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Abstract

We present homogenization of the viscous incompressible porous media flows

under stress boundary conditions at the outer boundary. In addition to Darcy’s

law describing filtration in the interior of the porous medium, we derive rig-

orously the effective pressure boundary condition at the outer boundary. It is

a linear combination of the outside pressure and the applied shear stress. We

use the two-scale convergence in the sense of boundary layers, introduced by

Allaire and Conca [SIAM J. Math. Anal., 29 (1997), pp. 343-379] to obtain

the boundary layer structure next to the outer boundary. The approach allows

establishing the strong L2-convergence of the velocity corrector and identifica-
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tion of the effective boundary velocity slip jump. The theoretical results are

confirmed through numerical experiments.

Keywords: homogenization, stationary Navier-Stokes equations, stress

boundary conditions, effective tangential velocity jump, porous media

1. Introduction

The porous media flows are of interest in a wide range of engineering disci-

plines including environmental and geological applications, flows through filters

etc. They take place in a material which consists of a solid skeleton and bil-

lions of interconnected fluid filled pores. The flows are characterised by large5

spatial and temporal scales. The complex geometry makes direct computing of

the flows, and also reactions, deformations and other phenomena, practically

impossible. In the applications, the mesoscopic modeling is privileged and one

search for effective models where the information on the geometry is kept in

the coefficients and which are valid everywhere. The technique which allows10

replacing the physical models posed at the microstructure level by equations

valid globally, is called upscaling. Its mathematical variant, which gives also

the rigorous relationship between the upscaled and the microscopic models is

the homogenization technique.

It has been applied to a number of porous media problems, starting from15

the seminal work of Tartar [29] and the monograph [28]. Many subjects are

reviewed in the book [16]. See also the references therein.

Frequently, one has processes on multiple domains and model-coupling ap-

proaches are needed. Absence of the statistical homogeneity does not allow

direct use of the homogenization techniques. Examples of situations where the20

presence of an interface breaks the statistical homogeneity are

• the flow of a viscous fluid over a porous bed,

• the forced infiltration into a porous medium.
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The tangential flow of an unconfined fluid over a porous bed is described by

the law of Beavers and Joseph [5] and it was rigorously derived in [19] and [24]25

using a combination of the homogenization and boundary layer techniques. The

forced injection problem was introduced in [21] and the interface conditions were

rigorously established and justified in [10].

A particular class of the above problems is derivation of the homogenized

external boundary conditions for the porous media flows. In the case of the30

zero velocity at the external boundary of the porous medium, one would impose

zero normal component of the Darcy velocity as the homogenized boundary

condition. The behavior of the velocity and pressure field close to the flat

external boundary, with such boundary condition, has been studied in [17], using

the technique from [18]. The error estimate in 2D, for an arbitrary geometry35

has been established in [25].

The case of the velocity boundary conditions could be considered as ”intu-

itively” obvious. Other class of problems arises when we have a contact of the

porous medium with another fluid flow and the normal contact force is given at

the boundary. It describes the physical situation when the upper boundary of40

the porous medium in exposed to the atmospheric pressure and wind (see e.g.

[12]). Or, more generally, when the fluid that we study is in contact with an-

other given fluid. Assuming that the motion in porous medium is slow enough

that the interface Σ between two fluids can be seen as immobile. Intuitively, it

is expected that the homogenized pressure will take the prescribed value at the45

boundary.

In this article we study the homogenization of the stationary Navier-Stokes

equations with the given normal contact force at the external boundary and we

will find out that the result is more rich than expected.

The novelty of the result is in the boundary condition on Σ. The value of

the Darcy pressure on the upper boundary Σ is now prescribed and its value

depends not only on the given applied pressure force Q but also on the shear

force P . Thus the macroscopic pressure is affected by the tangential component

of the contact force and not only by the normal component. As for the velocity,
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it shows that

uε(x) ≈ ε P (x1) w
(x
ε

)
+ ε2 V(x) .

Thus, in interior of the domain, the velocity is plain Darcean, while in vicinity50

of the upper boundary, a boundary layer term ε P (x1) w(x/ε) dominates.

The result can be used for the development of the model-coupling strategies,

see [15] and [26].

2. Setting of the problem

We start by defining the geometry. For simplicity, we restrict our research55

to the 2D case, but the results should hold in the 3D case as well. Nevertheless,

in that case the solid skeleton intersects the upper boundary and complications

with regularity of solutions to the boundary layer problems arise. Hence the

proofs are likely to be more technical.

Let ` and d be two positive constants and let Ω = (0, `) × (−d, 0) ⊂ R2 be

a rectangle. We denote the upper boundary by

Σ = {(x1, 0) ∈ R2 ; x1 ∈ (0, `) } .

The bottom of the domain is denoted by

Γ = {(x1,−d) ∈ R2 ; x1 ∈ (0, `) } .

Let A ⊂⊂ R2 be a smooth domain such that A ⊂ (0, 1)2 ≡ Y . The unit pore

is Y ∗ = Y \A. Now we choose the small parameter ε � 1 such that ε = `/m,

with m ∈ N and define

Tε = {k ∈ Z2 ; ε(k +A) ⊂ Ω } , Y ∗ε,k = ε(k + Y ∗) , Aεk = ε (k +A).

The fluid part of the porous medium is now Ωε = Ω\
⋃

k∈Tε

ε (k +A). Finally,60

Bε =
⋃

k∈Tε

ε (k +A) is the solid part of the porous medium and its boundary

is Sε = ∂Bε. As it can be seen from the definition, the solid part of the porous

medium is disconnected. That assumption is reasonable since we are in 2D.
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On Σ we prescribe the normal stress and Γ is an impermeable boundary. In

the dimensionless form, the Stokes problem that we study reads80

−µ∆uε +∇pε = F , div uε = 0 in Ωε, (1)

T(uε, pε) e2 = H = (P,Q) on Σ, uε = 0 on Sε ∪ Γ, (2)

(uε, pε) is `-periodic in x1. (3)

Here T(v, q) denotes the stress tensor and D v the rate of strain tensor

T(v, q) = −2µDv + q I , Dv =
1

2

(
∇v + (∇v)t

)
and µ is a positive constant.

Assumption 1. We suppose ∂A ∈ C3, F ∈ C1(Ω)2 is `-periodic in x1 and

P = P (x1), Q = Q(x1) being elements of C1
per[0, `].

For the existence, uniqueness and regularity of solutions to Stokes problem (1)-

(3), under Assumption 1, we refer e.g. to [7], Sec. 4.7.85
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Furthermore, we consider the full stationary incompressible Navier-Stokes

system

−µ∆u1,ε + (u1,ε∇)u1,ε +∇p1,ε = F , div u1,ε = 0 in Ωε (4)

T(u1,ε, p1,ε) e2 = H = (P,Q) on Σ, u1,ε = 0 on Sε ∪ Γ (5)

(u1,ε, p1,ε) is `-periodic in x1. (6)

Existence of a solution for problem (4)-(6) is discussed in Sec. 5.

