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We consider a convection-diffusion problem in a porous medium saturated by a solu-
tion of a chemical substance A in water. A nonlinear non-equilibrium kinetics of sorp-
tion/desorption of A on the porous matrix is assumed. We assume that the chemical
substance can be transported by ionic exchange through the walls of an array of parallel
tubes in which the solution flows at a prescribed velocity. The well-posedness of the
problem is proved under different boundary conditions. If the array of tubes is periodic,
we homogenize the problem and we prove that there exists a unique solution to the ho-
mogenized problem, in which the terms of interaction due to chemical exchange through
the walls of the tubes are cast in the differential equation.
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1. Introduction

In a previous paper 18 we made a preliminary analysis of a mathematical problem
modeling ionic exchange in a porous medium, saturated by a liquid solution, through
the injection of a liquid in an array of parallel pipes whose walls are permeable to the
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1



December 10, 2005 20:33 WSPC/INSTRUCTION FILE RemedPrim-
icMikFinal
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chemical substance to be extracted from (or to be added to) the porous medium. In
the present paper we discuss a more general model and present a complete analysis
of its mathematical aspects.

Let the array P ⊂ IR3 be the set

P =
N⋃

k=1

Pk, Pk ≡ {(x− xk)2 + (y − yk)2 ≤ R2
k, 0 < z < H}

for given positive N, H,R1, . . . , RN . We assume that the porous medium occupies
the domain K \ P , where K is a cylinder Q× (0,H) , containing P , and Q is a
domain in IR2 having smooth boundary.

We suppose that the porous medium is saturated by a solution of a chemical
substance A in water. If c(x, t) is the concentration of A in the solution (i.e. the
mass of chemical per unit volume of water) and n is the porosity, the mass balance
equation reads

∂(nc)
∂t

= −div
(
cq − nD∇c

)
+ nΓ + f, x ∈ K \ P, t > 0, (1.1)

where q (a given divergence-free vector, since the porous medium is rigid and
the fluid incompressible) is the volume of liquid flowing per unit time through a
unit surface normal to it, Γ (mass per unit volume of liquid) is the rate at which
the substance is produced/destroyed within the solution e.g. because of internal
chemical reaction, decay etc. and f is the quantity of pollutant entering the solution
(per unit bulk volume and per unit time), because of desorption from the solid
matrix; of course f < 0 means that the chemical is leaving the solution because it
is adsorbed on the grains of the porous matrix.

Conversely, balance of the same substance bound to the matrix has the following
expression

∂

∂t

(
(1− n)ρsF

)
= (1− n)Γs − f, x ∈ K \ P, t > 0, (1.2)

where F is the mass ratio between the chemical adsorbed and the solid grains, ρs

is the density of the latter and Γs has the same meaning as Γ . We assume that
the adsorption does not affect porosity n significantly.

In addition to (1.1),(1.2) a law regulating the dynamics of adsorption/desorption
has to be specified, i.e. f has to be prescribed.

As discussed e.g. in 3 there are two classes of laws that can be applied:

(i) equilibrium isotherms, when the quantities on the solid and in the adjacent
solution are in equilibrium; and

(ii) non-equilibrium isotherms, when it is assumed that equilibrium is ap-
proached at a rate depending on the local values of c and of F .

Of course the use of laws of type (i) or (ii) depends on the time scale of the phe-
nomenon we are studying. For general considerations about the ”sufficiently fast”
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and reversible, and about the ”insufficiently fast” and/or irreversible chemical re-
actions in solute transport analysis, see 23 .

From a mathematical point of view, in case (i) the relation is monotone and F

can be expressed in terms of c or vice-versa. Thus (1.1)-(1.2) reduce to a single
(nonlinear) parabolic equation. Case (ii) is more general and more interesting, as
the relation between c and F turns out to be a differential equation whose form
depends on the nature of the chemical and of the porous matrix.

