−1

in Rn,
(14)

where the effective diffusion tensor A∗ is defined by

A∗ =
K2

k
|∂Σ0|n−1b̄⊗ b̄ + D

∫

Y 0

(I +∇yχ(y))(I +∇yχ(y))T dy. (15)

The vector-valued periodic function χ has components χi ∈ H1(Y 0) which are
solutions of the following cell problem, 1 ≤ i ≤ n,

b(y) · ∇χi(y)−Ddiv(∇(χi(y) + yi)) = b̄i − bi(y) in Y 0,

D∇(χi(y) + yi) · n = Kb̄i on ∂Σ0.
(16)

Here |Y 0| stands for the volume of Y 0, |∂Σ0|n−1 for the (n−1)-dimensional
measure of the boundary ∂Σ0 and n(y) is the external unit normal on ∂Σ0.

Remark 4. Convection is not seen in the homogenized equation (14) because
the solution u is defined in moving coordinates when compared to uε and vε

in (13). However, (14) is equivalent to a convection diffusion equation by a
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simple change of reference frame. Indeed, introducing ũε(t, x) = u
(
t, x− b̄

ε t
)
,

it is a solution of




∂ũε

∂t
+

1
ε
b̄ · ∇ũε − div (A∗∇ũε) = 0 in Rn × (0, T )

ũε(t = 0, x) =
|Y ∗|u0(x) + |∂O|n−1v

0(x)
|Y ∗|+ K|∂O|n−1

in Rn

Theorem 3 is valid only for an unbounded domain Ωε. It is clear from the
large drift in (13) or in the above equation that there is a serious difficulty to
deal with the case of a bounded domain for time much larger than ε.

Remark 5. The adsorption rate k appears only in the first term of the right
hand side of (15), so it is easy to check that A∗ varies monotonically with k
and blows up when k goes to 0. Since in the original problem (10)-(12) the
limit case k = 0 is perfectly legitimate and means no chemical reaction at all,
this shows that the homogenization limit does not commute with the limit as
k goes to 0. When k goes to +∞, the first term of the right hand side of
(15) cancels out, a situation which corresponds to fixing vε = Kuε on the pore
boundaries. The dependence of A∗ upon the equilibrium constant K is implicit.
At least formally, when K goes to 0, one recover the usual cell problem, drift
and homogenized tensor corresponding to homogeneous Neumann boundary
condition on the pore boundaries (i.e. without chemistry). On the other hand
when K goes to +∞, we obtain that b̄ = 0 and the product Kb̄, as well as A∗,
have a non-zero limit, corresponding to the case of Fourier or Robin boundary
condition for uε.

Remark 6. The proof of Theorem 3 is the focus of the last two sections and
relies on the notion of two-scale convergence with drift. For the mathemati-
cally less inclined reader, a formal method for guessing the correct homogenized
problem (14) is the method of two-scale asymptotic expansions with drift (see
[4] and [28]). More precisely, one assumes that

uε(t, x) =
+∞∑

i=0

εiui

(
t, x− b̄

ε
t,

x

ε

)
,

with ui(t, x, y) a function of the macroscopic variable x and of the periodic
microscopic variable y ∈ Y = (0, 1)n, and similarly

vε(t, x) =
+∞∑

i=0

εivi

(
t, x− b̄

ε
t,

x

ε

)

Plugging these ansatz in the equation (10) yields after some standard algebra
the desired result, at least formally.

3.2 Uniform a priori estimates

We now derive a priori estimates based on the energy equality. As usual,
they imply existence of a unique solution to problem (10)-(12). Depending
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on the assumed regularity of the initial data, we could prove arbitrary high
regularity of the solution.

Lemma 1. There exists a constant C, which does not depend on ε, such that
the solution of (10)-(12) satisfies

‖uε‖L∞((0,T );L2(Ωε)) +
√

ε‖vε‖L∞((0,T );L2(Sε)) + ‖∇uε‖L2((0,T )×Ωε)

≤ C
(‖u0‖L2(Rn) + ‖v0‖H1(Rn)

)
. (17)

Proof. The energy estimate for (10)-(12) reads

1
2

d

dt

[
‖uε‖2

L2(Ωε)
+

ε

K
‖vε‖2

L2(∂Ωε)

]
+

∫

Ωε

D∇uε(t) · ∇uε(t)dx +
εk

ε2

∫

Sε

(
uε − vε

K

)2
dσ = 0, (18)

from which we easily deduce the desired result since ε‖v0‖2
L2(∂Ωε)

≤ C‖v0‖2
H1(Rn).

To obtain (18) we multiply equation (10) by uε and integrate by parts over
Ωε. The convective term cancels out since the velocity is divergence-free and
has a zero normal component on the boundary
∫

Ωε

b
(x

ε

)·∇uε uε dx =
1
2

∫

Ωε

div
(
b
(x

ε

)|uε|2
)

dx = −1
2

∫

Sε

|uε|2b
(x

ε

)·n dσ = 0.

It yields

1
2

d

dt
‖uε‖2

L2(Ωε)
+

∫

Ωε

D∇uε(t) · ∇uε(t)dx +
k

ε

∫

Sε

(
u2

ε −
vε

K
uε

)
dσ = 0.