Our goal is to study behavior of solutions to (1)-(3) and (4)-(6) in the limit

when the small parameter ε→ 0.90

3. The main result

Our goal is to describe the effective behavior of the fluid flow in the above

described situation. The filtration in the bulk is expected to be described by

Darcy’s law and we are looking for the effective boundary condition on the upper

boundary Σ. To do so, we apply various homogenization techniques, such as95

two-scale convergence ([27] , [1]) and the two-scale convergence for boundary

layers ([3]). We prove the following result:

Theorem 1. Let us suppose Assumption 1 and let (uε, pε) be the solution of

problem (1)- (3).

Then there exists an extension of pε to the whole Ω, denoted again by the

same symbol, such that

pε → p0 strongly in L2(Ω), as ε→ +0, (7)

where p0 is the solution of problem100

div K(∇p0 − F) = 0 in Ω, (8)

p0 is `-periodic in x1, n · K (∇p0 − F) = 0 on Γ, (9)

p0 = Cπ P +Q on Σ, (10)

with K the permeability tensor, defined by (83), and Cπ the boundary layer

pressure stabilisation constant given by (41).
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Next, let (w, π) be the solution of the boundary layer problem (36)-(38).

Then, after extending uε and w by zero to the perforations, we have

uε(x)− ε P (x1) w(x/ε)

ε2
⇀ V weakly in L2(Ω), (11)

uε(x)

ε2
⇀ P (x1)

(∫
G∗
w1(y) dy

)
δΣe1 + V weak* in M(Ω), (12)

uε − ε P (x1) w
(
x
ε

)
ε2

−
2∑
k=1

wk
(x
ε

)(
Fk −

∂p0

∂xk

)
→ 0 strongly in L2(Ω), (13)

as ε→ +0. G∗ is the semi-infinite strip of unit cells given by (28), V satisfies

the Darcy law

V = K(F−∇p0) ,

M(Ω) denotes the set of Radon measures on Ω and δΣ is the Dirac measure105

concentrated on Σ, i.e. 〈δΣ|ψ〉 =
∫

Σ
ψ(x1, 0) dx1.

Remark 1. Let us suppose that the boundary layer geometry has the mirror

symmetry with respect to the axis {y1 = 1/2}. Then w2 and π are uneven

functions with respect to the axis and Cπ = 0. In particular, this result applies

to the case of circular inclusions.110

An analogous result holds for the homogenization of the stationary Navier-

Stokes equations (4)-(6) and the homogenized problem is the same as in the

linearized case:

Theorem 2. Under the assumptions on the geometry and the data from The-

orem (1), there exist solutions (u1,ε, p1,ε) of problem (4)- (6) such that conver-115

gences (7), (11)-(13) take place.

4. Proof of Theorem 1

The proof is divided in several steps. First we derive the a priori estimates.

Then we pass to the two-scale limit for boundary layers, in order to determine

the local behavior of the solution in vicinity of the boundary. Once it is achieved,120
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we subtract the boundary layer corrector from the original solution and use the

classical two-scale convergence to prove that the residual converges towards the

limit that satisfies the Darcy law. At the end we prove the strong convergences.

4.1. Step one: A priori estimates

We first recall that in Ωε Poincaré and trace constants depend on ε in the125

following way

|φ|L2(Ωε) ≤ C ε |∇φ|L2(Ωε) (14)

|φ|L2(Σ) ≤ C
√
ε |∇φ|L2(Ωε) , ∀ φ ∈ H1(Ωε) , φ = 0 on Sε (15)

The second inequality is a consequence of the trace estimate in L2(Σ) through

interpolation between L2(Ωε) and H1(Ωε). It is needed for application of the

two-scale convergence in the sense of the boundary layers.

We also recall that the norms |Dv|L2(Ωε) and |∇v|L2(Ωε) are equivalent, due to130

the Korn’s inequality, which is independent of ε (see e.g. [7]).

Here and in the sequel we assume that uε is extended by zero to the whole Ω. In

order to extend the pressure pε we need Tartar’s construction from his seminal

paper [29]. It relies on the related construction of the restriction operator, acting

from the whole domain Ω to the pore space Ωε. In our setting we deal with the135

functional spaces

X2 = {z ∈ H1(Ω)2 ; z = 0 for x2 = −d }

Xε
2 = {z ∈ X2 ; z = 0 on Sε } .

Then, after [29] and the detailed review in [2], there exists a continuous restric-

tion operator Rε ∈ L(X2, X
ε
2), such that

div (Rε z) = div z +
∑
k∈Tε

1

|Y ∗ε,k|
χε,k

∫
Aε

k

div z dx, ∀ z ∈ X2,

|Rε z|L2(Ωε) ≤ C (ε |∇z|L2(Ω) + |z|L2(Ω) ) , ∀ z ∈ X2,

|∇Rεz|L2(Ωε) ≤
C

ε
(ε |∇z|L2(Ω) + |z|L2(Ω) ) , ∀ z ∈ X2,

where χε,k denotes the characteristic function of the set Y ∗ε,k, k ∈ Tε. Through

a duality argument, it gives an extension of the pressure gradient and it was
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found in [23] that the pressure extension p̃ is given by the explicit formula

p̃ε =


pε in Ωε

1

|Y ∗ε,k|

∫
Y ∗
ε,k

pε dx in Y ∗ε,k for each k ∈ Tε.
(16)

For details we refer to [2]. In addition, a direct computation yields∫
Ωε

pε div (Rεz) dx =

∫
Ω

p̃ε dx div z dx , ∀ z ∈ X2. (17)

Both the velocity and the pressure extensions are, for simplicity, denoted by

the same symbols as the original functions (uε, pε).140

It is straightforward to see that:

Lemma 1. Let (uε, pε) be the solution to problem (1), (2). Then there exists

some constant C > 0, independent of ε, such that

|∇uε|L2(Ω) ≤ C
√
ε (18)

|uε|L2(Ω) ≤ C ε3/2 (19)

|pε|L2(Ω) ≤
C√
ε
. (20)

Proof. We start from the variational formulation of problem (1), (2)

µ

∫
Ωε

Duε : Dv dx =

∫
Σ

H · v dS +

∫
Ωε

F · v dx, ∀ v ∈ V (Ωε) , (21)

V (Ωε) = {v ∈ H1(Ωε)
2; div v = 0, v = 0 on Sε ∪ Γ, v is `− periodic in x1}

Using uε as the test function and applying (14)-(15) yield

µ

∫
Ωε

|Duε|2 dx =

∫
Σ

H · uε dS +

∫
Ωε

F · uε dx ≤ C
√
ε|Duε|L2(Ωε) .