Among the forms that are found in the literature the most common (see 3 ) are
the non-equilibrium Langmuir isotherm (see 11 )

∂F

∂t
=

1
τ

( αc

1 + βc
− F

)
(1.3)

and the non-equilibrium Freundlich isotherm (see 24 )
∂F

∂t
=

1
τ

(
αcβ − F

)
, (1.4)

where α and β are experimental constants and τ > 0 represents the time scale of
the adsorption/desorption dynamics so that the case of vanishing τ takes us back
to situation (i).

As far as Γ and Γs are concerned, they are assumed to be known and depend
possibly on c and F respectively. For instance, in case of a substance undergoing
radioactive (or any other type of linear) decay, we have

Γ = −λ̃c, Γs = −µ̃F, (1.5)

for some positive constants λ̃, µ̃ . Upon normalization, we have that the following
two equations hold in K \ P and for t > 0

∂U

∂t
−D∆U + q · ∇U + λU = S(V − Φ(U)), (1.6)

∂V

∂t
= −S(V − Φ(U))− µV, (1.7)

where the function f , according to (1.3),(1.4) has been expressed in a general form
through two increasing functions S and Φ , such that Φ(0) = S(0) = 0 .

Equations (1.6) and (1.7) will be supplemented by initial conditions

U(x, 0) = U0(x), x ∈ K \ P, (1.8)

V (x, 0) = V0(x), x ∈ K \ P, (1.9)

and by suitable conditions on the external boundary Σ of K \ P . Let ne be the
normal to Σ pointing outwards. We write Σ = Σ+ ∪ Σ− where Σ− ≡ {

x ∈ Σ :
q · ne < 0

}
and we assume that chemical A does not cross Σ− , whereas on the

seepage face it leaves the domain with the fluid. Thus



−D
∂U

∂ne

(x, t) + U(x, t)q · ne = 0, x ∈ Σ−, t > 0,

∂U

∂ne

(x, t) = 0, x ∈ Σ+, t > 0.

(1.10)
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Note that in the special case Σ− = ∅ and thus q · ne = 0 on Σ , the condition
(1.10) reduces to the homogeneous Neumann condition.

For a reason that will be made clear later, we will also consider conditions




−D
∂U

∂ne

(x, t) + U(x, t)q · ne − ϑU(x, t) = 0, x ∈ Σ−, t > 0,

∂U

∂ne

(x, t) = 0, x ∈ Σ+, t > 0,

(1.11)

for some ϑ > 0 .
In addition, we have to prescribe the conditions on the walls of the pipes .
There, we assume that water can not cross the boundary ( q · ne = 0 , ∀k, on

the boundary ∂Pk ∩ K ) and natural conditions for ionic exchange suggest that
flux of A is proportional to the jump in concentrations, or more generally that, for
k = 1, . . . , N,

D
∂U

∂nk

= γ[U(x, t)− δck(x, t)], x ∈ ∂Pk ∩K, t > 0, (1.12)

where γ is an increasing function from IR to IR, γ[0] = 0 , and nk is the unit
outward normal vector to the cylinder Pk , while c is the concentration at the
inner wall.

We will also consider the condition

D
∂U

∂nk

− ϑU = γ[U(x, t)− δck(x, t)], x ∈ ∂Pk ∩K, t > 0. (1.13)

Next, we have to write the mass balance for c inside each tube.
Assume Rk << diam Q for k = 1, . . . , N so that, for any t > 0 , the con-

centration c can be thought to depend on position through the z coordinate only.
Moreover, we assume incompressibility of water and suppose that walls are rigid
and impermeable to water so that a bulk velocity vk(t) directed along the z -axis
can be defined. For simplicity, we suppose vk(t) = v(t) > 0, ∀k .

