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Abstract

In this paper we upscale the classical convection-diffusion equation
in a narrow slit. We suppose that the transport parameters are such
that we are in Taylor’s regime i.e. we deal with dominant Peclet num-
bers. In contrast to the classical work of Taylor, we undertake a rigorous
derivation of the upscaled hyperbolic dispersion equation. Hyper-
bolic effective models were proposed by several authors and our goal is
to confirm rigorously the effective equations derived by Balakotaiah et
al in recent years using a formal Liapounov - Schmidt reduction. Our
analysis uses the Laplace transform in time and an anisotropic singular
perturbation technique, the small characteristic parameter ε being the ra-
tio between the thickness and the longitudinal observation length. The
Péclet number is written as Cε−α, with α < 2. Hyperbolic effective
model corresponds to a high Péclet number close to the threshold value
when Taylor’s regime turns to turbulent mixing and we characterize it by
supposing 4/3 < α < 2. We prove that the difference between the dimen-
sionless physical concentration and the effective concentration, calculated
using the hyperbolic upscaled model, divided by ε2−α (the local Péclet
number) converges strongly to zero in L2-norm. For Péclet numbers con-
sidered in this paper, the hyperbolic dispersion equation turns out to give
a better approximation than the classical parabolic Taylor model.
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nucléaires) (PACEN/CNRS, ANDRA, BRGM, CEA, EDF, IRSN).

†E-mail: Andro.Mikelic@univ-lyon1.fr

1



Keywords Taylor’s dispersion; Goursat problem, large Peclet num-
ber; singular perturbation; Laplace’s transform; Danckwerts’ boundary
conditions. AMS classcode 35B25; 76F25; 44A10

1 Introduction

Aim of this paper is to present an upscaled hyperbolic model for Taylor
dispersion.

Dispersion expresses the deviation of a solute concentration with respect
to its mean behavior. It is induced by the motion of a fluid that transports
the solute (molecular diffusion, convection and their interaction) or by chemical
reactions.

Dispersion induced by a flow between two parallel plates (or through a tube)
is classically modeled by an effective convection-diffusion equation of the type

∂c

∂t
+ < v >

∂c

∂x
= D̃eff

∂2c

∂x2
. (1)

Here < v > denotes the transversally averaged velocity and D̃eff the effective
dispersion coefficient.

The latter depends on the transversal Péclet number PeT =
< v > H

Dmol
, where

Dmol is the molecular diffusivity and H vertical distance (tube radius). In his
pioneering paper [29], Taylor found for tracer flow in a narrow tube that D̃eff

behaves as Dmol(1+CPe2
T ). Here C is explicitly known, depending on the geom-

etry. This expression for D̃eff is believed to hold until PeT reaches a threshold
value. Crossing that value, turbulent mixing appears and the dependence on
PeT becomes either logarithmic, sublinear or linear (see [30] and chapter 9 from
[17]).

In this work we study the dispersion between two parallel plates for Péclet
numbers in the Taylor regime, i.e. below the threshold value but nevertheless
close to it. This in fact is the situation discussed in the classical Taylor paper
[29].

In that paper, he considered the transport of a solute by Poiseuille flow in the
presence of transversal (molecular) diffusion. The effective Taylor equation was
derived for the cross-section averaged solute concentration. Taylor derived and
experimentally verified, that for a cylindrical tube with radius H the effective
equation reads

∂c

∂t
+ < v >

∂c

∂x
−Dmol

∂2c

∂x2
= −∂JT

∂x
, (2)

where the additional dispersion flux JT is given by

JT = −Deff
∂c

∂x
= −H2 < v >2

48Dmol

∂c

∂x
. (3)
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This expression was formally justified by Aris in [3], using the method of spatial
moments.

In this paper we present an alternative for the upscaled model in the Taylor
regime which is of the form

∂c

∂t
+ < v >

∂c

∂x
+ < v >

H2

48Dmol

∂2c

∂x∂t
= 0. (4)

For reasons of simplicity we will derive the analogue of (4) in the setting of a
Poiseuille flow between two parallel plates. Also the error estimates are done
within this simplified setting.

There is a large number of papers related to Taylor dispersion, but only
a few are concerned with a rigorous mathematical justification of the effective
model. To guide the reader through the literature we present below a brief
summary. We start by mentioning the center manifold approach of Mercer and
Roberts [22] and the related paper [26] by Rosencrans. This approach allows
one to calculate approximations at any order for the original Taylor model.
Even though no error estimate was obtained, this approach gives a plausible
argument for the validity of the effective model. A rigorous justification of the
effective dispersion model including chemical reactions on the wall of the slit,
was undertaken in [23] by Mikelić et al. An anisotropic singular perturbation
technique was used and the results of this paper cover the classical Taylor case
(1) and (2), as well.

Dispersion for reactive flows in tubes was studied by Paine et al. in [25].
They noted that the equation for the difference between the actual physical
and averaged concentrations is not closed, since it contains a dispersive source
term. They used the ”single-point” closure schemes of turbulence modeling by
Launder [19] to obtain a closed model for the averaged concentration. We note
that their effective equations contain non-local terms depending on the solution.
In fact the effective coefficients are not explicitly given.

The center manifold approach was applied to reactive flows by Balakota-
iah and Chang in [4]. A number of effective models for different Damköhler
numbers were obtained, where the Damköhler number is the ratio of the char-
acteristic reaction time and the characteristic transversal diffusion time. In [15]
by van Duijn et al, the case of general chemical reactions was considered from
the point of view of formal expansions with respect to the local Péclet num-
ber, being the ratio between the characteristic longitudinal transport time and
transversal diffusion time. Effective dispersion equations were obtained and the
results were justified by numerical simulations, where the direct simulation of
the physical multidimensional problem was compared to the solution of the ef-
fective dispersion equations. An excellent agreement was found. The expansion
and numerical simulation results were justified at the level of mathematical rigor
in the papers [12], [13], [23] and [24]. The analysis uses an anisotropic singular
perturbation method to obtain error estimates for the approximations. At high
Péclet numbers the presence of the inlet boundaries required construction of
boundary layers and this led to severe technical complications.
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Characteristic to all these models is that they give rise to parabolic transport
equations for the effective solute concentration.

Consequently, this leads to some non-physical properties:

i) In the starting equation the longitudinal diffusion is frequently neglected.
Nevertheless, the dispersion equations have effective dispersion in the lon-
gitudinal direction. Consequently, they predict infinite propagation speed
of perturbations, which is (of course) not observed in experiments.

ii) For purely convective flows solute particles follows streamlines. Hence
when flow reversal occurs the particules return to their original position.
Obviously, this is not true anymore in the presence of transversal diffu-
sion, since then particle move randomly in the transverse direction between
streamlines. One speaks of partial reversibility if directly after flow rever-
sal a variance decrease is observed. On physical grounds one expects to
have at least partial reversibility.

These reasons motivated Scheidegger [28] to propose already in 1958 the one-
dimensional telegraph equation

∂2c

∂t2
+

1
τ

∂c

∂t
= σ2

v

∂2c

∂x2
(5)

as model for dispersion in porous media. Here σv is the velocity variance and τ
a relaxation parameter.