Now (14) implies (18) and (19). Since we have extended the pressure to the

solid part of Ω, using Tartar’s construction, (18) and (17) imply

|pε|L2(Ω)/R = sup
g∈L2(Ω)/R

∫
Ω
pε g dx

|g|L2(Ω)/R
= sup

z∈X2

∫
Ωε
pε div (Rεz) dx

|z|H1(Ω)2
≤ C

ε
|∇uε|L2(Ω),

giving the pressure estimate (20). �
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4.2. Step two: Two-scale convergence for boundary layers145

We recall the definition and some basic compactness results for two-scale

convergence for boundary layers due to Allaire and Conca [3]. In the sequel,

if the index y is added to the differential operators Dy , ∇y , divy, then the

derivatives are taken with respect to the fast variables y1, y2 instead of x1, x2.

Let G = (0, 1)× (−∞ , 0) be an infinite band. The bounded sequence (φε)ε>0 ⊂

L2(Ω) is said to two-scale converge in the sense of the boundary layers if there

exists φ0(x1, y) ∈ L2(Σ×G) such that

1

ε

∫
Ω

φε(x)ψ
(
x1,

x

ε

)
dx→

∫
Σ

∫
G

φ0(x1, y)ψ(x1, y) dx1 dy, as ε→ +0, (22)

for all smooth functions ψ(x1, y) defined in Σ × G, with bounded support, such

that y1 7→ ψ(x1, y1, y2) is 1-periodic.

We need the following functional space

D1 = {ψ ∈ C∞(G) ; ψ is 1− periodic in y1

and compactly supported in y2 ∈ (−∞, 0]}

Now D1
#(G) is the closure of D1 in the norm |ψ|D1

#(G) = |∇ψ|L2(G). It should

be noticed that such functions do not necessarily vanish as y2 → −∞. For that

kind of convergence we have the following compactness result from [3]:

Theorem 3. 1. Let us suppose

1√
ε
|φε|L2(Ω) ≤ C . (23)

Then there exists φ0 ∈ L2(Σ×G) and a subsequence, denoted by the same

indices, such that

φε → φ0 two-scale in the sense of boundary layers, as ε→ +0. (24)

2. Let us suppose

1√
ε

(
|φε|L2(Ω) + ε |∇φε|L2(Ω)

)
≤ C. (25)

10



Then there exists φ0 ∈ L2(Σ;D1
#(G)) and a subsequence, denoted by the

same indices, such that in the limit ε→ +0

φε → φ0 two-scale in the sense of boundary layers (26)

ε∇φε → ∇y φ0 two-scale in the sense of boundary layers. (27)

Using the a priori estimates, we now undertake our first passing to the limit.

Before we start we define

C =

−∞⋃
j=0

(j e2 + ∂A ) , M =

−∞⋃
j=0

(j e2 +A) , G∗ = G\
−∞⋃
j=0

(j e2 +A ). (28)

We introduce the space D1
#0(G∗) defined similarly as D1

#(G) but on G∗ and

such that its elements have zero trace on C. Thus, we take

D1 = {ψ ∈ C∞(G∗) ; ψ|C = 0 , ψ is 1− periodic in y1 ,

and compactly supported in y2 ∈ (−∞, 0]} .

Then D1
#0(G∗) is its closure in the norm |ψ|D1

#0(G∗) = |∇ψ|L2(G∗). Those func-

tions do vanish as y2 → −∞ due to the zero trace on C that prevents them to150

tend to a constant.

Lemma 2. Let (v0, q0) ∈ L2(Σ;D1
#0(G∗)) × L2(Σ;L2

loc(G
∗)) be given by the

boundary layer problem

−µ∆y v0 +∇y q0 = 0, divy v0 = 0 in G∗, (29)(
−2µDy v0 + q0 I

)
e2 = H for y2 = 0 , v0 = 0 on C, (30)

(v0, q0) is 1-periodic in y1 , v0 → 0 as y2 → −∞ . (31)

Then

1

ε
uε → v0 two-scale in the sense of boundary layers (32)

∇uε → ∇yv0 two-scale in the sense of boundary layers, as ε→ +0. (33)
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Proof. The a priori estimates (19) and (18) and the compactness theorem 3

imply the existence of some v0 ∈ L2(Σ;D1
#0(G∗)) such that v0 = 0 on M and

1

ε
uε → v0 two-scale in the sense of boundary layers (34)

∇uε → ∇yv0 two-scale in the sense of boundary layers, as ε→ +0. (35)

Now we take the test function zε(x) = z
(
x1,

x
ε

)
∈ D1

#0(G∗)2 such that divyz = 0

and z(x1, · ) = 0 in M in the variational formulation for (1), (2)

2µ

ε

∫
Ωε

εD
uε

ε
: εD zε dx−

∫
Ωε

pε div zε dx =

∫
Σ

H · zε dS +

∫
Ωε

F · zε dx.

Since
∂zε

∂xj
= ε−1 ∂z

∂yj
+ δ1j

∂z

∂x1

we get in the limit

2µ

∫
Σ

(∫
G

Dyv
0(x1, y) : Dyz(x1, y) dy

)
dx1 =

∫
Σ

H·
(∫ 1

0

z(x1, y1, 0)dy1

)
dx1 .

Furthermore, since div uε = 0 it easily follows that divy v0 = 0. Thus there

exists q0 ∈ L2(Σ;L2
loc(G

∗)) such that (v0, q0) satisfy (29)-(31). �155

The boundary layer corrector (v0, q0) can be decomposed as v0 = P (x1) w(y)

and q0 = P (x1)π(y) +Q(x1) , where

−µ∆y w +∇y π = 0 , divy w = 0 in G∗, (36)

(−2µDy w + π I) e2 = e1 for y2 = 0 , w = 0 on C, (37)

(w, π) is 1-periodic in y1 , w→ 0 as y2 → −∞ . (38)

Problem (36), (38) is of the boundary layer type. Existence of the solution and

exponential decay can be proved as in [18] (See also [22] for the scalar case).160

We have

Theorem 4. Problem (36), (38) has a unique solution (w, π) ∈ D1
#0(G∗) ×

L2
loc(G

∗). Furthermore, there exists a constant Cπ such that

|eα |y2| (π − Cπ ) |L2(G∗) ≤ C (39)

|eα |y2| w |L2(G∗) + |eα |y2| ∇w |L2(G∗) ≤ C . (40)

12



for some constants C,α > 0 .

In the sense of (39) we write

Cπ = lim
y2→−∞

π(y) . (41)

165

Remark 2. If ∂A ∈ C3 then the regularity theory for the Stokes operator ap-

plies and (39), (40) hold pointwise. For more details on the regularity see e.g.

[7].

Remark 3. Let the solution w to system (36)- (38) be extended by zero to

M . Let b > a > 0 be arbitrary constants. Then we have

0 =

∫ b

a

∫ 1

0

div w dy =

∫ 1

0

w2(y1, b) dy1 −
∫ 1

0

w2(y1, a) dy1.