Thus, putting δc(x, t) = uk(x, t) for each x ∈ Pk , we have that, at any time,
uk depends on the coordinate z only and we write

∂uk

∂t
+ v(t)

∂uk

∂z
− d

∂2uk

∂z2
=

2
Rk

∫ 2π

0

γ
[
U(xk + Rk cosφ,

yk + Rk sin φ, z, t)− uk(z, t)
]

dφ, z ∈ (0,H), t > 0, k = 1, . . . , N. (1.14)

We will have initial conditions

uk(z, 0) = uk0(z), z ∈ (0,H), k = 1, 2...N, (1.15)

and boundary conditions at z = 0 and z = H .
We suppose e.g. that clear water is injected at z = 0 , so that we can essentially

assume

uk(0, t) = 0, t > 0, k = 1, 2...N. (1.16)
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At z = H , we may prescribe several type of boundary conditions. The simplest is
to suppose that z = H is a ”seepage surface” in the sense that the liquid (together
with the chemicals dissolved in it) is instantaneously removed as it leaves Pk . This
means

∂uk

∂z
(H, t) = 0, t > 0, k = 1, . . . , H. (1.17)

Again, we write a modified condition that will be useful in the sequel

∂uk

∂z
(H, t) + ϑuk(H, t) = 0, t > 0, k = 1, . . . , H. (1.18)

A less standard condition consists in assuming that all tube discharge in the
same reservoir of volume V that can be considered instantaneously mixed, so that
the concentration of A in the reservoir can be considered as a space-independent
unknown function Υ(t) .

The mass balance can be written as follows

V
dΥ(t)

dt
= −π

N∑

j=1

R2
j

(
d
∂uj

∂z
(H, t)− v(t)uj(H, t)

)− v(t)Υ(t)π
N∑

j=1

R2
j , t > 0 (1.19)

Υ(0) = u0 ≥ 0. (1.20)

In addition we should specify a relationship between uk(H, t) ,
∂uk

∂z
(H, t) and Υ(t)

introducing a sort of impedance of the boundary layer between each tube and the
reservoir. To simplify we can assume that concentration is continuously changing
from the pipes to the reservoirs so that

uk(H, t) = Υ(t), t > 0, k = 1, 2...N. (1.21)

Summing up, we have

∂uk(H, t)
∂t

+
dπ

V

N∑

j=1

R2
j

∂uj

∂z
(H, t) = 0, t > 0, k = 1, . . . , N, (1.22)

uk(H, 0) = u0 ≥ 0, h = 1, . . . , N. (1.23)

Once again, we will consider a modified condition

∂uk(H, t)
∂t

+ ϑuk(H, t) +
dπ

V

N∑

j=1

R2
j

∂uj

∂z
(H, t) = 0, t > 0, k = 1, . . . , N. (1.24)

The plan of the paper is the following. We start by considering the problem as
it is stated above, i.e. at a scale that can be seen as mesoscopic. As a matter of fact,
the porous medium is considered in the framework of continuum so that Darcy’s law
is assumed to hold; moreover, the radii of the pipes are supposed to be ”small” with
respect to the dimensions of the domain Q . For such a problem (with arbitrary
number and spacing of pipes, and without periodicity or assumptions on values of
Rk ) we deduce a-priori bounds (Section 2) and we prove uniqueness (Section 3)
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and existence (Section 4) of solutions. In the proof of existence given in 18 linearity
of S , Φ and Γ is essential, whereas here we deal with the general case.

In the last section we present the homogenization of our mesoscopic model. We
suppose that the array of parallel tubes is periodic, that their radius is tending to
zero but their number tends to infinity, with constant porosity of the system. For the
homogenization of PDE’s in perforated domains, with non-homogeneous conditions
at the interfacial boundaries or even surface chemical reactions, classical references
are the article 6 , by D. Cioranescu and P. Donato, and 14 by U. Hornung and
W. Jäger. We note that the reference 14 was first mathematically rigorous paper
treating homogenization of the adsorption and surface diffusion effects. There is even
a notion of 2-scale convergence, by M. Neuss-Radu, G. Allaire, U. Hornung and A.
Damlamian, in 2 and 21 , adapted to the problems with reactions on surfaces. The
mentioned results allow to homogenize efficiently linear problems. Homogenization
of the linear version of our problem is in 18 , and it was achieved by directed
application of two classical references. For homogenization of bio-medical problems
with the surface bio-heat transfer condition we refer to 13 .