For dispersion in a tube, Camacho developed in [8]–[10] upscaled hyperbolic
models. He used concepts from irreversible thermodynamics and he averaged
the terms of the Fourier expansion of the solution in the original equation over
the cross-section of the flow. In this way he arrived at the following non-Fickian
relaxation equation for the Taylor flux JT :

∂JT

∂t
+

JT

τ
+ (1 + β) < v >

∂JT

∂x

−Dmol
∂2JT

∂x2
= −σ2

v

∂2c

∂x2
. (6)

Here τ is again relaxation parameter time and β is a phenomenological coeffi-
cient. After some simplifications and manipulations, (6) leads to a fourth order
equation for the averaged concentration:

∂c

∂t
+ < v >

∂c

∂x
−Dmol

∂2c

∂x2
+ τeff

{
∂2c

∂t2
+

(
(< v > +βeff ) < v > −σ2

v

) ∂2c

∂x2

+(2 < v > +βeff )
∂2c

∂x∂t

}

= τeff

{
2Dmol

∂3c

∂x2∂t
+ (2 < v > +βeff )Dmol

∂3c

∂x3
−D2

mol

∂4c

∂x4

}
. (7)
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Here βeff and τeff are effective parameters related to β and τ . Neglecting
molecular diffusion reduces (7) to the telegraph equation

τeff
∂2c

∂t2
+

∂c

∂t
+ < v >

∂c

∂x
+ τeff

(
2 < v > +βeff

)
∂2c

∂x∂t
−

τeff

(
σ2

v − (< v > +βeff ) < v >

)
∂2c

∂x2
= 0. (8)

The results of Camacho were later extended to layered media by Berentsen et
al in [7].

An alternative approach, based on a two-term Bubnov-Galerkin representa-
tion, was introduced by Khon’kin in [18]. For dispersion in a tube his calcula-
tions lead to a hyperbolic equation of the form

∂2c

∂t2
+

9
4

< v >
∂2c

∂x∂t
+

15
16

< v >2 ∂2c

∂x2
+

15Dmol

H2

(∂c

∂t
+ < v >

∂c

∂x

)
= 0. (9)

Yet another approach, similar but more systematic, was developed by Balako-
taiah et al. in [5], [6] and [11]. They use the Liapounov-Schmidt reduction
together with a perturbation argument. In the framework of Taylor’s paper
they obtained the dispersion equation

∂c

∂t
+ < v >

∂c

∂x
+ < v >

H2

48Dmol

∂2c

∂x∂t
= Dmol

∂2c

∂x2
. (10)

Since Dmol is very small, the right hand side could be disregarded. In this
approximation equation (10) reduces to our equation (4). In this hyperbolic
limit, equation (10) does not suffer from default i) and has partial reversibility.

In this paper we address the rigorous mathematical justification of the formal
results and observations made by Balakotaiah and coauthors in the papers [5],
[6] and [11]. We will undertake a different derivation of the effective model,
following the expansions proposed in [15]. It gives equation (4), as a rigorous
result.

The plan of the paper is as follows. In Section 2 we give the precise setting
of the problem and derive its dimensionless form. Then we present the effective
problem in its dimensionless form and the main results of the paper. Finally, the
effective dispersion problem in its full dimensional form is presented. In Section
3 we recall some facts about the vector-valued Laplace transform and give the
Laplace transform of our problem. It permits us to get precise estimates on the
transformed solution.

In Subsection 4.1 we present the formal derivation of the hyperbolic effective
problem. Even though our approach is different from the one proposed by
Balakatoiah et al in [5], [6] and [11], we obtain the same effective dispersion
model. In Subsection 4.2 existence, uniqueness and estimates explicit in ε for
the solution to the effective problem are obtained. These estimates are used in
Section 5 to prove weak convergence. In Section 6 we add a boundary layer at
the inflow boundary. This allows us to prove strong convergence .
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For Péclet numbers close to the threshold value, we are able to obtain a better
approximation with hyperbolic effective equation (4) than with the parabolic
model (2)- (3). The latter was rigorously justified in [24]. In that paper we
needed boundary layer corrections, which complicated the analysis enormously.
In the present approach these mathematical technical problems are avoided.
Therefore in conclusion: effective equation (4) is a better approximation in the
mathematical sense (in the sense of estimates) and easier to justify.

2 Setting of the problem and main result

To fix ideas, we give the precise setting of the problem. We consider the
transport of a solute by diffusion and convection by Poiseuille’s velocity in a
semi-infinite two-dimensional channel. The solute particles do not react among
themselves nor with the walls. Therefore we suppose zero flux conditions at the
lateral walls. The case when the solute undergoes an adsorption process at the
lateral boundary will be considered in a forthcoming paper.

We consider the following model for the solute concentration c∗:
a) transport through channel Ω∗ = {(x∗, y∗) : 0 < x∗ < +∞, |y∗| < H}

∂c∗

∂t∗
+ V (y∗)

∂c∗

∂x∗
−Dmol

∂2c∗

∂(x∗)2
−Dmol

∂2c∗

∂(y∗)2
= 0 in Ω∗, (11)

where V (z) = Q∗(1 − (y∗/H)2) and where Q∗ (velocity) and Dmol (molecular
diffusion) are positive constants.

b) zero flux at channel wall Γ∗ = {(x∗, y∗) : 0 < x∗ < +∞, |y∗| = H}
−Dmol∂y∗c

∗ = 0 on Γ∗, (12)

c) infiltration with a pulse of water containing a solute of concentration c∗f ,
followed by solute-free water is stated using the Danckwerts boundary condition
from [16]

−Dmol∂x∗c
∗ + V (y∗)c∗ =

{
V (y∗)c∗f , for 0 < t∗ < t∗0
0, for t > t∗0.

(13)

For problems posed on finite interval, we will replace Ω∗ by Ω∗L = {(x∗, y∗) :
0 < x∗ < L, |y∗| < H} and Γ∗ by Γ∗L = {(x∗, y∗) : 0 < x∗ < L, |y∗| = H}
in (11), (12). In such setting, at x∗ = L we impose the following boundary
condition

−Dmol∂x∗c
∗ = 0 on x∗ = L, y ∈ (0, H). (14)

The natural way of analyzing this problem is to introduce appropriate scales.
This requires characteristic or reference values for the parameters in variables
involved. The obvious transversal length scale is H. For all other quantities we
use reference values denoted by the subscript R. Setting

c =
c∗

ĉ
, x =

x∗

LR
, y =

y∗

H
, t =

t∗

TR
, Q∗ = QR, Dmol = DR, (15)
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where LR is the ” observation distance ”, we obtain the dimensionless equations

∂c

∂t
+

Q∗TR

LR
(1− y2)

∂c

∂x
− D∗TR

L2
R

∂2c

∂x2
− D∗TR

H2

∂2c

∂y2
= 0 in Ω (16)

and
−D∗TR

H2

∂c

∂y
= 0 on Γ, (17)

where
Ω = (0,+∞)× (−1, 1) and Γ = (0,+∞)× {−1, 1}. (18)

The problem involves the following time scales:

TL = characteristic longitudinal time scale =
LR

Q∗
,

TT = characteristic transversal time scale =
H2

D∗ ,

and the dimensionless number Pe =
LRQ∗

Dmol
(Peclet number). In this paper

we fix the reference time by setting TR = TL. We are going to investigate
the behavior of the two-dimensional system (16)-(17) with respect to the small

parameter ε =
H

LR
.