Multiplying then the equation ∂tvε =
k

ε2

(
uε − vε

K

)
by εvε/K and integrating

the result over Sε yields

1
2

ε

K

d

dt
‖vε‖2

L2(Sε)
+

k

ε

∫

Sε

(
− uεvε

K
+

v2
ε

K2

)
dσ = 0.

Summing up the last two relations, we obtain (18).

Next we estimate vε using uε. Without loss of generality we can assume

that the function vε is defined by the equation ∂tvε =
k

ε2

(
uε− vε

K

)
everywhere

in Ωε and not solely on Sε.

Lemma 2. There exists a constant C, which does not depend on ε, such that

‖vε‖L2((0,T );H1(Ωε)) ≤ C(‖uε‖L2((0,T );H1(Ωε)) + ε‖v0‖H1(Rn)). (19)
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Proof. Solving explicitly the ODE (11), we get

vε(t, x) =

t∫

0

k

ε2
exp

( k

Kε2
(s− t)

)
uε(s, x)ds + v0(x) exp

(
− kt

Kε2

)
.

Since
k

ε2
exp{− kτ

Kε2
}χ0≤τ≤t is bounded in L1(0, T ) independently of ε, Young’s

inequality yields
{ ‖vε‖L2((0,T );H1(Ωε)) ≤ C(‖uε‖L2((0,T );H1(Ωε)) + ε‖v0‖H1(Rn)),
‖vε‖L2((0,T )×Ωε) ≤ C(‖uε‖L2((0,T )×Ωε)) + ε‖v0‖L2(Rn)).

(20)

The next a priori estimate is again a consequence of the energy equality
(18).

Lemma 3. There exists another constant C, which does not depend on ε,
such that ∥∥ 1

K
vε − uε

∥∥
L2((0,T )×Ωε)

≤ Cε.

Proof. The desired estimate is a consequence of the following Poincaré type
inequality

‖w‖2
L2(Ωε)

≤ C
(
ε2‖∇w‖2

L2(Ωε)
+ ε‖w‖2

L2(∂Ωε)

)

This inequality is derived in [13]. Combining it with the energy estimate (18),
we obtain the statement of lemma.

Remark 7. All the previous a priori estimates are not uniform with respect
to k and K. This is one reason why taking the homogenization limit ε → 0
and taking the zero-adsorption limit k → 0 do not commute.

3.3 Two-scale convergence with drift

For the reader’s convenience we recall here the definition of two-scale conver-
gence in moving coordinates (or with drift) introduced in [23] (see [3] for a
pedagogical presentation including detailed proofs).

Definition 1. Let V be a constant vector in Rn. We say that a sequence of
functions Uε(t, x) ∈ L2((0, T )×Rn) two-scale converges in moving coordinates
(or, equivalently, with drift) (x, t) → (x − V

ε t, t) to a function U0(t, x, y) ∈
L2((0, T )× Rn × Tn) if

‖Uε‖L2((0,T )×Rn) ≤ C

and for any φ(t, x, y) ∈ C∞
0 ((0, T )× Rn × Tn)

lim
ε→0

T∫

0

∫

Rn

Uε(t, x)φ
(
t, x− V

ε
t,

x

ε

)
dxdt =

T∫

0

∫

Rn

∫

Tn

U0(t, x, y)φ(t, x, y)dxdydt.

(21)

The convergence (21) is denoted by Uε
2−drift−→ U0.
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In analogy with the classic two-scale convergence results (see [2] and [26]),
we have:

Proposition 8. ([23]) Let V be a constant vector in Rn and let the sequence
Uε be uniformly bounded in L2((0, T );H1(Rn)). Then there exists a subse-
quence, still denoted by ε, and functions U0(t, x) ∈ L2((0, T );H1(Rn)) and
U1(t, x, y) ∈ L2((0, T )× Rn; H1(Tn)) such that

Uε
2−drift−→ U0, (22)

∇Uε
2−drift−→ ∇xU0 +∇yU1. (23)

Thanks to estimate (18) and Lemmata 1, 2 and 3 and Proposition 8, we
have the following compactness result.

Corollary 9. Let {uε, vε} be the solution of problem (10)-(12), extended to
the whole space. Take the drift V = b̄. Then there exists a subsequence (still
denoted by ε) and {u,w, q} ∈ L2((0, T );H1(Rn))×L2((0, T )×Rn;H1(Tn))×
L2((0, T )× Rn × Tn) such that





uε
2−drift−→ u(t, x), ∇uε

2−drift−→ ∇u(t, x) +∇yw(t, x, y),

vε
2−drift−→ Ku(t, x),

1
ε

(vε

K
− uε

)
2−drift−→ q(t, x, y).

(24)

The fact that {uε} and {vε/K} have the same (two-scale with drift) limits
follows from Lemma 3.

Next we show that the last convergence in (24) holds true even for integrals
on the boundary ∂Ωε instead of Ωε. This result is reminiscent of the notion
of two-scale convergence on periodic surfaces developed in [5] and [27] and we
could develop the same convergence but with drift.