For non-linear problems situation is more delicate. Our basic reference is the pa-
per 15 , where a combination of the two-scale convergence and compactness meth-
ods was used to homogenize a huge class of non-linear parabolic problems, with
non-linear interface conditions. In addition to the reference 15 , we mention recent
papers 7 and 8 on the homogenization of non-linear adsorption problems. Charac-
teristic of all these references is that compactness of the concentrations in a porous
medium surrounding grains was enough to pass to the limit in the non-linear sur-
face terms. E.g. in 8 it was possible to write the surface concentrations as function
of the volume concentrations, using an ordinary differential equation. Similarly,
in 15 , the monotonicity results for 2-scale convergence were used. Our setting is
quite different. If we make a smooth extension of the boundary concentrations, then
the gradient would behave as 1/ε . Such estimate wouldn’t be useful and we were
obliged to develop the new compactness results, in order to pass to the limit. We
use the equation on the surfaces of the cylinders and the PDE is the porous part
to prove a Frchet-Kolmogorov equicontinuity estimate in L2 . We believe that this
approach could be applied to other homogenization problems involving non-linear
terms on the surfaces.

2. Assumptions on data and a priori bounds

We consider the following problems:
We prescribe the nonnegative bounded functions U0(x), V0(x), x ∈ K \ P , and

uk0(z), z ∈ (0,H) , k = 1, 2...N , and we look for N + 2 functions U(x, t), V (x, t) ,
x ∈ K \ P, t > 0, and uk(z, t), z ∈ (0,H), t > 0, such that equations (1.6), (1.7)
and (1.14) are satisfied and for given D > 0 , q , λ ≥ 0 , µ ≥ 0 , v ≥ 0 , d > 0
conditions (1.8)-(1.10), (1.12) and (1.15)-(1.16) are fulfilled, together with

either (i) (1.17)
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or (ii) (1.22)-(1.23)

The problem will be called Problem (P ) in case (i) and Problem (P ′ ) in case
(ii).

Moreover, we consider similar problems with (1.10), (1.12), (1.17), (1.22) re-
placed by (1.11), (1.13), (1.18), (1.24) respectively and with λ̃ and µ̃ in (1.6),
(1.7) replaced by λ + ϑ and µ + ϑ .

We will call the corresponding problems Problem (Pϑ ) and Problem (P ′ϑ ).
We will use the following assumptions on the data

(A) S, Φ, γ are continuous increasing functions, such that Φ(0) = 0 = γ(0) =
S(0).

(A1) In addition to (A), we suppose that the functions S, Φ, γ are locally Lipschitz
and that Φ is strictly monotone.

(B) q is a continuous divergence-free vector field on K × [0, T ] .
(B1) In addition to (B), we suppose that q ∈ W 1,∞(K × (0, T ))3

(C) v is a continuous non-negative function on [0, T ]
(D) U0, V0 ∈ H1(K \ P ) , u0 ∈ H1(0, H)N and u0(0) = 0 .
(D1) U0, V0 ∈ H2(K \ P ) , u0 ∈ H2(0,H)N and u0(0) = 0 .

Then we have the following L∞ -a priori limitations:

Theorem 2.1. Let the assumption (A) be satisfied and let M be such that

0 ≤ U0(x) ≤ M, x ∈ K \ P, (2.1)

0 ≤ V0(x) ≤ Φ(M), x ∈ K \ P, (2.2)

0 ≤ uk0(z) ≤ M, z ∈ (0,H), k = 1, 2...N. (2.3)

Then for any classical solution of Problem Pϑ we have

0 ≤ U(x, t) ≤ M, x ∈ K \ P, t > 0, (2.4)

0 ≤ V (x, t) ≤ Φ(M), x ∈ K \ P, t > 0, (2.5)

0 ≤ uk(z, t) ≤ M, z ∈ (0, H), t > 0, k = 1, 2...N, (2.6)

For Problem P ′ϑ , (2.4)-(2.6) hold under the conditions (2.1)-(2.3) and

0 ≤ u0 ≤ M, z ∈ (0, H). (2.7)