To carry out the analysis we need to compare the dimensionless numbers
with respect to ε. For this purpose we set Pe = Pe0ε

−α. Introducing the
dimensionless numbers in equations (16)-(17) yields the problem:

Pe0

(∂cε

∂t
+ (1− y2)

∂cε

∂x

)
= εα ∂2cε

∂x2
+ εα−2 ∂2cε

∂y2
in Ω+ × (0, T ), (19)

−εα−2 ∂cε

∂y
= 0 on Γ+ × (0, T ), (20)

cε(x, y, 0) = c0(x, y) for (x, y) ∈ Ω+, (21)

− εα

Pe0
∂xcε + (1− y2)cε =

{
(1− y2)cf (t), for 0 < t < t0
0, for t > t0.

at {x = 0},
(22)

∂cε

∂y
(x, 0, t) = 0, for (x, t) ∈ (0,+∞)× (0, T ). (23)

The latter condition results from the y−symmetry of the solution. Further

Ω+ = (0, +∞)× (0, 1), Γ+ = (0, +∞)× {1},

and T is an arbitrary chosen positive number.
We study the behavior of this problem as ε ↘ 0, while keeping Pe 0 of order

O(1). We are only interested in the case 2 > α > 1 which leads to dominant
hyperbolic behavior. Note that Taylor’s data from [29] correspond to α = 1.7
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and α = 1.9. We refer to [15] for detailed discussion about data, expansions
and simulations.

Specifically, as in [23], [24], [12] and [13], we will derive expressions for the
effective values of the dispersion coefficient and velocity, and an effective one
dimensional dispersion equation for small values of ε. The main difference is
that here the effective equation will be hyperbolic.

In this paper we suppose c0 = c0(x) and prove that the correct upscaling
of the Laplace transform of the problem (19)-(23) gives the following effective
problem:

τc0+ < v > ∂xc0 −mε2−αPe0τ∂xc0 = F in (0, +∞), (24)

F =
∫ 1

0

c0(x, y) dy −mε2−αPe0∂x

∫ 1

0

c0(x, y) dy. (25)

c0|x=0 = ĉf − Pe0mε2−α(c0|x=0 − τ ĉf )
< v > −τPe0mε2−α

, (26)

where < v >=
∫ 1

0
v(y)dy = 2

3 , m =< v(y)P4(y) >= − 4
315 , cf = 0 for t > t0 and

P4(y) =
3
2
(
y2

6
− y4

12
− 7

180
) is the solution for





−∂yyP4(y) = −v(y)− < v >

< v >
on (0, 1),

∂yP4 = 0 on y = 0 and − ∂yP4 = 0 on y = 1∫ 1

0
P4(y) dy = 0.

(27)

Remark 1. Derivation of the ODE (24) is given in details in subsection 4.1.
Obtaining of the effective boundary conditions at the inlet boundary x = 0, is
independent of the inner expansion developped in 4.1 and leading to the effective
PDE.

Let us give a formal derivation of the boundary condition (26): We suppose
that c0|x=0 = ĉf + ε2−αcf1. then the corresponding correction term at x = 0 is
of the form

−v(y)
Pe0

cf1 − v(y)P4(y)
(
c0(0)− τ(ĉf + ε2−αcf1)

)
=

−v(y)
{

(P4(y)− m

< v >
)(c0(0)− τ ĉf − ε2−ατcf1)+

(
1

Pe0
− m

< v >
ε2−ατ)cf1 +

m

< v >
(c0(0)− τ ĉf )

}
.

The above expression has zero mean if and only if cf1 is chosen as

cf1 = −Pe0m(c0|x=0 − τ ĉf )
< v > −τPe0mε2−α

.

8



After inverting the Laplace transform and supposing that c0(0) = cf (0),
we get the following one dimensional Goursat’s problem for the dimensionless
effective concentration ceff :

(EFF )





∂tc
eff+ < v > ∂xceff −mPe0ε

2−α ∂2ceff

∂x∂t
= 0 for (x, t) ∈ R2

+,

ceff |x=0 = cf (t)−
∫ t

0

e<v>(t−z))/(Pe0mε2−α)∂zcf dz,

∂xceff ∈ L2((0, +∞)× (0, T )), ceff |t=0 = c0(x),

Let us announce our main result.

Theorem 1. Let 2 > α > 4/3, let c0 ∈ H2(R+) and let cf ∈ C∞[0, T ]. Let
ceff be given by (EFF) and let c0 be its Laplace transform given by (24)-(26).
Then we have

εα−2

Pe0
(ĉε − c0)− P4(y)(< c0 > −τc0) ⇀ 0 weakly in L2(Ω+), as ε → 0,

∀τ ∈ C,<τ > 0, (28)

where ĉε is the Laplace transform of cε.
Let us suppose in addition cf (0) = c0(0). Then the above convergence takes

place in H2(C+;L2(Ω+)) and for all T ∈ (0,+∞) we have

εα−2

Pe0
(cε − ceff ) + P4(y)

∂ceff

∂t
⇀ 0 weakly in L2(Ω+ × (0, T )), as ε → 0. (29)

Our result could be restated in dimensional form:

Corollary 1. Let us suppose that LR >> max{Dmol/Q∗, Q∗H2/Dmol,H}.
Then the upscaled dimensional approximation for (11) reads

∂c∗,eff

∂t∗
+ < V >

∂c∗,eff

∂x∗
−mHPeT

∂2c∗,eff

∂x∗∂t∗
= 0, in R+ × (0, T ), (30)

c∗,eff |t=0 = c0(x), (31)

c∗,eff |x=0 = c∗f (t∗)−
∫ t∗

0

e(<V >(t∗−z∗))/(PeT mH)∂z∗c
∗
f (z∗) dz∗, (32)

where PeT =
Q∗H
Dmol

is the transversal Peclet number, < V >=
1
H

∫ H

0

V (y) dy

and H PeT is the mixing length.

Remark 2. At this point it is good to note that equation (30) describes the
effective model. However, its solution c∗,eff is only the zeroth order term in
asymptotic expansion (46). In order to have the higher order approximation, it
is necessary to use

c∗,approx(x∗, y∗, t∗) = c∗,eff (x∗, t∗)− ∂c∗,eff

∂t∗
(x∗, t∗)

H2

Dmol
P4(

y∗

H
) (33)
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Finally, with little more work we have the following strong convergence result

Theorem 2. Let 2 > α > 4/3, let c0 ∈ H2(R+) and let cf ∈ C∞[0, T ]. Let
ceff be given by (EFF) and let c0 be its Laplace transform given by (24)-(26).
Then we have

εα−2

Pe0
(ĉε − c0)− P4(y)(< c0 > −τc0) → 0 in L2(Ω+), as ε → 0,

∀τ ∈ C,<τ > 0, (34)

where ĉε is the Laplace transform of cε.
Let us suppose in addition cf (0) = c0(0). Then the above convergence takes

place in H2(C+;L2(Ω+)) and for all T ∈ (0,+∞) we have

εα−2

Pe0
(cε − ceff ) + P4(y)

∂ceff

∂t
→ 0 in L2(Ω+ × (0, T )), as ε → 0.

(35)

Remark 3. We note that previous results apply to the case of problem (11)-(13)
posed for x ∈ (0, L) and with the outlet boundary condition (14). The statements
of the results and the proofs are identical.

3 Vector valued Laplace transform and applica-
tions to PDEs

We start this section by recalling the basic facts about applications of Laplace’s
transform to linear parabolic equations. The Laplace’s transform method is
widely used in solving engineering problems. In applications it is usually called
the operational calculus or Heaviside’s method.