Using (40) yields ∫ 1

0

w2(y1, y2) dy1 = 0, ∀y2 ≤ 0. (42)

(42) implies ∫
G∗
w2 dy = 0. (43)

Remark 4. Integrating (37) with respect to y1 yields

e1 =

∫ 1

0

[
−µ

(
∂w1

∂y2
e1 +

∂w2

∂y1
e1 + 2

∂w2

∂y2
e2

)
+ π e2

]
(y1, 0) dy1 .

Equating the second components gives

0 =

∫ 1

0

(
−2µ

∂w2

∂y2
+ π

)
(y1, 0) dy1 =

∫ 1

0

(
2µ

∂w1

∂y1
+ π

)
(y1, 0) dy1 =

=

∫ 1

0

π(y1, 0) dy1 .

If we test (36) with wk and (80) by w and combine, we get

Cπ = K−1
22

(∫ 1

0

w2
1(y1, 0) dy1 +

∫ 1

0

(
−2µ

∂wk

∂y2
+ πk e2

)
(y1, 0) w(y1, 0) dy1

)
.

Finally, we denote J = {y2 ∈]−∞, 0] ; (y1, y2) 6∈M , y1 ∈]0, 1[ }. Denoting

mA = min{y2 ∈ [0, 1] ; (y1, y2) ∈ A } , MA = max{y2 ∈ [0, 1] : (y1, y2) ∈ A } .
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The set J is then a union of disjoint intervals J0 = ] 0,mA [ , Ji =]i − 1 +170

MA, i+ma [ , i = 1, 2, . . .. It is easy to see that the mapping t 7→
∫ 1

0
π(y1, t) dy1

is constant on each of the intervals Ji. If those constants are denoted by ci then

c0 = 0 and limi→∞ ci = Cπ.

4.3. Step three: Derivation of the Darcy law via classical two-scale convergence

We now know the behavior of (uε, pε) in vicinity of Σ. To get additional

information of the behavior far from the boundary we deduce the boundary

layer corrector from (uε, pε) and define

Uε(x) = uε(x)− ε P (x1) w(x/ε) , P ε(x) = pε(x)− [P (x1)π(x/ε) + Q(x1)] .

The stress tensor T(v, q) = 2µDv − q I for such approximation satisfies

T(Uε, P ε) = T(uε, pε)− P (x1) (2µDyw − πI)−

−2µε
dP

dx1

 w1 w2/2

w2/2 0

 = T(uε, pε)−

−

 P (x1)
(

2µ ∂w1

∂y1
− π

)
+ 2µε dPdx1

w1 −Q µ
(
P (x1)

(
∂w1

∂y2
+ ∂w2

∂y1

)
+ ε dPdx1

w2

)
µ
(
P (x1)

(
∂w1

∂y2
+ ∂w2

∂y1

)
+ ε dPdx1

w2

)
P (x1)

(
2µ∂w2

∂y2
− π

)
−Q(x1)


By direct computation we get

−div T(Uε, P ε) = fε, (44)

fε ≡ F + µε
d2P

dx2
1

(w + w1e1) +
dP

dx1

(
2µ
∂w

∂y1
− πe1 + µ∇yw1

)
− dQ

dx1
e1, (45)

div Uε = −ε dP
dx1

w1 in Ωε, (46)

Uε = 0 on Sε , Uε = −ε P (x1) w(x/ε) on Γ, (47)

(−2µD Uε + P ε I) e2 = 0 on Σ . (48)

We want to derive appropriate a priori estimates for (Uε, P ε). However, ac-175

cording to (46), the divergence of Uε is still too large for our purpose. Thus we

need to compute the additional divergence corrector.
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Lemma 3. There exists Φ ∈ H2(G∗)2 such that

divy Φ = w1 in G∗, (49)

Φ is 1-periodic in y1 , Φ = 0 on C , Φ(y1, 0) = Ce2, (50)

eγ|y2|Φ ∈ L2(G∗)4 and |Φ(y1, y2)| ≤ Ce−γ|y2|, for some γ > 0. (51)

Proof. We follow [18] and search for Φ in the form

Φ = ∇yψ + curly h =

(
∂ψ

∂y1
− ∂h

∂y2
,
∂ψ

∂y2
+
∂h

∂y1

)
.

The function ψ solves

−∆yψ = w1(y) in G∗ ,
∂ψ

∂n
= 0 on C, (52)

∂ψ

∂y2
= d0 = const. for y2 = 0, ψ is 1-periodic in y1, (53)

with n = (n1, n2) being the exterior unit normal on C and t = (−n2, n1) the

tangent. The constant d0 is chosen in a way that problem (52)-(53) admits a

solution. By simple integration it turns out that d0 = −
∫
G∗ w1(y) d y. Since

the right-hand side is in H1(G∗), the problem has a solution ψ ∈ H3(G∗) that

can be chosen to have an exponential decay

|ψ|H1(G∗∩{|y2|>s}) ≤ C e−γs. (54)

Next we use the trace theorem and construct a y1-periodic function h ∈ H3(G∗)

such that

∂h

∂t
= curlh · n = 0 ,

∂h

∂n
= curlh · t = −∂ψ

∂t
on C

and

∂h

∂y2
(y1, 0) =

∂ψ

∂y1
(y1, 0) ,

∂h

∂y1
(y1, 0) = 0 (achieved if we take h(y1, 0) = const. ) .

The function Φ, constructed above, satisfies (49) and (50). Exponential decay180

(54) of ψ implies exponential decay of h in the same sense and, finally, gives

(51). �

Again, assuming that Uε is extended by zero to the pores Bε we extend P ε

using the formula (16) to prove:
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Lemma 4.

|∇Uε|L2(Ω) ≤ C ε (55)

|Uε|L2(Ω) ≤ C ε2 (56)

|P ε|L2(Ω) ≤ C . (57)

Proof. It is straightforward to see that for the right-hand side, we have

|fε|L2(Ω) ≤ C .

Furthermore

fε = F− (
dP

dx1
Cπ +

dQ

dx1
) e1 + gε ,

with |gε|L2(Ω) = O(
√
ε). The idea is to test the system (44) with

Ũε = Uε + ε2 dP

dx1
(x1) Φ

(x
ε

)
, (58)

where Φ is constructed in lemma 3. By the construction

div Ũε = ε2 d
2P

dx2
1

Φε1

with Φε(x) = Φ(x/ε) . Thus

|div Ũε|L2(Ω) ≤ C ε5/2 .