To prove the theorem, we need the following

Lemma 2.1. Fix ε > 0 and let the assumptions of Theorem 2.1 be satisfied. Let
us suppose that there is a t0 > 0 such that for t ∈ (0, t0) we have

U(x, t) > −ε, x ∈ K \ P, (2.8)

then on the same time interval we also have

V (x, t) > Φ(−ε) x ∈ K \ P, (2.9)

uk(z, t) > −ε, z ∈ (0,H), k = 1, . . . , N. (2.10)
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Proof. Assume (2.9) is violated for the first time at some point (x̃, t̃), x̃ ∈ K\P, t̃ ∈
(0, t0) . Then

∂tV (x̃, t̃) = −S(Φ(−ε)− Φ(U))− (µ + ϑ)Φ(−ε). (2.11)

But then, according to (2.8), the argument of S is negative; moreover Φ(−ε) < 0 .
Thus ∂tV (x̃, t̃) would be positive yielding a contradiction.

Now assume that (2.10) is violated for the first time for some k̃ and at some
point z̃ ∈ [0,H], t̃ ∈ (0, t0) .

Of course, it cannot be z̃ = 0 , because of (1.16). If z̃ ∈ (0,H) , we would have
that the left hand side of (1.14), written for k = k̃ and at (z̃, t̃) would be non-
positive, while the argument of γ in the integral on the right hand side is positive,
yielding a contradiction.

We have to exclude that z̃ = H . In the case of Problem (Pϑ ) , (1.17) would

imply
∂uk̃

∂t
(H, t) = ϑε > 0 , i.e. a contradiction.

The case of Problem (P ′ϑ ) is more delicate. First we note that if z̃ = H we

would have uk(H, t̃) = −ε for any k because of (1.21) and hence
∂uk

∂z
≤ 0 for

t = t̃ and for any k . Then, from (1.24) we have

∂uk

∂z
(H, t̃) ≤ ϑε > 0, (2.12)

a contradiction.

The same kind of argument enables us to prove the following

Lemma 2.2. Fix ε > 0 and let the assumptions of Theorem 2.1 be satisfied. Let
us suppose that there is a t0 > 0 such that for t ∈ (0, t0) we have

U(x, t) < M + ε, x ∈ K \ P, (2.13)

then on the same time interval we also have

V (x, t) < Φ(M + ε) x ∈ K \ P, (2.14)

uk(z, t) < M + ε, z ∈ (0,H), k = 1, . . . , N. (2.15)

Now we are in situation to prove Theorem 2.1.
Proof of Theorem 2.1. By the preceding lemmas, if we prove that it cannot

exist a first t̂ such that (2.8) and (2.13) are violated, then we have that (2.9), (2.10)
and (2.14),(2.15) hold for any t > 0 .

We assume that there exists x ∈ K \ P such that t̂ is the first time for which

U(x̃, t̂) = −ε (2.16)

and we prove that this leads to a contradiction (the proof can be repeated to prove
the upper estimate). We recall that Lemma 2.1 implies that (2.9) and (2.10) are
satisfied for t ∈ (0, t̂) .
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First we exclude that x̃ ∈ Σ . Indeed in this case (1.11) implies
∂U

∂ne

> 0 , a

contradiction. If x̃ ∈ K \ P the left hand side of (1.6) is ≤ −(λ + ϑ)ε while the
right hand side is nonnegative since V ≥ Φ(−ε) .

We have to exclude that x̃ ∈ ∂Pk for some k̂ . But the right hand side of

(1.13)would be non positive and hence
∂U

∂ne

< 0 , i.e. a contradiction, since ne is

the normal to ∂Pk pointing out of the tube.
Since ε is arbitrary we conclude that (2.4), (2.5) and (2.6) hold under the

assumptions of Theorem 2.1. ut

Remark 2.1. It is easy to verify that the assumption on monotonicity of S, Φ
and γ can be weakened. Indeed, adding a term ϑuk on the left hand side of (1.14)
yields the result also for nondecreasing γ . Monotonicity of S was never used and,
concerning Φ it is sufficient to assume that it does not vanish identically in any
neighborhood of the origin.