Corollary 10. Let {uε, vε} be as in Corollary 9. Then, for the same two-scale
limit with drift q, as defined in (24), we have

lim
ε→0

ε

T∫

0

∫

∂Ωε

1
ε

(
uε − vε/K

)
φ
(
t, x− b̄t

ε
,
x

ε

)
dσdt =

T∫

0

∫

∂Σ0

∫

Rn

q(t, x, y)φ(t, x, y) dxdσydt, (25)

for any test function φ(t, x, y) ∈ C∞
0 ((0, T )× Rn × Tn),

Proof. Let a ∈ C1(Ȳ 0;Rn) be a solution for

a · n = 1 on ∂Σ0; div a =
| ∂Σ0 |n−1

| Y 0 | in Y 0; a is Y − periodic, (26)
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and let aε(x) = εa(x/ε) in Ωε. Then we have

T∫

0

∫

∂Ωε

(
uε − vε

K

)
φ
(
x− b̄t

ε
,
x

ε
, t

)
dσdt =

T∫

0

∫

Ωε

div
(

aε

ε

(
uε − vε

K

)
φ
(
x− b̄t

ε
,
x

ε
, t

))
dxdt =

T∫

0

∫

Ωε

(
1
ε
(uε − vε

K
)
| ∂Σ0 |
| Y 0 | φ

(
x− b̄t

ε
,
x

ε
, t

)
+

a(
x

ε
)
(1
ε
(uε − vε

K
)∇yφ

(
x− b̄t

ε
, y, t

)
|y=x

ε

+∇(uε − vε

K
)φ

(
x− b̄t

ε
, y, t

)
|y=x

ε

))
dxdt +O(ε) →

T∫

0

∫

Y 0

∫

Rn

divy

(
q(x, y, t)φ(x, y, t)a(y)

)
dxdydt, as ε → 0, (27)

where we used that

∥∥1
ε

(
uε − vε/K

)∥∥
L2(Ωε×(0;T ))

≤ C and ‖∇(
uε − vε/K

)‖L2(Ωε×(0,T )) ≤ C.

The surface two-scale limit result (25) follows from (27).

4 Proof of weak two-scale convergence

Before proving our main result, Theorem 3, we state and prove a weaker
version which relies on the notion of two-scale convergence with drift.

Theorem 11. The sequence {uε, vε} two-scale converges with drift (x, t) →
(
x − b̄

ε
t, t

)
, as ε → 0, to the couple (u(x, t), Ku(x, t)) where u(x, t) is the

unique solution of the homogenized problem (14).

The proof of Theorem 11 is divided in five steps, in the spirit of [2].

1. STEP (compactness and choice of the drift)
By virtue of the a priori estimates of section 3.2, Proposition 8 and Corol-

lary 10 imply the existence of a subsequence (still denoted by ε) and of limits
{u,w, q, v} ∈ L2((0, T );H1(Rn))×L2((0, T )×Rn; H1(Tn))2×L2((0, T );H1(Rn))
such that





uε
2−drift−→ u(x, t), ∇uε

2−drift−→ ∇u(x, t) +∇yw(x, y, t);

vε
2−drift−→ Ku(x, t),

1
ε

(vε

K
− uε

)
2−drift−→ q(x, y, t).

(28)
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At this moment the choice of the drift velocity is arbitrary. Nevertheless we
now make a choice which will turn out, in the third step, to be the only
possible one.

In the absence of chemical reactions (i.e. with homogeneous Neumann
boundary condition for uε instead of (11)), the drift velocity would be sim-

ply bc = |Y 0|−1

∫

Y 0

b(y) dy (see e.g. [8]). The chemistry term leads to a

non-trivial drift which is now defined in agreement with periodic gradient
oscillations.

Lemma 4. Let the effective drift b̄ (a constant vector) be given by

b̄ = (|Y 0|+ |∂Σ0|n−1K)−1

∫

Y 0

b(y)dy. (29)

There exists a periodic solution χi(y) ∈ H1(Y 0) of the following cell problem,
1 ≤ i ≤ n,

b(y) · ∇χi(y)−D div
(∇(χi(y) + yi)

)
= b̄i − bi(y) in Y 0,

D∇(χi(y) + yi) · n = Kb̄i on ∂Σ0,
(30)

where n(y) is the external unit normal on ∂Σ0. This solution is unique up to
an additive constant.

Proof. We check that b̄ is defined precisely so that the compatibility condition
(or Fredholm alternative) in (30) is satisfied. We obtain

∫

Y 0

b(y)dy − |Y 0|b̄−
∫

∂Σ0

K dσy b̄ = 0, (31)

where dσy is an element of (n− 1)-dimensional volume on ∂Σ0.