The weak form of (44) reads

2µ

∫
Ωε

D Uε : D z dx−
∫

Ωε

P ε div z dx =

∫
Ωε

fε z dx , ∀ z ∈ Xε
2 (59)

so that∣∣∣∣∫
Ωε

P ε div z dx

∣∣∣∣ ≤ C ( |D Uε|L2(Ωε) + ε )| z|H1(Ωε) , ∀ z ∈ Xε
2 . (60)

Next we use identity (17) to obtain the estimate∣∣∣∣∫
Ω

P̃ ε div z dx

∣∣∣∣ =

∣∣∣∣∫
Ωε

P ε div (Rεz) dx

∣∣∣∣ ≤ C

ε
( |D Uε|L2(Ωε)+ε ) |z|H1(Ω), (61)

∀ z ∈ X2 . Since div : X2 → L2(Ω) is a surjective continuous operator, (61)

yields

|P̃ ε|L2(Ω) ≤ C ( ε−1 |D Uε|L2(Ωε) + 1 ) . (62)

16



Now we take z = Ũε as a test function in (59). To be precise, we observe that

Ũε is not exactly in Xε
2 since it is not equal to zero for x2 = −d. But, that

value is exponentially small, of order e−γ/ε, so it can be easily corrected by

lifting its boundary value by a negligibly small function. Thus, slightly abusing

the notation, we consider it as an element of Xε
2 . Then, due to the (58)∣∣∣∣∫

Ωε

P ε div Ũε dx

∣∣∣∣ =

∣∣∣∣ε2

∫
Ωε

P ε
d2P

dx2
1

Φε1 dx

∣∣∣∣ ≤ C ε |D Uε |L2(Ωε) + C ε2 . (63)

Consequently, we get (55)-(57) . �

At this point we use the classical two-scale convergence (see e.g. [27], [1]).

For readers’ convenience we recall basic definitions and compactness results.

Let Y = [0, 1]2 and let C∞# (Y ) be the set of all C∞ functions defined on Y

and periodic with period 1. We say that a sequence (vε)ε>0, from L2(Ω), two-

scale converges to a function v0 ∈ L2(Ω) if

lim
ε→0

∫
Ω

vε(x)ψ
(
x,
x

ε

)
dx→

∫
Ω

∫
Y

v0(x, y)ψ(x, y)dx dy, as ε→ +0,

for any ψ ∈ C∞0 (Ω;C∞# (Y )).185

For such convergence we have the following compactness result from [1] and [27]

that we shall need in the sequel

Theorem 5. • Let (vε)ε>0 be a bounded sequence in L2(Ω). Then we can

extract a subsequence that two-scale converges to some v0 ∈ L2(Ω× Y ).

• Let (vε)ε>0 be a sequence in H1(Ω) such that vε and ε∇vε are bounded190

in L2(Ω). Then, there exists a function v0 ∈ L2(Ω;H1
#(Y )) and a subse-

quence for which

vε → v0 in two-scales, (64)

ε∇vε → ∇yv0 in two-scales, as ε→ +0. (65)
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Lemma 5. Let (Uε, P ε) be the solution of the residual problem (46)-(48). Then

ε−2 Uε → U0 in two-scales, (66)

ε−1∇Uε → ∇yU0 in two-scales, (67)

P ε → P 0 in two-scales, as ε→ +0, (68)

where (U0, P 0, Q0) ∈ L2(Ω;H1
#(Y ∗)) × H1(Ω) × L2(Ω;L2(Y ∗)/R) is the solu-

tion of the two-scale problem

−µ∆y U0 +∇yQ0 +∇xP 0 = F− (
dQ

dx1
+ Cπ

dP

dx1
) e1 in Y ∗ × Ω, (69)

divy U0 = 0 in Y ∗ × Ω, (70)

U0 = 0 on S × Ω, (U0, Q0) is 1− periodic in y, (71)

divx

(∫
Y

U0 dy

)
= 0 in Ω,

(∫
Y

U0 dy

)
· n = 0 on Γ, P 0 = 0 on Σ. (72)

Proof. Using the estimates (55)-(57) we get that there exist U0 ∈ L2(Ω;H1
#(Y ))

and P 0 ∈ L2(Ω× Y ) such that195

ε−2 Uε → U0 in two-scales,

ε−1∇Uε → ∇yU0 in two-scales,

P ε → P 0 two-scale.

It follows directly that U0(x, y) = 0 for y ∈ A.

First, for ψ(x, y) ∈ C∞(Y × Ω), periodic in y, such that ψ = 0 for y ∈ A

0←
∫

Ω

dP

dx1
(x1)w1

(
x,
x

ε

)
ψ
(
x,
x

ε

)
dx = ε−1

∫
Ω

div Uε ψ
(
x,
x

ε

)
dx

= −
∫

Ω

(
ε∇xψ

(
x,
x

ε

)
+∇y ψ

(
x,
x

ε

))
· U

ε(x)

ε2
dx→ (73)

→
∫

Ω

∫
Y

U0 · ∇yψ(x, y) dy dx ⇒ divy U0 = 0 .

200
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We then test equations (44)-(48) with mε(x) = m
(
x, xε

)
, where m ∈ H1(Ω;H1

#(Y )),

m = 0 for y ∈M .

0← ε

∫
Ω

fεmε dx = 2µ

∫
Ω

D Uε(x)
[
Dym

(
x,
x

ε

)
+ εDxm

(
x,
x

ε

) ]
dx−∫

Ω

P ε(x)

(
εdivxm(x, x/ε) + divym(x, x/ε)

)
dx→

−
∫

Ω

∫
Y

P 0(x, y) divym(x, y) dy dx. (74)

Thus ∇yP 0 = 0 implying P 0 = P 0(x) .

Next we test system (44)-(48) with Zε(x) = Z
(
x, xε

)
, where Z ∈ H1(Ω;H1

#(Y )),205

such that divyZ = 0 and Z = 0 for y ∈ A. It yields∫
Ω

[F− dP (x1)Cπ +Q(x1)

dx1
e1]

∫
Y

Z dy ←
∫

Ω

fε Zε = −
∫

Ω

P ε(x)divxZ(x, x/ε) dx

+
2µ

ε

∫
Ω

D Uε(x)

(
DyZ(x,

x

ε
) + εDxZ(x,

x

ε
)

)
dx→ (75)

→ 2µ

∫
Ω

∫
Y

DyU
0(x, y) DyZ(x, y) dy dx−

∫
Ω

∫
Y

P 0(x) divxZ(x, y) dy dx .

We conclude that ∇xP 0 ∈ L2(Ω) and (U0, P 0) satisfies equations (69)-(71).