For locally integrable function f ∈ L1
loc(R) such that f(t) = 0 for t < 0 and

|f(t)| ≤ Aeat as t → +∞, the Laplace transform of f , denoted f̂ , is defined as

f̂(τ) =
∫ +∞

0

f(t)e−τt dt, τ = ξ + i η ∈ C. (36)

It is closely linked with Fourier’s transform in R. We note that

f̂(τ) = F(
f(t)e−ξt

)
(−η), ξ > a, (37)

where the Fourier’s transform of a function g ∈ L1(R) is given by

F(
g(t)

)
(ω) =

∫

R
g(t)eiωt dt, ω ∈ R.

It is well-known (see e.g. [31] or [14]) that f̂ defined by (36) is analytic in the
half-plane {Re(τ) = ξ > a} and it tends to zero as Re(τ) → +∞.
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For real applications, Laplace’s transform of functions is not well-adapted
and it is natural to use Laplace’s transform of distributions. It is defined for
distributions with support on [a,+∞) i.e. for f ∈ D′+(a), where D′+(a) = {f ∈
D′(R); supp f ⊂ [a,+∞)}. If S ′(R) denotes the space of distributions of slow
growth, then we introduce S ′+(R) by

S ′+(R) = D′+(0) ∩ S ′(R) (38)

and we use the formula (37) to define Laplace’s transform for f ∈ D′+(a) such
that fe−ξt ∈ S ′+(R) for all ξ > a. This approach permits the rigorous opera-
tional calculus. For details we refer to classical textbooks as [31] by Vladimirov.

Laplace’s transform is applier to linear ODEs and PDEs, the transform
problem is solved and its solution f̂ is calculated. Then the important question
is how to inverse the Laplace’s transform. First we need a suitable space for
image functions. It is the algebra H(a) defined by

H(a) = { g ∈ Hol
({τ ∈ C; Re(τ) > a}) satisfying the growth condition :

for any σo > a there are real numbers C(σo) > 0 and m = m(σo) ≥ 0
such that |g(τ)| ≤ C(σo) (1 + |τ |m), Re(τ) > σo}.

(39)
For elements of H(a) we have the following classical result.

Theorem 3. ([31] pp. 162-165) Let f̂ ∈ H(a) be absolutely integrable with
respect to η on R for certain ξ > a. Then the following formula holds true.

f(t) =
1

2πi

∫ ξ+i∞

ξ−i∞
f̂(z)ezt dz. (40)

These classical results are not sufficient for our purposes. We need results
for reflexive Sobolev space X valued Laplace’s transform. Furthermore we need
an inversion theorem in Lp((0,+∞); X). The corresponding theory could be
found in Arendt [2] and we give only results directly linked to our needs. For a
reflexive Banach space X we set

C∞w (R+; X) = {r ∈ C∞((0, +∞); X); ‖r‖w = sup
n∈N

sup
λ>0

λn+1

n!

∥∥ dn

dλn
r(λ)

∥∥
X

< +∞}.
(41)

Then we have the following result.

Theorem 4. ([2], Chapter 2) Let X be a reflexive Banach space. Then the (real)
Laplace’s transform f 7→ f̂ is an isometric isomorphism between L∞(R+; X)
and C∞w (R+;X).

Let X be a Hilbert space, C+ = {λ ∈ C : Re λ > 0} and let H2(C+, X) be
the subset of the space of holomorphic functions defined by

H2(C+, X) = {h : C+ → X such that ||h||H2(C+,X) = sup
x>0

∫

R
||h(x+is)||2X ds < +∞}.

Then we have
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Theorem 5. (vector valued Paley-Wiener theorem from [2], page 48) Let X
be a Hilbert space. Then the map f → f̂ |C is an isometric isomorphism of
L2(R+, X) onto H2(C+, X).

In our situation, we have to deal with C+ replaced by {λ ∈ C : Re λ >
τ0 > 0}. But this means just replacing f by e−τtf in Theorem 5. Other, more
direct way to proceed is to follow ideas from [14] and use a direct approach
based on the link to Fourier’s transform. We apply this result in the study of
the upscaled equations and then in the error estimates. We derive estimates for
the solutions of the Laplace transformed problem.

4 Rigorous derivation and analysis of the effec-
tive problem

4.1 Formal asymptotic expansion

We suppose α ≥ 1.
Let the operator Lε be given by

Lεζ = τζ + (1− y2)
∂ζ

∂x
− εα

Pe0

(
∂2ζ

∂x2
+ ε−2 ∂2ζ

∂y2

)
. (42)

The dimensionless physical concentration cε satisfies (19)-(23). Its Laplace
transform ĉε is thus solution of

Lεĉε = c0 in (0, +∞)× (0, 1) (43)

− εα

Pe0
∂xĉε + (1− y2)ĉε = (1− y2)ĉf , for (x, y) ∈ {0} × (0, 1), (44)

−εα−2

Pe0
∂y ĉε(x, y, τ) = 0 on (0, +∞)× ({0} ∪ {1}). (45)

We start from the system (43)-(45) and search for ĉε in the form

ĉε = c0(x, t; ε) + ε2−αc1(x, y, t) + ε2(2−α)c2(x, y, t) + . . . (46)

After introducing (46) into the equation (43) we get

ε0
{

τc0 + (1− y2)∂xc0 − 1
Pe0

∂yyc1 − c0

}
+ ε2−α

{
τc1+

(1− y2)∂xc1 −− 1
Pe0

∂yyc2
}

= O(ε2(2−α)) + O(εα). (47)

In order to have (47) for every ε ∈ (0, ε0), all coefficients in front of the powers
of ε should be zero.

12



The problem corresponding to the order ε0 is




− 1
Pe0

∂yyc1 = −(1/3− y2)∂xc0 + c0 −
∫ 1

0

c0(x, y) dy

−(
τc0 + 2∂xc0/3−

∫ 1

0

c0(x, y) dy
)

on (0, 1),

∂yc1 = 0 on y = 0 and − ∂yc1 = 0 on y = 1

(48)

for every x ∈ (0, +∞). By Fredholm’s alternative, the problem (48) has a
solution if and only if

τc0 + 2∂xc0/3−
∫ 1

0

c0(x, y) dy = 0 in (0, +∞). (49)

For α close to 2, the equation (49) gives a coarse approximation and it does
not suit our needs. It is interesting to include some higher order terms and get
better approximation. We proceed as in [23] and [15], following an idea from
[27], and suppose that

τc0 + 2∂xc0/3−
∫ 1

0

c0(x, y) dy = O(ε2−α) in (0, +∞). (50)

The hypothesis (50) will be justified a posteriori, after getting an equation for
c0. It is convenient to use (50) and write the right hand side of the first equation
in (48) as

−(1/3− y2)∂xc0 − (
τc0 + 2∂xc0/3−

∫ 1

0

c0(x, y) dy
)

=

−3
2
(
1
3
− y2)(

∫ 1

0

c0(x, y) dy − τc0) + O(ε2−α) in (0, +∞). (51)

Let π(x, y),
∫ 1

0
π(x, y) dy = 0, be the unique solution to the problem

−∂yyπ = c0(x, y)−
∫ 1

0

c0(x, y) dy on (0, 1), ∂yπ|y=0,1 = 0. (52)

Then (48) reduces to




− 1
Pe0

∂yyc1 = −3
2
(1/3− y2)(

∫ 1

0

c0(x, y) dy − τc0)