2. STEP (determination of the limit function q)
In order to characterize the limit function q(x, y, t), we multiply the equa-

tion ∂tvε =
k

ε2

(
uε− vε

K

)
by εϕ

(
x− b̄t

ε
,
x

ε
, t

)
, where ϕ(x, y, t) ∈ C∞

0 (Rn×Tn×
(0, T )), and integrate the resulting expression over Ωε×(0, T ). An integration
by parts with respect to time yields

T∫

0

∫

Ωε

(
vεb̄ · ∇xϕ

(
x− b̄t

ε
,
x

ε
, t

)
− k

ε
(uε − vε

K
)ϕ

(
x− b̄t

ε
,
x

ε
, t

))
dxdt = O(ε),

where we used the notation ∇xϕ
(
x − b̄t

ε
,
x

ε
, t

)
= ∇xϕ(x − b̄t

ε
, y, t)

∣∣
y=x/ε

and ∇yϕ
(
x − b̄t

ε
,
x

ε
, t

)
= ∇yϕ(x − b̄t

ε
, y, t)

∣∣
y=x/ε

. Passing to the two-scale
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limit with drift and bearing in mind that the two-scale limit of vε is equal to
Ku(x, t), we obtain

T∫

0

∫

Rn

∫

Y 0

(
Ku(x, t)b̄ · ∇xϕ(x, y, t)− kq(x, y, t)ϕ(x, y, t)

)
dxdydt = 0

Therefore,

q(x, y, t) = q(x, t) = −K

k
b̄ · ∇xu(x, t). (32)

3. STEP (determination of the limit function w)
In order to characterize the limit function w(x, y, t), we choose again a test

function as before:

ϕε = εϕ
(
x− b̄t

ε
,
x

ε
, t

)
.

Substituting it in problem (10)-(12) yields

T∫

0

∫

Ωε

{
uεb̄ · ∇xϕ

(
x− b̄t

ε
,
x

ε
, t

)
+ b

(x

ε

)
· ∇uεϕ

(
x− b̄t

ε
,
x

ε
, t

)
+

D∇uε∇yϕ
(
x− b̄t

ε
,
x

ε
, t

)}
dxdt + ε

T∫

0

∫

∂Ωε

k

ε

(
uε − vε

K

)
ϕ
(
x− b̄t

ε
,
x

ε
, t

)
dσdt

= O(ε). (33)

Passing to the two-scale limit with drift gives us the cell problem

T∫

0

∫

Rn

∫

Y 0

{
u(x, t)b̄ · ∇xϕ(x, y, t) + b(y) · (∇xu(x, t) +∇yw(x, y, t))ϕ(x, y, t)+

D(∇xu(x, t) +∇yw(x, y, t)) · ∇yϕ(x, y, t)
}

dxdydt+

T∫

0

∫

Rn

∫

∂Σ0

kq(x, y, t)ϕ(x, y, t)dxdσydt = 0. (34)

As in classical two-scale convergence, problem (34) leads to the following
differential problem for w, valid a.e. on (0, T )× Rn:

−D divy(∇xu(x, t) +∇yw(x, y, t)) + b(y) · (∇xu(x, t) +∇yw(x, y, t)) =

b̄ · ∇xu(x, t) in Y 0, (35)
w is Y − periodic in y (36)

−D(∇xu(x, t) +∇yw(x, y, t)) · n = kq(x, t) = −K∇xu(x, t) on ∂Σ0. (37)

At this point it is crucial to have chosen the drift b̄ defined by (29), otherwise
(37) would have no solution but the trivial one. Finally, we conclude that
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the function w(x, y, t) is given by the following separation of fast and slow
variables formula:

w(x, y, t) = χ(y) · ∇xu(x, t), (38)

with χ(y) of components χi solving problem (30).

4. STEP (determination of the homogenized equation)

In this step we test problem (10)-(12) by φ̂(x, t) = φ
(
x − b̄t

ε
, t

)
, with

φ ∈ C∞
0 (Rn× [0, T )), implying that φ(x, T ) = 0. Also, we use the symbol ∂̂tφ

for ∂tφ(z, t)|z=x−b̄t/ε. Note that

∂tφ̂(x, t) = ∂̂tφ(x, t)− b̄
ε
· ∇xφ̂(x, t).

We get

T∫

0

∫

Ωε

{
uε

b̄− b
(

x
ε

)

ε
· ∇xφ̂− uε∂̂tφ

}
dxdt +

T∫

0

∫

∂Ωε

vε(x, t)b̄ · ∇xφ̂dσdt−

∫

Ωε

u0(x)φ(x, 0) dx + D

T∫

0

∫

Ωε

∇uε · ∇xφ̂ dxdt−

ε

T∫

0

∫

∂Ωε

vε(x, t)∂̂tφdσdt− ε

∫

∂Ωε

v0(x)φ(x, 0)dσ = 0. (39)

Next we introduce the auxiliary vector function ψ by




∆ψi(y) = bi(y)− b̄i on Y 0;

∂ψi

∂n
= Kb̄i on ∂Σ0;

ψi is 1− periodic.