Next intrinsic property of the models are the energy equalities. We prove
them for the strong solutions.

Proposition 2.1. Let us suppose the assumptions on the data (A1) , (B), (C)

and (D). Let {U, V, u} ∈ H1((K \P )×(0, T ))2×H1((0, H)×(0, T ))N be a bounded
solution for Problem (Pϑ ). Then it satisfies the following energy equality

∫

K\P

1
2
U2(x, t) dx + D

∫ t

0

∫

K\P
|∇U |2(x, ξ) dxdξ +

∫

K\P

∫ V (x,t)

0

Φ−1(ξ) dξdx+

∫ t

0

∫

K\T
(λ + ϑ)U2(x, t) dxdξ +

∫ t

0

∫

Σ−
(ϑ− q · ne)|U |2 dSdξ +

N∑

k=1

∫ t

0

∫

∂Pk

ϑU2
k dSdξ

+
∫ t

0

∫

K\P
S(V − Φ(U))(Φ−1(V )− U)(x, ξ) dxdξ +

N∑

k=1

∫ t

0

∫

∂Pk

γ(Uk−

uk)(Uk − uk) dSdξ +
N∑

k=1

R2
k

2

{ ∫ H

0

1
2
u2

k(z, t) dz +
∫ t

0

(
v(ξ)
2

+ ϑ)u2
k(H, ξ) dξ+

d

∫ t

0

∫ H

0

|∂zuk(z, t)|2 dz

}
+

∫ t

0

∫

K\P
(µ + ϑ)V Φ−1(V )(x, ξ) dxdξ =

∫

K\P

1
2
U2

0 (x) dx

+
∫

K\P

∫ V0(x)

0

Φ−1(ξ) dξdx +
N∑

k=1

R2
k

4

∫ H

0

u2
k,0(z) dz −

∫ t

0

∫

K\P
q∇UU dxdξ,

(2.17)

where Uk = U |∂Pk
.

Proof. We test the equation (1.6) with U , the equation (1.7) with Φ−1(V ) and
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add the resulting equalities. This yields

∂t

∫

K\P

1
2
U2(x, t) dx + D

∫

K\P
|∇U |2(x, t) dx +

∫

K\P
(λ + ϑ)|U |2(x, t) dx+

∫

K\P
q∇UU dx +

∫

Σ−
(ϑ− q · ne)|U |2 dS + ∂t

∫

K\P

∫ V (x,t)

0

Φ−1(ξ) dξdx+

∫

K\P
S(V − Φ(U))(Φ−1(V )− U) dx +

N∑

k=1

∫

∂Pk

γ(Uk − uk)(Uk − uk) dS

+
N∑

k=1

∫ t

0

∫

∂Pk

ϑU2
k dSdξ +

N∑

k=1

∫

∂Pk

γ(Uk − uk)uk dS = 0, (2.18)

where Uk denotes the trace of U at ∂Pk . Next we test the equation (1.14) with
uk and get

N∑

k=1

∫

∂Pk

γ(Uk − uk)uk dS =
N∑

k=1

R2
k

2

{
∂t

∫ H

0

1
2
u2

k(z, t) dz+

(
1
2
v(t) + ϑ)u2

k(H, t) + d

∫ H

0

|∂zuk(z, t)|2 dz

}
(2.19)

After inserting (2.19) into (2.18) we get the energy equality (2.17).