+c0(x, y)− ∫ 1

0
c0(x, y) dy on (0, 1),

∂yc1 = 0 on y = 0 and − ∂yc1 = 0 on y = 1

(53)

for every x ∈ (0, +∞), and we have

1
Pe0

c1(x, y, t) =
3
2
(
y2

6
− y4

12
− 7

180
)(

∫ 1

0

c0(x, y) dy − τc0) + π(x, y) + C0(x, t),

(54)
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where C0 is an arbitrary function.
Let us go to the next order. Then we have




− 1
Pe0

∂yyc2 = −(1− y2)∂xc1 − τc1 − εα−2
(
τc0 + 2∂xc0/3−

∫ 1

0
c0(x, y) dy

)
on (0, 1),

∂yc2 = 0 on y = 0 and − ∂yc2 = 0 on y = 1

(55)

for every x ∈ (0, +∞). The problem (55) has a solution if and only if

τc0 + 2∂xc0/3−
∫ 1

0

c0(x, y) dy + ε2−α∂x(
∫ 1

0

(1− y2)c1 dy)+

ε2−ατ(
∫ 1

0

c1 dy)− ε2

Pe0
∂xx(

∫ 1

0

c1dy) = 0 in (0, +∞). (56)

(56) is the equation for c0. Obviously, c0 +
ε2−α

Pe0
C0 satisfies the same equation

at order O(ε2(2−α)) and we choose C0 = 0 without loosing generality.
Finally, after straightforward calculations, the equation (56) becomes (24)-

(25), with slightly more general F given by

F =
∫ 1

0

c0(x, y) dy + ε2−αPe0∂x

( 4
315

∫ 1

0

c0(x, y) dy −
∫ 1

0

(1− y2)π(x, y) dy
)
.

(57)

4.2 Study of the upscaled diffusion-convection equation
on the half-line

In Section 5, we will prove that the original problem can be approximated by
an upscaled one dimensional diffusion-convection equation. The present section
is thus devoted to the study of this type of equation in the half-line. The results
of Subsection 4.2 are used in Section 5.

For Q̄, D̄ and γ > 0, we consider the problem




∂tu + Q̄∂xu + γD̄∂xtu = G in (0, +∞)× (0, T ),
∂xu ∈ L2((0, +∞)× (0, T )),
u(x, 0) = u0 in (0, +∞), u = cf at x = 0.

(58)

Let Ωl = R+×{Re(τ) > 0}. After applying the Laplace transform with respect
to the time variable we get the following equation for the Laplace transform
û(x, τ) of u:





τ û + Q̄∂xû + γD̄τ∂xû = F̄ + γU0 = Ĝ + u0(x) + γD̄∂xu0 in Ωl,
∂xû ∈ L2(R+), Re(τ) > 0,
û = ĉf at x = 0,

(59)
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where τ = ξ + i η ∈ C, ξ > 0. In order to capture correctly the decay in
τ , we transform the problem (59) into the following problem for the unknown
v̂ = û− u0

β + τ
, β > 0,





τ v̂ + Q̄∂xv̂ + γD̄τ∂xv̂ = Ĝ +
βu0 − Q̄∂xu0

β + τ
+ γD̄

β∂xu0

β + τ
in Ωl,

∂xv̂ ∈ L2(R+), Re(τ) > 0,

û = ĉf − u0

β + τ
at x = 0.

(60)

We decompose v̂ as v̂ = â + γD̄ β
β+τ f̂ , with





τ â + Q̄∂xâ + γD̄τ∂xâ = Ĝ +
βu0 − Q̄∂xu0

β + τ
in Ωl,

∂xâ ∈ L2(R+), Re(τ) > 0,

â = ĉf − u0

β + τ
at x = 0,

(61)

and 



τ f̂ + Q̄∂xf̂ + γD̄τ∂xf̂ = ∂xu0 in Ωl,

∂xf̂ ∈ L2(R+), Re(τ) > 0,

f̂ = 0 at x = 0.

(62)

For the sake of simplicity, we write

`(τ) = Q̄ + γτD̄, Re(τ) = ξ > 0.

We have for ξ > 0

Re
( τ

l(τ)

)
= Re

( τ l(τ)
|l(τ)|2

)
=

ξQ̄ + γD̄|τ |2
(γD̄)2|τ |2 + Q̄2 + 2γD̄Q̄ξ

> 0, (63)

1/Re
( τ

l(τ)

)
= γD̄ + Q̄

Q̄ + γD̄ξ

γD̄|τ |2 + Q̄ξ
, (64)

1
|`(τ)| =

1√
Q̄2 + (γD̄)2|τ |2

≤
√

2
Q̄ + γD̄|τ | . (65)
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Problem (61) for â allows the following explicit solution:

â(x, τ) = (ĉf (τ)− u0

β + τ
|x=0)e−τx/`(τ) +

∫ x

0

e−τ(x−z)/`(τ) Ĝ(z, τ)
`(τ)

dz

+
∫ x

0

βu0(x− z)− Q̄∂xu0(x− z)
(β + τ)`(τ)

e−τz/`(τ) dz; (66)

∂xâ(x, τ) =
1

`(τ)
(u0|x=0 − τ ĉf (τ)− Q̄∂xu0|x=0

β + τ
)e−τx/`(τ)+

∫ x

0

β∂xu0(x− z)− Q̄∂xxu0(x− z)
(β + τ)`(τ)

e−τz/`(τ) dz −
∫ x

0

e−τ(x−z)/`(τ) τĜ(z, τ)
`2(τ)

dz;

(67)

Problem (62) for f̂ allows the following explicit solution:

f̂(x, τ) =
∫ x

0

e−τ(x−z)/`(τ) ∂xu0(z, τ)
`(τ)

dz; (68)

∂xf̂(x, τ) = −τ∂xu0(x)
`2(τ)

−
∫ x

0

τ∂xu0(z)
`2(τ)

e−τ(x−z)/`(τ) dz. (69)

This explicit formula allows us to find the exact behavior of u with respect
to γ.

We now aim to give explicit estimates with respect to τ for û in Hp((0, +∞)).
First, for any p ∈ [1,+∞], Young’s inequality implies that

‖û(·, τ)‖Lp(R+) ≤ C

(
|ĉf |+

||u0||H1(R+)

|τ | + ||Ĝ(·, τ)||L2(0,+∞)

)
(70)

Estimating ∂xû is more delicate. We start by estimating the terms in the equal-
ities (67) and (69) concentrated at the boundary. Using (63)-(65) we get the
following estimate:

|| 1
`(τ)

(u0|x=0 − τ ĉf (τ)− Q̄∂xu0|x=0

β + τ
)e−τx/`(τ) − γD̄

β

β + τ

τ∂xu0(x)
`2(τ)

‖Lp(R+) ≤

C
{
|u0|x=0 − cf (0)|+ |τ ĉf − cf (0)|+ |∂xu0|x=0|

|τ | +
||∂xu0||L2(R+)

|τ |
}

. (71)

Next we estimate the convolution terms using Young’s inequality and (63)-(65):

||
∫ x

0

β∂xu0(x− z)− Q̄∂xxu0(x− z)
(β + τ)`(τ)

e−τz/`(τ) dz −
∫ x

0

e−τ(x−z)/`(τ) τĜ(z, τ)
`2(τ)

dz||Lp(R+) ≤ C
{
||τĜ(·, τ)||L2(R+) +

||∂xu0||H1(R+)

|τ |
}

(72)

||γD̄
β

β + τ

∫ x

0

τ∂xu0(z)
`2(τ)

e−τ(x−z)/`(τ) dz||Lp(R+) ≤ C
||∂xu0||L2(R+)

|τ | . (73)