(40)

Then for ψε(x) = ψ(x/ε) we have




ε2∆ψε
i (x) = bi(

x

ε
)− b̄i in Ωε;

ε
∂ψε

i

∂n
= Kb̄i on ∂Ωε;

(41)
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Furthermore, we have the following integral identity

T∫

0

∫

Ωε

uε

b̄− b
(

x
ε

)

ε
· ∇xφ̂ dxdt +

T∫

0

∫

∂Ωε

vε(x, t)b̄ · ∇xφ̂dσdt =

−
T∫

0

∫

Ωε

ε
n∑

i=1

∆ψε
i ∂xi φ̂uε dxdt +

T∫

0

∫

∂Ωε

vε(x, t)b̄ · ∇xφ̂dσdt =

K

T∫

0

∫

∂Ωε

(vε

K
− uε

)
b̄ · ∇xφ̂dσdt +

T∫

0

∫

Ωε

ε
n∑

i=1

∇ψε
i · ∇(∂xi φ̂uε) dxdt. (42)

Inserting (42) into (39) gives

Kε

T∫

0

∫

∂Ωε

1
ε

(vε

K
− uε

)
b̄ · ∇xφ̂dσdt +

T∫

0

∫

Ωε

ε
n∑

i=1

∇ψε
i · ∇(∂xi φ̂uε) dxdt−

T∫

0

∫

Ωε

uε∂̂tφ dxdt−
∫

Ωε

u0(x)φ(x, 0) dx + D

T∫

0

∫

Ωε

∇uε · ∇xφ̂ dxdt−

ε

T∫

0

∫

∂Ωε

vε(x, t)∂̂tφdσdt− ε

∫

∂Ωε

v0(x)φ(x, 0)dσ = 0. (43)

Passing to the two-scale limit with drift (x, t) → (
x − b̄t/ε, t

)
in the last

relation is now straightforward. For the comfort of the reader, we do it term
by term:

lim
ε→0

T∫

0

∫

Ωε

uε∂̂tφ dxdt = |Y 0|
T∫

0

∫

Rn

u(x, t)∂tφ(x, t) dxdt, (44)

lim
ε→0

ε

T∫

0

∫

∂Ωε

vε(x, t)∂̂tφdσdt = |∂Σ0|n−1

T∫

0

∫

Rn

Ku(x, t)∂tφ(x, t) dxdt, (45)

lim
ε→0

D

T∫

0

∫

Ωε

∇uε · ∇xφ̂ dxdt = D

T∫

0

∫

Rn

n∑

i=1

(
|Y 0|∂xiu(x, t)+

n∑

j=1

∂xju(x, t)
∫

Y 0

∂χj(y)
∂yi

dy
)
∂xiφ(x, t) dxdt, (46)

16



lim
ε→0

Kε

T∫

0

∫

∂Ωε

1
ε

(vε

K
− uε

)
b̄ · ∇xφ̂dσdt =

T∫

0

∫

Rn

|∂Σ0|n−1
K2

k
b̄⊗ b̄∇xu∇xφ dxdt, (47)

lim
ε→0

T∫

0

∫

Ωε

ε
n∑

i=1

∇ψε
i · ∇(∂xi φ̂uε) dxdt =

T∫

0

∫

Rn

n∑

i,j=1

∂2φ

∂xixj
u(x, t)

( ∫

Y 0

∂ψi

∂yj
dy

)
dxdt+

T∫

0

∫

Rn

∫

Y 0

n∑

i,j=1

∂xiφ(x, t)
∂ψi(y)

∂yj

(
∂xju + ∂x`

u
n∑

`=1

∂χ`(y)
∂yj

)
dydxdt. (48)

It is now time to introduce the homogenized matrix which for simplicity we
decompose as a sum of elementary matrices. The first one linked to adsorp-
tion/desorption reactions, transported by the drift velocity, is calculated in
(47) and given by

Ā1 =
K2

k
|∂Σ0|n−1b̄⊗ b̄ =

[
K2

k
|∂Σ0|n−1b̄ib̄j

]
. (49)

The second one, related to advection-diffusion and chemistry, is calculated in
(46)-(48) and given by

[
Ā2

]
ij

= D

∫

Y 0

(
δij +

∂χi(y)
∂yj

)
dy +

n∑

`=1

∫

Y 0

∂χj(y)
∂y`

∂ψi(y)
∂y`

dy. (50)

Remark that only the symmetric part of the homogenized matrix appears in
the homogenized equation: Ā1 is already symmetric but Ā2 is not and should
be symmetrized. The effective or homogenized matrix is thus defined by

A∗ = Ā1 +
1
2
(Ā2 + ĀT2 ).

Then after inserting the limits (44)-(48) into the variational equation (43) we
conclude that the limit function u(x, t) solves the problem

(|Y 0|+ K|∂Σ0|n−1)∂tu = divx

(
A∗∇xu

)
in Rn × (0, T ), (51)

u(x, 0) =
|Y 0|u0(x) + |∂Σ0|n−1v

0(x)
|Y 0|+ K|∂Σ0|n−1

in Rn. (52)

It remains to prove that the matrix A∗ is positive definite and establish unique-
ness of the limit function.
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5. STEP (properties of the effective matrices and uniqueness)
Clearly, the matrix Ā1, given by (49), is symmetric and non-negative, i.e.

Ā1ξ · ξ ≥ 0 for any ξ ∈ Rn. Furthermore, we have

Lemma 5. The matrix Ā2, given by (50), is positive definite and satisfies

[
Ā2

]
ij

= D

∫

Y 0

(∇yχi(y) + ei) · (∇yχj(y) + ej) dy +
∫

Y 0

b(y) · ∇yχi(y)χj(y) dy.