The effective filtration velocity boundary conditions are determined by pick-

ing a smooth test-function ψ ∈ C∞(Ω), periodic in x1 , ψ = 0 on Σ, and testing

div Ũε = ε2 dP

dx1

′
Φε1

with it. It gives

−
∫

Ωε

dP

dx1

′
(x1) Φ1

(x
ε

)
ψ(x) dx = ε−2

∫
Ωε

div Ũε(x)ψ(x) dx =

= −
∫

Ωε

ε−2 Ũε(x) · ∇ψ(x) dx−
∫ `

0

Ũε2 (x1,−d)ψ(x1,−d) dx1 . (76)

The last integral on the right hand side is negligible due to the exponential decay210

of w and Φ. The first integral on the right hand side, due to (66), converges

19



and, due to the construction of Ũε,

limε→0

∫
Ω
ε−2 Ũε(x) · ∇ψ(x) dx = lim

ε→0

∫
Ω

ε−2Uε(x) · ∇ψ(x) dx =

=

∫
Ω

∫
Y

U0(x, y) dy · ∇ψ(x) dx .

For the left-hand side in (76) we get∣∣∣∣∫
Ω

d2P

dx2
1

(x1) Φ1

(x
ε

)
ψ(x) dx

∣∣∣∣ ≤ C√ε .
Thus ∫

Ω

(∫
Y

U0 dy

)
· ∇ψ dx = 0

meaning that

divx

(∫
Y

U0 dy

)
= 0 in Ω ,

(∫
Y

U0 dy

)
· n = 0 on Γ.

We still need to determine the boundary condition for P 0 on Σ.215

Let b be a smooth function defined on Ω×Y , such that divyb = 0 and b = 0

on Γ and b = 0 for y ∈ A . We now use bε(x) = b(x, x/ε) as a test function in

(44)-(48). We obtain in the limit ε→ +0∫
Ω

fε · bε dx = 2µ

∫
Ω

D Uε
[
Dxb

(
· , ·
ε

)
+ ε−1Dyb

(
· , ·
ε

) ]
dx− (77)∫

Ω

P ε divxb
(
· , ·
ε

)
dx→ 2µ

∫
Ω

∫
Y

DyU
0 Dyb dydx−

∫
Ω

P 0 divx

(∫
Y

b dy

)
dx.

As for the left-hand side, we have∫
Ω

fε · bε dx→
∫

Ω

[F− d(P (x1)Cπ +Q(x1))

dx1
e1] (

∫
Y

b dy) dx

so that

2µ

∫
Ω

∫
Y

DyU
0 Dyb dydx−

∫
Ω

P 0 divx

(∫
Y

b dy

)
dx =∫

Ω

∫
Y

b [F− d(P (x1)Cπ +Q(x1))

dx1
e1 ] dydx.
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Using (69)-(72) yields∫
Ω

P 0 div

(∫
Y

b dy

)
dx = −

∫
Ω

∇P 0 ·
(∫

Y

b dy

)
dx.

It implies

2µ

∫
Σ

(∫
Y

b · e2 dy

)
P 0 dx = 0

and, finally, P 0 = 0 on Σ.

Proving uniqueness of a weak solution for problem (69)-(72) is straightfor-220

ward. �

4.4. Step four: Strong convergence

We start by proving the strong convergence for the pressure. We follow the

approach from [28]. Let {zε}ε>0 be a sequence in X2 such that

zε ⇀ z0 weakly in H1(Ω) .

Then we have∫
Ω

P̃ ε div zε dx−
∫

Ω

P 0 div z dx =

∫
Ω

P̃ ε div (zε−z) dx+

∫
Ω

(P̃ ε−P 0) div z dx.

For two integrals on the right-hand side we have

lim
ε→0

∫
Ω

(P̃ ε − P 0) div z dx = 0 and∫
Ω

P̃ ε div (zε − z) dx =

∫
Ωε

P ε divRε (zε − z) dx =

2µ

∫
Ωε

D

(
Uε

ε

)
εD(Rε(z

ε − z) ) dx→ 0 as ε→ 0 .

Using surjectivity of the operator div : X2 → L2(Ω) we conclude that

P̃ ε → P 0 strongly in L2(Ω).225

Next we prove the strong convergence for the velocity. We define

U0,ε(x) =

2∑
k=1

wk(x/ε)

[
Fk(x)− ∂

∂xk

(
P 0(x) + CπP (x1) +Q(x1)

) ]
.
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Then for the L2-norms we have∫
Ωε

∣∣∣∣ Uε

ε2
−U0,ε

∣∣∣∣2 dx ≤ C 2µ ε2

∫
Ωε

∣∣∣∣D (
Uε

ε2
−U0,ε

) ∣∣∣∣2 dx =

= C

{
2µ ε−2

∫
Ωε

|D Uε |2 dx+ 2µ ε2

∫
Ωε

|D U0,ε|2 dx−

−4µ

∫
Ωε

D

(
Uε

ε

)
εD U0,ε dx

}
.

Using the smoothness of U0 we get, as ε→ 0

(i) ε2

∫
Ωε

|D U0,ε|2 dx =

∫
Ωε

|Dy U0,ε|2 dx+O(ε)→
∫

Ω×Y ∗
|DyU

0|2 dx dy .

(ii) 2µ

∫
Ω×Y ∗

|DyU
0|2 dx =

∫
Ω

(F− d(P (x1)Cπ +Q(x1))

dx1
e1 )

∫
Y ∗

U0 dydx .

(iii) 2µε−2

∫
Ωε

|D Uε|2 dx = 2µε−2

∫
Ωε

D Uε D Ũε dx+O(
√
ε) .230

(iv)

2µε−2

∫
Ωε

D Uε D Ũε dx− ε−2

∫
Ωε

P ε div Ũε dx =∫
Ωε

(F− d(P (x1)Cπ +Q(x1))

dx1
e1 )

Uε

ε2
dx+O(

√
ε).

(v) ε−2

∫
Ωε

P ε div Ũε dx =

∫
Ωε

P ε
d2P

dx2
1

Φε dx→ 0 .

(vi)

(iii), (iv) and (v)⇒

2µ ε−2

∫
Ωε

|D Uε|2 dx→
∫

Ω

[ F− d(P (x1)Cπ +Q(x1))

dx1
e1]

∫
Y ∗

U0 dydx.

(vii)

∫
Ωε

D

(
Uε

ε

)
εD U0,ε dx→

∫
Ω×Y ∗

|DyU
0 |2 dxdy.

Thus

lim
ε→0

∫
Ωε

∣∣∣∣ Uε

ε2
−U0,ε

∣∣∣∣2 dx = 0 .
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4.5. Step five: Weak* convergence of the boundary layer corrector235

To prove convergence (12) we need to show that

ε−1 P (x1) w(x/ε) ⇀ P (x1) (

∫
G∗

w(y) dy)δΣ weak* in M(Ω), as ε→ +0.

Thus we take the test function z ∈ C(Ω)2 and, using the exponential decay of

w, we get

1

ε

∫
Ω

P (x1) w
(x
ε

)
z(x) dx =

1

ε

∫ `

0

P (x1)

∫ 0

ε log ε

w
(x
ε

)
z(x) dx2 dx1 +O(ε) =

=

∫ `

0

P (x1) z(x1, 0)

∫ 0

−∞
w
(x1

ε
, y2

)
dy2 dx1 +O(ε | log ε|) .