The following estimates are then straightforward:
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Lemma 1. Let

u0 ∈ H2(R+), cf ∈ H1(R+) and G ∈ H1
0 (R+). (74)

Then the problem (59) has a unique solution û ∈ L2(R+; H1(R+)) satisfying
(70) and

‖∂xû(·, τ)‖Lp((0,+∞)) ≤ C
{
|u0|x=0 − cf (0)|+ |τ ĉf − cf (0)|+ ||∂xu0||L2(R+)

|τ |

+||τĜ(·, τ)||L2(R+) +
||∂xu0||H1(R+)

|τ |
}

, (75)

with τ = ξ + i η, ξ > 0 and p ∈ [1, +∞]. Constant C does not depend on γ.
Let in addition to (74) the data satisfy the compatibility condition u0(0) =

cf (0). Then the problem (58) has a unique solution u ∈ H1(R2
+) satisfying

‖∂xu‖L2(R2
+) = ‖∂xû‖H2(C+,L2((0,+∞)) ≤ C

{
||cf ||H1(R+) + ||G||H1(R+)+

||u0||H2(R+)

}
. (76)

Next we estimate the the expression τ û− u0. We have τ û− u0 = τ v̂− βu0
τ+β .

As before v̂ is decomposed as v̂ = â +
γD̄β

τ + β
f̂ , where â is given by (61) and f̂

by (62). Direct calculation gives

τ â(x, τ) = (ĉf (τ)− u0|x=0 +
Q̄∂xu0

β + τ
|x=0)e−τx/`(τ) +

∫ x

0

e−τ(x−z)/`(τ) τĜ(z, τ)
`(τ)

dz

+
∫ x

0

β∂xu0(x− z)− Q̄∂xxu0(x− z)
(β + τ)

e−τz/`(τ) dz +
βu0(x)− Q̄∂xu0(x)

τ + β
; (77)

τ∂xâ(x, τ) =
τ

`(τ)
(u0|x=0 − τ ĉf (τ)− Q̄∂xu0|x=0

β + τ
)e−τx/`(τ) +

τĜ(x, τ)
`(τ)

−
∫ x

0

β∂xu0(x− z)− Q̄∂xxu0(x− z)
β + τ

e−τz/`(τ) dz −
∫ x

0

e−τ(x−z)/`(τ) τ
2Ĝ(z, τ)
`2(τ)

dz

+
β∂xu0(x)− Q̄∂xxu0(x)

τ + β
+

β∂xu0|x=0 − Q̄∂xxu0|x=0

τ + β
e−τx/`(τ). (78)

For the second component f̂ we have

τ f̂(x, τ) = −
∫ x

0

e−τz/`(τ)∂xxu0(x− z, τ) dz + ∂xu0(x)

−e−τx/`(τ)∂xu0|x=0; (79)

τ∂xf̂(x, τ) = −
∫ x

0

e−τz/`(τ)∂xxxu0(x− z, τ) dz + ∂xxu0(x)

+
τ

`(τ)
e−τx/`(τ)∂xu0|x=0. (80)

Equalities (77) and (79) imply the following result
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Lemma 2. Let us suppose the assumption (74)on the data. Then, as in Lemma
1 the problem (59) has a unique solution û ∈ L2(R+; H1(R+)) satisfying (70),
(75) and

‖u0 − τ û‖Lp((0,+∞)) ≤ C
{
|u0|x=0 − cf (0)|+ |τ ĉf − cf (0)|+ ||∂xu0||H1(R+)

|τ |

+||τĜ(·, τ)||L2(R+) +
||∂xu0||H1(R+)

|τ |
}

, (81)

with τ = ξ + i η, ξ > 0 and any p ∈ [1, +∞]. Constant C does not depend on γ
Let in addition to (74) the data satisfy the compatibility condition u0(0) =

cf (0). Then the problem (58) has a unique solution u ∈ H1(R2
+) satisfying (76)

and

‖∂tu‖L2(R2
+) = ‖u0 − τ û‖H2(C+,L2((0,+∞)) ≤ C

{
||cf ||H1(R+) + ||G||H1(R+)+

||u0||H2(R+)

}
. (82)

It remains to study the limit γ → 0. Let uγ = u be given by (58). Let uγ0

satisfies (58) with γ = 0. Then we have

ûγ(x, τ) = û(x, τ) → ûγ0(x, τ), ∀x ∈ R+ and ∀τ ∈ C+, (83)
u0 − τ ûγ(x, τ) = u0 − τ û(x, τ) → u0 − τ ûγ0(x, τ), ∀x ∈ R+ and ∀τ ∈ C+,

(84)

∂xûγ(x, τ) = ∂xû(x, τ) → ∂xûγ0(x, τ), ∀x ∈ R+ and ∀τ ∈ C+. (85)

Next, under the hypothesis (74) and with the compatibility condition u0(0) =
cf (0), Lemmas 1 and 2 are valid and sequences |ûγ |2, |u0 − τ ûγ |2 and |∂xûγ |2
are bounded from above by a non-negative function integrable with respect to
x and η = Im τ and bounded with respect to ξ = <τ . Consequently, Lebesgue’s
dominated convergence theorem gives

Lemma 3. Let us suppose the assumption (74)on the data and let, furthermore,
the data satisfy the compatibility condition u0(0) = cf (0). Let uγ = u ∈ H1(R2

+)
be the unique solution for the problem (58), satisfying estimates (76) and (82).
Let uγ0 ∈ H1(R2

+) be the unique solution for the problem (58) with γ = 0. Then
we have

ûγ → ûγ0, u0 − τ ûγ → u0 − τ ûγ0 and ∂xûγ → ∂xûγ0

in H2(C+, L2((0, +∞)), as γ → 0, (86)

uγ → uγ0, ∂tuγ → ∂tuγ0 and ∂xuγ → ∂xuγ0 in L2(R2
+), as γ → 0. (87)

5 Proof of Theorem 1

STEP 1
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Let H1(Ω+) be the usual Sobolev space, but complex valued. Let v(y) =
1 − y2 and c0(x, y) = c0(x) =< c0 >. We write the problem (43)-(45) in the
variational form
∫

Ω+
τ ĉεϕ dxdy +

∫

Ω+
v(y)∂xĉεϕ dxdy +

εα

Pe0

∫

Ω+
(∂xĉε∂xϕ + ε−2∂y ĉε∂yϕ) dxdy

+
∫ 1

0

v(y)ĉε|x=0ϕ|x=0 dy =
∫

Ω+
c0ϕ dxdy +

∫ 1

0

v(y)ĉfϕ|x=0 dy,

∀ϕ ∈ H1(Ω+), ∀τ ∈ C+. (88)

Next let P4(y) = 3
2 (y2

6 − y4

12 − 7
180 ) and m =

∫ 1

0
v(y)P4(y) dy =< vP4 >=

−4/315. We write the problem (24)-(26) in the variational form
∫

Ω+
τc0ϕ dxdy +

∫

Ω+
v(y)∂xc0ϕ dxdy +

εα

Pe0

∫

Ω+
(∂xc0∂xϕ + ε−2∂yc0∂yϕ) dxdy

+
∫ 1

0

v(y)c0|x=0ϕ|x=0 dy =
∫

Ω+
c0ϕ dxdy +

∫ 1

0

v(y)ĉfϕ|x=0 dy−
∫

Ω+
mε2−αPe0∂x < c0 > ϕ dxdy +

εα

Pe0

∫

Ω+
∂xc0∂xϕ dxdy+

∫

Ω+
(v(y)− < v >)∂xc0ϕ dxdy +

∫

Ω+
ε2−αPe0mτ∂xc0ϕ dxdy−

∫ 1

0

v(y)
Pe0mε2−α(c0|x=0 − τ ĉf )

< v > −Pe0mτε2−α
ϕ|x=0 dy, ∀ϕ ∈ H1(Ω+), ∀τ ∈ C+. (89)

It should be noticed that the equation (24) is the first order partial differential
equation in x and the 3rd and the 4th term at the left hand side of (89) are
added to allow the comparaison with (88). They do not come from integration
by parts and the test functions do not have to satisfy the boundary condition
at x = 0.