Proposition 2.2. Let us suppose the assumptions on the data (A1) , (B), (C) and
(D). Let {U, V, u, Υ} ∈ H1((K \ P ) × (0, T ))2 ×H1((0,H) × (0, T ))N ×H1(0, T )
be a bounded solution for Problem (P ′ϑ ). Then it satisfies the following energy
equality
∫

K\P

1
2
U2(x, t) dx + D

∫ t

0

∫

K\P
|∇U |2(x, ξ) dxdξ +

∫

K\P

∫ V (x,t)

0

Φ−1(ξ) dξdx+

∫ t

0

∫

K\P
(λ + ϑ)U2(x, t) dxdξ +

∫ t

0

∫

Σ−
(ϑ− q · ne)|U |2 dSdξ +

N∑

k=1

∫ t

0

∫

∂Pk

ϑU2
k dSdξ+

∫ t

0

∫

K\P
S(V − Φ(U))(Φ−1(V )− U)(x, ξ) dxdξ +

N∑

k=1

∫ t

0

∫

∂Pk

γ(Uk−

uk)(Uk − uk) dSdξ +
N∑

k=1

R2
k

2

{ ∫ H

0

1
2
u2

k(z, t) dz + d

∫ t

0

∫ H

0

|∂zuk(z, t)|2 dz

}
+

V

4π
Υ2(t) +

1
2

∫ t

0

{ϑ

π
+ v(τ)(

N∑

k=1

1
2
R2

k)}Υ2(τ) dτ +
∫ t

0

∫

K\P
(µ + ϑ)V Φ−1(V )(x, ξ) dxdξ

=
∫

K\P

1
2
U2

0 (x) dx +
V

4π
u2

0 +
∫

K\P

∫ V0(x)

0

Φ−1(ξ) dξdx+

N∑

k=1

R2
k

4

∫ H

0

u2
k,0(z) dz −

∫ t

0

∫

K\P
q∇UU dxdξ (2.20)
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where Uk = U |∂Pk
.

Proof. We test the equation (1.6) with U , the equation (1.7) with Φ−1(V ) and
add the resulting equalities. This yields

∂t

∫

K\P

1
2
U2(x, t) dx + D

∫

K\P
|∇U |2(x, t) dx +

∫

K\P
(λ + ϑ)|U |2(x, t) dx+

∫

K\P
q∇UU dx +

∫

Σ−
(ϑ− q · ne)|U |2 dS + ∂t

∫

K\P

∫ V (x,t)

0

Φ−1(ξ) dξdx+

∫

K\P
S(V − Φ(U))(Φ−1(V )− U) dx +

N∑

k=1

∫

∂Pk

γ(Uk − uk)(Uk − uk) dS

+
N∑

k=1

∫ t

0

∫

∂Pk

ϑU2
k dSdξ +

N∑

k=1

∫

∂Pk

γ(Uk − uk)uk dS = 0, (2.21)

where Uk denotes the trace of U at ∂Pk . Next we test the equation (1.14) with
wk = uk − zΥ(t)/H and using equation (1.24) we get

N∑

k=1

∫

∂Pk

γ(Uk − uk)uk dS =
N∑

k=1

R2
k

2

{
∂t

∫ H

0

1
2
u2

k(z, t) dz+

1
2
v(t)Υ2(t) + d

∫ H

0

|∂zuk(z, t)|2 dz

}
+

V

4π
∂tΥ2(t) +

ϑ

2π
Υ2(t) (2.22)

After inserting (2.22) into (2.21) we get the energy equality (2.20).

3. Uniqueness

In this section we study the uniqueness of solution to the Problem (P) and to
the Problem (P ′) . For the problems Problem (Pϑ) and Problem (P ′ϑ) proof
is exactly the same. The proof relies on the fact that the problem has an energy
functional hidden in its structure and on the monotonicity of the exchange function
γ .

Let V 1,0
2 ((K \ P ) × (0, T )) = C([0, T ]; L2(K \ P )) ∩ L2(0, T ; H1(K \ P )) We

have

Theorem 3.1. Assume (A1), (B) and (C). Then Problem (P) has a unique
bounded non-negative solution {U, V, u} ∈ V 1,0

2 ((K \P )× (0, T ))2× V 1,0
2 ((0,H)×

(0, T ))N .

Proof. Let us suppose that there exist two solutions for the Problem (P) . Then
the difference of the solutions, denoted by {U, V, u} , is once more in V 1,0

2 ((K \P )×
(0, T ))2 × V 1,0

2 ((0,H)× (0, T ))N . We note that there are N capillary pipes Pi of
the length H and consequently function u is vector valued with N components.