Using the well known property of the mean of a periodic function (see e.g. [28])

yields

lim
ε→0

∫ `

0

P (x1) z(x1, 0)

∫ 0

−∞
w
(x1

ε
, y2

)
dy2 dx1 =

=

∫ `

0

P (x1) z(x1, 0)

(∫ 0

−∞

∫ 1

0

w(y) dy1 dy2

)
dx1 =

=

∫ `

0

P (x1) z(x1, 0)

∫
G∗

w(y) dy dx1 =

(∫
G∗

w(y) dy

)
P (x1) 〈δΣ | z〉 .

4.6. Step six: Separation of scales and the end of the proof of Theorem 1240

We can separate the variables in (69)-(72) by setting

U0(x, y) =

2∑
k=1

wk(y)

[
Fk(x)− ∂

∂xk
(Q(x1) + Cπ P (x1) + P 0(x) )

]
, (78)

Q0(x, y) =

2∑
k=1

πk(y)

[
Fk(x)− ∂

∂xk
(Q(x1) + Cπ P (x1) + P 0(x) )

]
, (79)

with

−µ∆wk +∇πk = ek, div wk = 0 in Y ∗, (80)

wk = 0 on ∂A, (wk, πk) is 1 − periodic. (81)

Inserting the separation of scales formulas (78)-(79) into (69)-(72) yields
div K [ F−∇ (P 0 + Cπ P +Q) ] = 0 in Ω,

P 0 = 0 on Σ, P 0 is `− periodic in x1,

n · K [ F−∇ (P 0 + Cπ P +Q) ] = 0 on Γ.

(82)
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Here

K = [Kij ] = [

∫
Y

wij dy] (83)

stands for the positive definite and symmetric permeability tensor. System (82)

is a well-posed mixed boundary value problem for a linear elliptic equation for

P 0.

Nevertheless, it is important to note that P 0 is not the limit or homogenized

pressure since

pε(x) = P ε(x) + π
(x
ε

)
P (x1) +Q(x1) .

Obviously

pε ⇀ p0 ≡ P 0 + Cπ P +Q .

This ends the proof of theorem 1 since the limit pressure is p0 and it satisfies

the boundary value problem (8)-(10).

5. Proof of Theorem 2245

We start by proving that problem (4)-(6) admits at least one solution satis-

fying estimates (18)-(20).

It is well known that in the case of the stress boundary conditions, the inertia

term poses difficulties and existence results for the stationary Navier-Stokes

system can be obtained only under conditions on data and/or the Reynolds250

number (see e.g. [11]). Presence of many small solid obstacles in the porous

media flows corresponds to a small Reynolds number, expressed through the

presence of ε in Poincaré’s and trace estimates (14) and (15).

In order to estimate the inertia term we need fractional order Sobolev spaces.

we recall that

H1/2(Ω)2 = {z ∈ L2(Ω)2 | Ez ∈ H1/2(R2)2 },

where E : H1(Ω)2 → H1(R2)2 is the classical Sobolev extension map. It is

defined on the spaces Hα(Ω), α ∈ (0, 1) through interpolation (see [13], Chapter255

6).
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Next, after [13], Chapter 6, one has∣∣∣∣∫
Ωε

(u1,ε∇)u1,ε · v dx

∣∣∣∣ ≤ C|u1,ε|H1/2(Ω)2 |∇u1,ε|L2(Ω)2 |v|H1/2(Ω)2 , ∀v ∈ V (Ωε).

(84)

Using (14) in (84) yields∣∣∣∣∫
Ωε

(u1,ε∇)u1,ε · u1,ε dx

∣∣∣∣ ≤ Cε|∇u1,ε|3L2(Ω)2 . (85)

Now it is enough to have an a priori estimate for the H1-norm. With such

estimate the standard procedure would give existence of a solution. It consists

of defining a finite dimensional Galerkin approximation and using the a priori

estimate and Brouwer’s theorem to show that it admits a solution satisfying a260

uniform H1- a priori estimate. Finally, we let the number of degrees of freedom

in the Galerkin approximation tend to infinity and obtain a solution through

the elementary compactness. For more details we refer to the textbook of Evans

[14], subsection 9.1.

We recall that the variational form of (4)-(6) is

〈Lεu1,ε,v〉 = 2µ

∫
Ωε

Du1,ε : Dv dx+

∫
Ωε

(u1,ε∇)u1,ε · v dx−

−
∫

Ωε

F · v dx−
∫

Σ

H · v dS = 0, ∀v ∈ V (Ωε). (86)

Then, for ε ≤ ε0,

〈Lεu1,ε,u1,ε〉 ≥ 2µ|Du1,ε|2L2(Ωε)4 − Cε|Du1,ε|3L2(Ωε)4 − C
√
ε|Du1,ε|L2(Ωε)4 ≥

≥ C1

ε2
> 0, if |Du1,ε|L2(Ωε)4 =

1√
ε
. (87)

As a direct consequence of (87), Brouwer’s theorem implies existence of at least

one solution for the N dimensional Galerkin approximation corresponding to

(86) (see [14], subsection 9.1). After passing to the limit N → +∞, we obtain

existence of at least one solution uε for problem (86), such that |Du1,ε|L2(Ωε)4 ≤

1/
√
ε. After plugging this information into estimate (85), equation (86) yields

the energy estimate

2µ|Du1,ε|2L2(Ωε)4 ≤ C
√
ε|Du1,ε|2L2(Ωε)4 + C

√
ε|Du1,ε|L2(Ωε)4 ,
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implying estimates (18)-(20).265

Now we have∣∣∣∣∫
Ωε

(u1,ε∇)u1,ε · v
∣∣∣∣ ≤ Cε|∇u1,ε|2L2(Ω)2 |∇v|L2(Ω)2 ≤ Cε2|∇v|L2(Ω)2 , ∀v ∈ V (Ωε)

(88)

and we conclude that in the calculations from subsections 4.2-4.4 the inertia

term does not play any role. Hence it does not contribute to the homogenized

problem either. This observation concludes the proof of Theorem 2. �

6. Numerical confirmation of the effective model

In this section we use a direct computation of the boundary layer corrector

(36-38) and the microscopic problem (1-3) to numerically confirm the estimate

(39)

|π − Cπ|L2(G∗) = O(
√
ε)

and the strong convergence of the effective pressure (7). For the pressure we

find out

|pε − p0|L2(Ω) = O(
√
ε),

which is consistent with the corrector type results from [18].270

6.1. Confirmation of boundary layer estimate

We start with estimate (39). For this we need to compute the value Cπ

which is the limit value of the boundary layer pressure π for y2 → ∞, see

(41). Since the boundary layer problem is defined on an unbounded domain,

we need to cut the domain and compute Cπ,cut, which is the approximation275

of Cπ on a cut-off domain with |y2| large enough so that the difference |Cπ −

Cπ,cut| is smaller than the machine precision. Since the value π(y) stabilizes

to Cπ exponentially fast, we expect that a boundary layer with a few unit cells

gives an accurate approximation. Furthermore, the cut-off boundary layer is

computed by the finite element method. Thus, we compute Chπ,cut, where the280
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superscript h indicates the Galerkin approximation, and we have to assure that

the discretization error |Cπ,cut − Chπ,cut| is small enough.