Then the function qε = εα−2(ĉε − c0)/Pe0 satisfies the following variational
equation

b(qε, ϕ̄) =
∫

Ω+
τqεϕ dxdy +

∫ 1

0

v(y)qε|x=0ϕ|x=0 dy +
∫

Ω+
v(y)∂xqεϕ dxdy+

εα

Pe0

∫

Ω+
(∂xqε∂xϕ + ε−2∂yqε∂yϕ) dxdy = εα−2

∫

Ω+

< v > −v(y)
Pe0

∂xc0ϕ dxdy

−
∫

Ω+
mτ∂xc0ϕ dxdy +

∫

Ω+
m∂xc0ϕ dxdy − ε2(α−1)

Pe2
0

∫

Ω+
∂xc0∂xϕ dxdy+

∫ 1

0

v(y)
m(c0|x=0 − τ ĉf )

< v > −Pe0mτε2−α
ϕ|x=0 dy, ∀ϕ ∈ H1(Ω+), ∀τ ∈ C+. (90)

STEP 2
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We use ϕ = q̄ε (the complex conjugate of qε) as test function in (90). Then
using the results from Sections 4.1-4.2, we have

|εα−2

∫

Ω+

v(y)− < v >

Pe0
∂xc0q̄ε dxdy| ≤ |εα/2−1

∫

Ω+

∂yP4

Pe0
∂xc0εα/2−1∂y q̄ε dxdy|

≤ Cεα/2−1||∂xc0||L2(Ω+)||εα/2−1∂y q̄ε||L2(Ω+) (91)

|
∫

Ω+
Pe0mτ∂xc0q̄ε dxdy| ≤ C|τ |||∂xc0||L2(Ω+)||q̄ε||L2(Ω+) (92)

|
∫

Ω+
Pe0∂xm < c0 > +q̄ε dxdy| ≤ C||c0||H1(Ω+)||q̄ε||L2(Ω+) (93)

ε2(α−1)

Pe2
0

|
∫

Ω+
∂xc0∂xq̄ε dxdy| ≤ Cε3α/2−2||∂xc0||L2(Ω+)||εα/2∂xq̄ε||L2(Ω+), (94)

|
∫ 1

0

mv(y)(c0|x=0 − τ ĉf )ϕ|x=0

< v > −Pe0mτε2−α
dy| ≤ C|c0|x=0 − τ ĉf | ||

√
v(y)ϕ|x=0||L2(0,1) (95)

Estimates (91)-(95) give a precise behavior of the right hand side in (90). We
note that for α ≥ 1 one has 3α/2− 2 ≥ α/2− 1, and from (91)-(95)we get

||∂yqε||L2(Ω+) ≤ C

{
||c0||H1(Ω+) + |c0|x=0 − τ ĉf |+

(1 + |τ |1/2ε1−α/2)||∂xc0||L2(Ω+)

}
. (96)

Estimate (96) implies existence of a subsequence of {qε}, denoted by the
same superscript, and Q ∈ L2(Ω+), such that ∂yqε ⇀ Q weakly in L2(Ω+).
Passing to the limit in the variational equation (90), yields the following equation
for Q: ∫

Ω+
Q∂yϕ dxdy = −

∫

Ω+
(v(y)− < v >)∂xc0,trϕ dxdy, (97)

where c0,tr is the solution for the problem
{

τc0,tr+ < v > ∂xc0,tr =< c0 > in Ω+;
c0,tr|x=0 = ĉf .

(98)

Next we obtain that

∂yqε = εα−2∂y
ĉε − c0

Pe0
⇀ ∂yP4(y)(< c0 > −τc0,tr), (99)

weakly in L2(Ω+), for every τ ∈ C+. This is in accordance with the results by
Choquet and Mikelić from [12].
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With c0(0) = cf (0) we use Lemma 1 and conclude that

εα−2∂y
ĉε − c0

Pe0
⇀ ∂yP4(y)(< c0 > −τc0,tr) in H2(C+, L2(0,+∞)), (100)

εα−2∂y
cε − ceff

Pe0
⇀ −∂yP4(y)∂tc

tr in L2(R2
+). (101)

We would like to go one step forward, extend the results from [12] and
use the hyperbolic effective equation to prove the weak convergence of qε to
P4(y)(< c0 > −τc0,tr).

STEP 3

Having in mind the estimates from STEP 2, we introduce the function wε

by

wε =
εα−2

Pe0
(ĉε − c0)− P4(y)(< c0 > −τc0) (102)

and write the corresponding variational equation.
After inserting (102) into (90) and using the identity

∫

Ω+

v(y)− < v >

Pe0
∂xc0ϕ dxdy +

∫

Ω+

∂yP4

Pe0
< v > ∂xc0∂yϕ dxdy = 0

we get the following variational equation for wε:

1
τ

b(wε, ϕ̄) = −
∫

Ω+
P4(y)(< c0 > −τc0)ϕ dxdy−

∫

Ω+
(v(y)P4(y)−m)∂x(

< c0 >

τ
− c0)ϕ dxdy − ε2(α−1)

Pe0

∫

Ω+
∂x

c0

τ
∂xϕ dxdy

− εα

Pe0

∫

Ω+
P4(y)∂x(

< c0 >

τ
− c0)∂xϕ dxdy −

∫ 1

0

v(y)(P4(y)−
m

< v >
)(

< c0 > |x=0

τ
− c0|x=0)ϕ|x=0 dy + m

∫

Ω+
∂x

(
c0−

< c0 >

τ

)
∂yP4∂yϕ dxdy, ∀ϕ ∈ H1(Ω+), ∀τ ∈ C+. (103)
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Let us estimate the terms at the right hand side:

|
∫

Ω+
P4(y)(< c0 > −τc0)ϕ dxdy| ≤ C|| < c0 > −τc0||L2(Ω+)||ϕ||L2(Ω+), (104)

|
∫

Ω+
(v(y)P4(y)−m)∂x(

< c0 >

τ
− c0)ϕ dxdy| ≤

Cε1−α/2

√
<

(
1
τ

) ||∂x(
< c0 >

τ
− c0)||L2(Ω+)||

√
<

(1
τ

)
εα/2−1∂yϕ||L2(Ω+), (105)

|ε
2(α−1)

Pe0

∫

Ω+
∂x

c0

τ
∂xϕ dxdy| ≤

C

|τ |
ε3α/2−2

√
<

(
1
τ

) ||∂xc0||L2(Ω+)||
√
<

(1
τ

)
εα/2∂xϕ||L2(Ω+), (106)