(53)
Finally, A∗ is also positive definite, equivalently defined by

A∗ =
K2

k
|∂Σ0|n−1b̄⊗ b̄ + D

∫

Y 0

(I +∇yχ(y))(I +∇yχ(y))T dy. (54)

Proof. First we test problem (40) for ψi by χj . The second term on the
right-hand side of (50) becomes

n∑

`=1

∫

Y 0

∂χj(y)
∂y`

∂ψi(y)
∂y`

dy =
∫

Y

(b̄i − bi(y))χj(y)dy + K

∫

∂Σ0

b̄iχj(y)dσ. (55)

Next we multiply the equation (30) for χi by χj(y) and integrate the resulting
relation over Y 0. This yields a formula for the first term on the right-hand
side of (50)

∫

Y

(b̄i − bi(y))χj(y)dy + K

∫

∂Σ0

b̄iχj(y)dσ =
∫

Y 0

b(y) · ∇yχi(y)χj(y)dy+

D

∫

Y 0

(ei +∇yχi(y)) · ∇yχj(y)dy = −D

∫

Y 0

(
δij +

∂χi(y)
∂yj

)
dy+

∫

Y 0

b(y) · ∇yχi(y)χj(y)dy + D

∫

Y 0

(∇yχi(y) + ei) · (∇yχj(y) + ej) dy. (56)

Identities (55)-(56) imply (53). Since b(y) is solenoidal and its normal com-
ponent is equal to zero at ∂Σ0, we find easily that the matrix

{ ∫
Y 0 b(y) ·

∇yχi(y)χj(y)dy
}

is skew-symmetric:

−
∫

Y 0

b(y) · ∇yχj(y)χi(y)dy =
∫

Y 0

b(y) · ∇yχi(y)χj(y)dy, i, j = 1, . . . , n.

The remaining part of Lemma (5) follows immediately.

As a consequence, the uniqueness of the homogenized solution u(t, x) is
obvious. Thus the entire sequence {uε, vε} is converging.
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5 Strong convergence (proof of Theorem

3)

This section is devoted to the proof of Theorem 3, i.e. it improves on Theorem
11 by replacing the weak two-scale convergence (with drift) with a strong con-
vergence result. Namely, we are going to show that in the moving coordinates
(x, t) → (x− (b̄/ε)t, t) the functions uε and vε converge strongly to the limit
functions u(x, t) and Ku(x, t), respectively, or equivalently that

lim
ε→0

∥∥uε(x, t)− u(x− b̄t

ε
, t)

∥∥
L2(Ωε×(0,T ))

= 0. (57)

We start with the case of well-prepared initial data, i.e. the initial data
are at the equilibrium isotherm. Our first result is the following

Proposition 12. Let v0(x) = Ku0(x) ∈ H1(Rn) (i.e. initial data at the
isotherm). Then uε(x, t)χΩε strongly two-scale converges with drift (x, t) →
(
x− b̄t

ε
, t

)
in Rn×(0, T ) towards χY 0(y)u(x, t). Similarly, vε(x, t)χΩε strongly

two-scale converges with drift towards KχY 0(y)u(x, t). In particular,

T∫

0

∫

Ωε

∣∣∣uε(x, t)− u
(
x− b̄

ε
t, t

)∣∣∣
2
dxdt −→

ε→0
0.

Proof. We start by integrating the energy equality (18) in time variable over
the interval (0, t). This yields

1
2

[
‖uε(t)‖2

L2(Ωε)
+

ε

K
‖vε(t)‖2

L2(∂Ωε)

]
+

∫ t

0

∫

Ωε

D∇uε(s) · ∇uε(s)dxds+

∫ t

0

εk

ε2

∫

∂Ωε

(
uε(s)− vε(s)

K

)2
dσds =

1
2

[
‖u0‖2

L2(Ωε)
+

ε

K
‖v0‖2

L2(∂Ωε)

]
.

(58)
Since we expect the family {uε, vε} to be compact only in the product space
L2((0, T )× Ωε), it is out of reach to claim convergence of these functions for
a fixed value of t. To circumvent this difficulty, we integrate formula (58) in
temporal variable once again. The resulting formula reads

1
2

T∫

0

[
‖uε(t)‖2

L2(Ωε)
+

ε

K
‖vε(t)‖2

L2(∂Ωε)

]
dt +

T∫

0

t∫

0

∫

Ωε

D∇uε(s) · ∇uε(s)dxdsdt+

k

ε

T∫

0

t∫

0

∫

∂Ωε

(
uε(s)− vε(s)

K

)2
dσdsdt =

T

2

[
‖u0‖2

L2(Ωε)
+

ε

K
‖v0‖2

L2(∂Ωε)

]
.