For the numerical approximation we first introduce the cut-off domain

G∗l := G\
−l⋃
j=0

(j e2 +A)

and then consider the following cut-off boundary layer problem

Problem 1 (Cut-off boundary layer problem). Find w and π, both 1-periodic

in y1, such that it holds in the interior

−µ∆ywl +∇yπl = 0 in G∗l , (89)

∇ ·wl = 0 in G∗l , (90)

and on the boundaries

(−2µDywl + πlI) = e1 for y2 = 0, (91)

wl = 0 on C (92)

wl,2 =
∂wl,1
∂y2

= 0 on Γl, (93)

where Γl = (0, 1)× l is the lower boundary of the cut-off domain.

The inclusions are defined as in Figure 1. The solid domain A is285

(a) circular in the isotropic case with radius r = 0.25 and center (0.5, 0.5), see

Figure 1a;

(b) ellipsoidal in the anisotropic case with centre (0.5, 0.5) and semi-axes a =

0.357142857 and b = 0.192307692 rotated anti-clockwise by 45◦, see Figure

1b.290

Problem (89)-(93) is approximated by the finite element method (FEM)

using a Taylor-Hood element [30] with bi-quadratic elements for the velocity and

bilinear for the pressure. Since the inclusions are curvilinear we use a quadratic

description of the finite element boundaries (iso-parametric finite elements). The

stabilized pressure value of the boundary layer is defined in our computations295
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Figure 1: Inclusion geometry.

as Chπ,cut := πl,h(y1, l), i.e. it is the pressure value at the lower boundary of G∗l .

To define the value Chπ,cut we have performed a test with increasing l to obtain

the minimal length l of the cut-off domain for which the pressure value reaches

convergence (up to machine precision). A shorter domain would introduce a

numerical error and a longer domain would increase the computational costs300

without adding more accuracy.

In Table 1 the values of πl,h(y1, l) for increasing number of inclusions l are

reported. It can be observed that one inclusion is enough to get the exact value

Cπ = 0 for the circular inclusions. In case of elliptical inclusions the pressure

is stabilized for l ≥ 7 and the effect of the cut-off domain can be seen only for305

smaller domains. Figure 2 shows a visualization of the boundary layer pressure

π in the cut-off domain with seven inclusions. A convergence check with global

refined meshes have shown that the discretization error is of the order O(10−8).

Therefore for the convergence study of the effective pressure, we consider as

exact value for ellipses Cπ = 0.2161642.310

After computing the constant Chπ,cut we proceed with the confirmation of
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(a) Ellipses (b) Circles

Figure 2: Visualization of boundary layer pressure and cut-off domain.
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# inclusions Cπ ellipses Cπ circles

1 0.21632306467205 0

2 0.21616431545737 0

3 0.21616422652809 0

4 0.21616422675581 0

5 0.21616422675552 0

6 0.21616422675555 0

7 0.21616422675555 0

Table 1: Stabilization of Cπ in the cut-off domain with increasing number of inclusions.

the estimate (39) and plot in Figure 3 the convergence curves. We confirm the

expected convergence rates

|π − Cπ|L1(G∗) = O(ε) and |π − Cπ|L2(G∗) = O(
√
ε).

6.2. Confirmation of effective pressure values

The next step is the confirmation of the estimate (7). For a stress tensor de-

fined by the constant contact stress (P,Q) and a right hand side which depends

only on x2 we have the analytical exact solution for the effective pressure

p0(x2) = CπP +Q−
∫ 0

x2

f2(z) dz − K12

K22

∫ 0

x2

f1(z) dz. (94)

To compute it we need the vales K12 and K22 of the permeability tensor. These

are defined as follows

Kij :=

∫
Y ∗
wic,j dx,

with the 1-periodic solution wi (i = 1, 2) of the ith cell problem

−∆wi +∇πi = ei in Y ∗,

∇ ·wi = 0 in Y ∗,

wi = 0 on ∂A
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Figure 3: Confirmation of convergence for the boundary layer problem.

Inclusion type K12 K11 = K22

Ellipses 0.00303449804138 0.0159787174788

Circles 0.0 0.01990143534975

Table 2: Values of the permeability tensor components.

where Y ∗ is the unit pore domain of the cell problem with the corresponding

inclusion A (see (80)-(81), (83)). The inclusions are defined as in our previous

work [9]. They correspond to one cell of problem (89)-(93) and they are shown

on Figure 1. Therefore, we use the values of the permeability tensor computed315

therein and reported in Table 2. We use the extension p̃εh (16) for the microscopic

pressure, where the subscript denotes the finite element approximation of the

microscopic problem obtained with Taylor-Hood elements, as for the cut-off

boundary layer.

With the expression of the effective pressure and the extension pressure we320

compute the convergence estimates. For the test case we use the values (P,Q)

for the normal component of the stress tensor and f(x) for the right hand side,

needed in formula (94), as reported in Table 3. The results with the expected
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µ P (x1) Q(x1) f1(x) f2(x) Cπ ellipses Cπ circles

1 1 1 1 1 0.2161642 0

Table 3: Values used for the computations.
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Figure 4: Confirmation of convergence for the microscopic problem.

convergence rates are depicted in Figure 4.

Considering the configuration described in Table 3, formula (94) gives the

following effective pressure for the circular inclusions:

p0(x2) = 1 + x2, −1 ≤ x2 ≤ 0, (95)

and for the ellipses we have:

p0(x2) = 0.2161642 + 1 + x2 +
0.00303449804138

0.0159787174788
x2, −1 ≤ x2 ≤ 0. (96)

In Figures 5 and 6 we show the pointwise difference |pε(x1, x2)− p0(x2)| for the325

case of 8 inclusions corresponding to ε = 0.125 with circles and ellipses respec-

tively. It is clearly visible that, as expected, the microscopic pressure pε(x1, x2)

stabilizes to the macroscopic value p0(x2) and that the largest difference is in

the vicinity of the interface.
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Figure 5: Visualization of the pointwise difference |pε(x1, x2)− p0(x2)| for circular inclusions.
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[19] W. Jäger and A. Mikelić, On the interface boundary condition of Beavers,380

Joseph, and Saffman, SIAM J. Appl. Math., 60 (2000), p. 1111–1127.

35
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