εα

Pe0
|
∫

Ω+
P4(y)∂x(

< c0 >

τ
− c0)∂xϕ dxdy| ≤

Cεα/2

√
<

(
1
τ

) ||∂x(
< c0 >

τ
− c0)||L2(Ω+)||

√
<

(1
τ

)
εα/2∂xϕ||L2(Ω+), (107)

|
∫ 1

0

v(y)(P4(y)− m

< v >
)(

< c0 > |x=0

τ
− c0|x=0)ϕ|x=0 dy| ≤

C

|τ |
√
<

(
1
τ

) | < c0 > |x=0 − τ ĉf | ||
√
<

(1
τ

)√
v(y)ϕ|x=0||L2(0,1), (108)

|m
∫

Ω+
∂x

(− c0 +
< c0 >

τ
)
)
∂yP4∂yϕ dxdy| ≤

Cε1−α/2

√
<

(
1
τ

) ||∂x(
< c0 >

τ
− c0)||L2(Ω+)||

√
<

(1
τ

)
εα/2−1∂yϕ||L2(Ω+) (109)

Therefore, since
1

|τ |
√
<

(
1
τ

) ≤ 1√
<τ

,
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for α > 4/3, we have

<
(1

τ
b(wε, wε)

)
=

∫

Ω+
|wε|2dxdy + εα−2<

(1
τ

) ∫

Ω+
|∂ywε|2dxdy+

εα<
(1

τ

) ∫

Ω+
|∂xwε|2dxdy +

1
2
<

(1
τ

) ∫ 1

0

|
√

v(y)wε|x=0|2 dy ≤

C

{
|| < c0 > −τc0||L2(Ω+) + ε1−α/2||∂x(< c0 > −τc0)||L2(Ω+)+

εα/2||∂xc0||L2(Ω+) + | < c0 > |x=0 − τ ĉf |
}2

(110)

The estimate (110) gives
{ ||∂ywε||L2(Ω+) ≤ Cε1−α/2; ||wε||L2(Ω+) ≤ C;
||∂xwε||L2(Ω+) ≤ Cε−α/2; ||√vwε|x=0||L2(0,1) ≤ C.

(111)

Consequently, there is w = w(x, τ) ∈ L2(R+), for every τ ∈ C+ such that

wε ⇀ w in L2(Ω+) and ∂ywε → 0 in L2(Ω+), ∀τ ∈ C+. (112)

Next we take the test function depending only on x, ϕ = ϕ(x) ∈ H1(R+). Then
we pass to the limit in the variation equation (103). Since ϕ does not depend
on y and terms are either small or involve the section mean equal to zero, we
obtain that the right hand side converges to zero when ε → 0. Then passing to
the limit ε → 0 in the left side of (103) yields

∫ +∞

0

τwϕ(x) dx−
∫ +∞

0

< v > w∂xϕ(x) dx = 0, ∀ϕ ∈ H1(R+). (113)

The equation (113) yields w ∈ H1(R+) and w(0, τ) = 0. Therefore w = 0 on
R+ for all τ ∈ C+. This proves (28).

It remains to prove the convergence with respect to the time as well. Dif-
ficulty is that bounds in (111) depend on τ and their integrability is to be
discussed.

We use the results of the Section 4.2. Using estimate (110), assumptions on
the data and Lemmas 1 and 2, we obtain that

||wε||H2(C+;L2(Ω+)) + εα/2−1||
√
<

(1
τ

)
∂ywε||H2(C+;L2(Ω+)) ≤ C. (114)

Now we repeat the above convergence argument but in H2(C+; L2(Ω+)) and
obtain (29). This proves the theorem. ¤

6 Proof of Theorem 2

STEP 1
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We construct the corresponding boundary layer through the problem

v(y)∂zβ = ∂yyβ in Ω+, (115)

β(0, y) = P4(y)− m

< v >
on (0, 1), (116)

∂yβ|y=0,1 = 0 for x ∈ R+. (117)

Since
∫ 1

0
v(y)β(0, y) dy = 0, we can apply the elementary separation of variables

for the heat equation and conclude β has an exponential decay in z, i.e. that
there is λ0 > 0 such that

|β(z, y)| ≤ Ce−λ0z, ∀(z, y) ∈ Ω+. (118)

For more details on the spectral properties of the problem (116)-(117) we refer
to [14], vol. 5, page 63.

STEP 2

Next we set
βε(x, y) = β(

x

ε2−αPe0
, y)

and

wε,full =
εα−2

Pe0
(ĉε−c0)−P4(y)(< c0 > −τc0)+βε(x, y)(< c0 > |x=0−τc0|x=0).

(119)
We make the corresponding replacement in (103) and get

1
τ

b(wε,full, ϕ̄) = −
∫

Ω+
P4(y)(< c0 > −τc0)ϕ dxdy +

∫

Ω+
βε(< c0 > |x=0−

τc0|x=0)ϕ dxdy +
εα

Pe0

∫

Ω+
(< c0 > |x=0 − τc0|x=0)∂xβε∂xϕ dxdy−

∫

Ω+
(v(y)P4(y)−m)∂x(

< c0 >

τ
− c0)ϕ dxdy − ε2(α−1)

Pe0

∫

Ω+
∂x

c0

τ
∂xϕ dxdy

− εα

Pe0

∫

Ω+
P4(y)∂x(

< c0 >

τ
− c0)∂xϕ dxdy −

∫ 1

0

v(y)(P4(y)−
m

< v >
)(

< c0 > |x=0

τ
− c0|x=0)ϕ|x=0 dy + m

∫

Ω+
∂x

(
c0−

< c0 >

τ

)
∂yP4∂yϕ dxdy, ∀ϕ ∈ H1(Ω+), ∀τ ∈ C+. (120)

Next we note the modifications in the estimate (104):

|
∫

Ω+
P4(y)(< c0 > −τc0)ϕ dxdy| ≤

Cε1−α/2

√
<

(
1
τ

) || < c0 > −τc0||L2(Ω+)||
√
<

(1
τ

)
εα/2−1∂yϕ||L2(Ω+), (121)
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Furthermore we have two new terms:

|
∫

Ω+
βε(< c0 > |x=0 − τc0|x=0)ϕ dxdy| ≤ C

ε(2−α)/2| < c0 > |x=0 − τc0|x=0|||ϕ||L2(Ω+)

|
∫

Ω+

εα

Pe0
(< c0 > |x=0 − τc0|x=0)∂xβε∂xϕ dxdy| ≤

Cεα−1| < c0 > |x=0 − τc0|x=0|||εα/2∂xϕ||L2(Ω+)

Now for α > 4/3, we get again

||wε||L2(Ω+) ≤ Cemin{3α/2−2,1−α/2} and wε → 0 in L2(Ω+), ∀τ ∈ C+ (122)

and the (34) is proved.
It remains to prove (35). The only term which needs attention is

∫

Ω+
P4(y)(< c0 > −τc0)ϕ dxdy.

Here we use Lemma 3 giving us < c0 > −τc0 →< c0 > −τc0,tr in H2(C+;L2(Ω+)),
as ε → 0. Now we take as test function ϕ = w̄ε,full. The test function
converges weakly to zero in H2(C+;L2(Ω+)), as ε → 0. Therefore we have

<(
1
τ

b(wε,full, wε,full)) → 0, as ε → 0. This proves (35). ¤
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