(59)
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Using the two-scale convergence results of the previous section and taking into
account the lower semicontinuity of the corresponding norms with respect to
the two-scale and weak convergence (see [2] if necessary), we have

lim inf
ε→0

T∫

0

[
‖uε(t)‖2

L2(Ωε)
+

ε

K
‖vε(t)‖2

L2(∂Ωε)

]
dt ≥ |Y 0|‖u‖2

L2(Rn×(0,T ))+

|∂Σ0|n−1K‖u‖2
L2(Rn×(0,T )) = (|Y 0|+ |∂Σ0|n−1K)‖u‖2

L2(Rn×(0,T )). (60)

By the same arguments,

lim inf
ε→0

T∫

0

t∫

0

∫

Ωε

D∇uε(x, s) · ∇uε(x, s)dxdsdt ≥

T∫

0

t∫

0

∫

Rn

∫

Y 0

D|∇xu(x, s) +∇yχ(y)∇xu(x, s)|2dydxdsdt (61)

and

lim inf
ε→0

k

ε

T∫

0

t∫

0

∫

∂Ωε

(
uε(x, s)− vε(x, s)

K

)2
dσdsdt ≥

k|∂Σ0|n−1

T∫

0

t∫

0

∫

Rn

∣∣∣K
k

b̄ · ∇xu(x, s)
∣∣∣
2
dxdsdt. (62)

Passing to the limit on the right hand side of (59), we get

lim
ε→0

T

2

[
‖u0‖2

L2(Ωε)
+

ε

K
‖v0‖2

L2(∂Ωε)

]
=

T

2
|Y 0|‖u0‖2

L2(Rn)+
T

2K
|∂Σ0|n−1‖v0‖2

L2(Rn).

Our next aim is to compute the energy of the limit equation. Multiplying
equation (51) by u(x, s) and integrating over Rn × (0, t) and then once again
in variable t over the interval (0, T ), after straightforward transformations we
obtain

1
2
(|Y 0|+ |∂Σ0|n−1K)‖u‖2

L2(Rn×(0,T )) +

T∫

0

t∫

0

∫

Rn

A∗∇u(x, s) · ∇u(x, s)dxdsdt =

T

2(|Y 0|+ K|∂Σ0|n−1)

∥∥(|Y 0|u0 + |∂Σ0|v0
)∥∥2

L2(Rn)
(63)

Due to (54) the second integral on the left hand side can be rearranged as
follows

T∫

0

t∫

0

∫

Rn

A∗∇u(x, s) · ∇u(x, s)dxdsdt
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=

T∫

0

t∫

0

∫

Rn

∫

Y 0

D|∇xu(x, s) +∇yχ(y)∇xu(x, s)|2dydxdsdt

+

T∫

0

t∫

0

∫

Rn

K2

k
|∂Σ0|n−1(b̄ · ∇xu(x, t))2dxdsdt.

Because of the energy equality (63) for the homogenized problem and the lower
semicontinuity of the terms in the energy equality (59) for the microscopic
problem, we conclude that the norm convergence is valid if and only if we
have

(|Y 0|+ K|∂Σ0|n−1)−1
∥∥(|Y 0|u0 + |∂Σ0|n−1v

0
)∥∥2

L2(Rn)
=

(|Y 0|‖u0‖2
L2(Rn) + K−1|∂Σ0|n−1‖v0‖2

L2(Rn)). (64)

After a simple calculation, we find out that (64) is equivalent to ||u0
√

K −
v0/

√
K||2L2(Rn) = 0. Hence under our assumptions on well prepared initial

data, we have

lim
ε→0

‖uε‖2
L2(Ωε×(0,T )) = |Y 0|‖u‖2

L2(Rn×(0,T )) = ‖χY 0(y)u(x, t)‖2
L2(Y×Rn×(0,T ))

lim
ε→0

ε‖vε‖2
L2(∂Ωε×(0,T )) = K2|∂Σ0|n−1‖u‖2

L2(Rn×(0,T ))

which is equivalent to the desired strong two-scale convergence (see [2]).

In order to prove the strong convergence result for uε in the case of arbi-
trary initial conditions u0 ∈ L2(Rn) and v0 ∈ H1(Rn), and thus to finish the
proof of Theorem 3, we consider problem (10)-(12) on subintervals t ∈ (δ, T )
with small positive δ. For non-consistent initial conditions the solution (uε, vε)
contains an initial layer term which makes a nontrivial contribution to the
energy. By restricting problem (10) on subinterval (δ, T ), we make this con-
tribution negligible for small δ.

We proceed with rigorous arguments. Assume that for a subsequence (still
denoted by ε) there is a lack of energy continuity, i.e.,

lim
ε→0

‖uε‖2
L2(Ωε×(0,T )) > |Y 0|‖u‖2

L2(Rn×(0,T )). (65)

Then, since ‖uε(t)‖2
L2(Ωε)

≤ C uniformly in time by Lemma 1, there is δ0 > 0
such that for any δ, 0 < δ < δ0, we have

lim inf
ε→0

‖uε‖2
L2(Ωε×(δ,T )) > |Y 0|‖u‖2

L2(Rn×(0,T )). (66)

It follows from (18) and Lemmata 2 and 3 that there exist a constant c
(depending on the initial data but not on δ0) and a sequence δε such that
δ0/2 ≤ δε ≤ δ0, and

‖uε(·, δε)‖2
H1(Ωε)

≤ c

δ0
, ‖vε(·, δε)‖2

H1(Ωε)
≤ c

δ0
, ‖Kuε(·, δε)−vε(·, δε)‖2

L2(Ωε)
≤ cε2

δ0
.
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Taking, if necessary, a subsequence, one can assume that δε converges to some
δ̄, δ0/2 ≤ δ̄ ≤ δ0. Consider two auxiliary problems





∂tu1,ε +
1
ε
b
(x

ε

) · ∇u1,ε −∆u1,ε = 0 in Ωε × (δε, T ),

−1
ε

∂u1,ε

∂n
= ∂tv1,ε =

k

ε2

(
u1,ε − v1,ε

K

)
on ∂Ωε × (δε, T ),

u1,ε(x, δε) = uε(x, δε), v1,ε(x, δε) = Kuε(x, δε);

(67)

and




∂tu2,ε +
1
ε
b
(x

ε

) · ∇u2,ε −∆u2,ε = 0 in Ωε × (δε, T ),

−1
ε

∂u2,ε

∂n
= ∂tv2,ε =

k

ε2

(
u2,ε − v2,ε

K

)
on ∂Ωε × (δε, T ),

u2,ε(x, δε) = 0, v2,ε(x, δε) = vε(x, δε)−Kuε(x, δε).

(68)

By construction, uε(x, t) = u1,ε(x, t) + u2,ε(x, t) and vε(x, t) = v1,ε(x, t) +
v2,ε(x, t) for all t ≥ δε. It is easy to show that the solution of (68) tends to
zero as ε → 0. Indeed, applying the estimate

‖g‖2
L2(∂Ωε)

≤ c

ε
‖g‖2

L2(Ωε)
+ cε‖∇g‖2

L2(Ωε)

which is valid for any g ∈ H1(Ωε), we conclude that

‖Kuε(·, δε)− vε(·, δε)‖2
L2(∂Ωε)

≤ cε/δ0.

Therefore, by the a priori estimate (18) applied to (68), we get

‖u2,ε(·, t)‖2
L2(Ωε)

+ ε‖v2,ε(·, t)‖2
L2(Ωε)

≤ cε2/δ0 (69)

for all t ≥ δε. Under our choice of δε, using the standard extension operator [1],
we can assume, without loss of generality, that uε(x, δε) is defined in the whole
Rn, satisfies the bound ‖uε(x, δε)‖2

H1(Rn) ≤ c/δ0 and that uε

(
x − (b̄/ε)δε, δε

)

converges, as ε → 0, to a function ǔ0(x), such that ‖ǔ0‖2
H1(Rn) ≤ c/δ0.

In exactly the same way as in the case of consistent initial conditions
one can show that on the set Rn × (δ̄, T ) the function u1,ε strongly two-scale
converges with drift (x, t) → (x− (b̄/ε)t, t) towards a solution to the following
problem

(|Y 0|+ K|∂Σ0|n−1)∂tǔ = div(A∗∇ǔ) in Rn × (δ̄, T ),

ǔ(x, δ̄) =
|Y 0|

(|Y 0|+ K|∂Σ0|n−1)
ǔ0(x) +

|∂Σ0|
(|Y 0|+ K|∂Σ0|n−1)

ǔ0(x). (70)

In particular,

lim
ε→0

‖u1,ε‖2
L2(Ωε×(δε,T )) = |Y 0|‖ǔ‖2

L2(Rn×(δ̄,T )).
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Combining this with (69), we deduce that uε two-scale converges with drift
(x, t) → (x− (b̄/ε)t, t) on the set Rn × (δ̄, T ) to the function ǔ. This implies
that ǔ(x, t) = u(x, t) for t ≥ δ̄, and

lim
ε→0

‖uε‖2
L2(Ωε×(tε,T )) = |Y 0|‖ǔ‖2

L2(Rn×(δ̄,T )),

then
lim
ε→0

‖uε‖2
L2(Ωε×(tε,T )) = |Y 0|‖u‖2

L2(Rn×(δ̄,T )).

The last relation contradicts our assumption (66). Thus, we have proved
Theorem 3.
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(eds). World Scientific: Singapore, 1995; p. 15–25.

[6] G. Allaire, R. Orive, Homogenization of periodic non self-adjoint prob-
lems with large drift and potential, COCV 13, pp.735-749 (2007).

[7] G. Allaire, A. Piatnistki, Uniform Spectral Asymptotics for Singularly
Perturbed Locally Periodic Operators, Com. in PDE 27, pp.705-725
(2002).

[8] G. Allaire, A.L. Raphael, Homogenization of a convection-diffusion model
with reaction in a porous medium. C. R. Math. Acad. Sci. Paris 344
(2007), no. 8, p. 523–528.

[9] J.L. Auriault, P.M. Adler, Taylor dispersion in porous media : Analy-
sis by multiple scale expansions, Advances in Water Resources, Vol. 18
(1995), p. 217-226.

[10] J. Bear, Hydraulics of Groundwater, McGraw-Hill, Jerusalem, 1979.

23



[11] A. Bourgeat, M. Jurak, A.L. Piatnitski, Averaging a transport equation
with small diffusion and oscillating velocity , Math. Meth. Appl. Sci., Vol.
26 (2003), pp. 95-117.
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