We proceed in several steps.
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1. STEP Function U satisfies the equation

∂tU −D∆U + q · ∇U + λU = S(V1 − Φ(U1))− S(V2 − Φ(U2)) (3.1)

Consequently, after testing (3.1) with U , we get

1
2

∫

K\P
U2(x, t) dx + D

∫ t

0

∫

K\P
|∇xU(x, ξ)|2 dxdξ +

∫ t

0

∫

K\P
q · ∇UU dxdξ+

∫ t

0

∫

K\P
λU2 dxdξ + D

N∑

i=1

∫ t

0

∫

∂Pi

∇xU · niU dSdξ −
∫ t

0

∫

Σ−
U2q · ne dSdξ =

∫ t

0

∫

K\P

(
S(V1 − Φ(U1))− S(V2 − Φ(U2))

)
U(x, ξ) dxdξ (3.2)

Since

|
∫ t

0

∫

K\P

(
S(V1 − Φ(U1))− S(V2 − Φ(U2))U(x, ξ) dxdξ| ≤

‖S′‖∞‖Φ′‖∞
∫ t

0

∫

K\P
|U(x, η)|2 dxdη + ‖S′‖∞

∫ t

0

∫

K\P
|U(x, η)||V (x, η)| dxdη,

(3.3)

|
∫ t

0

∫

K\P
q · ∇UU dxdξ| ≤

∫ t

0

∫

K\P

(‖q‖2∞
2D

U2 +
D

2
|∇U |2) dxdξ (3.4)

and

D

∫

∂Pi

∇xU · niU dS =
∫

∂Pi

(
γ(U1|r=Ri − (u1)i)− γ(U2|r=Ri − (u2)i)

)
U |r=Ri dS

(3.5)
we get

1
2

∫

K\P
U2(x, ξ) dxdξ +

D

2

∫ t

0

∫

K\P
|∇U |2 dxdξ +

∫ t

0

∫

K\P
(λ− ‖q‖2∞

2D
)U2 dxdξ

+
N∑

i=1

∫ t

0

∫

∂Pi

(
γ(U1|r=Ri − (u1)i)− γ(U2|r=Ri − (u2)i)

)
U |r=Ri dSdξ ≤

‖S′‖∞‖Φ′‖∞
∫ t

0

∫

K\P
|U(x, η)|2 dxdη + ‖S′‖∞

∫ t

0

∫

K\P
|U(x, η)||V (x, η)| dxdη

(3.6)

2. STEP Next we study the equation for V . After testing the difference
of the equations (1.7) by V and integrating over (K \ P )× (0, t) , we obtain

1
2

∫

K\P
V 2(x, t) dx +

∫ t

0

∫

K\P
µV 2 dxdξ ≤ ‖S′‖∞

∫ t

0

∫

K\P
V 2(x, ξ) dxdξ+

‖S′‖∞‖Φ′‖∞
∫ t

0

∫

K\P
|V (x, ξ)||U(x, ξ)| dxdξ (3.7)
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3. STEP Now we study the equation for uk :

∂uk

∂t
+ v(t)

∂uk

∂z
− d

∂2uk

∂z2
=

2
Rk

∫ 2π

0

{
γ(U1|r=Rk

−

(u1)k)− γ(U2|r=Rk
− (u2)k)

}
dϑ in (0,H)× (0, T ) (3.8)

We test (3.8) by uk and integrate with respect to z and ξ . Then we have

πR2
k

(1
2

∫ H

0

u2
k(z, t) dz +

∫ t

0

v(ξ)
2

u2
k(H, ξ) dξ + d

∫ t

0

∫ H

0

|∂uk

∂z
(z, ξ)|2 dzdξ

)
=

2πRk

∫ t

0

∫ H

0

∫ 2π

0

uk(z, ξ)
{
γ(U1|r=Rk

− (u1)k)− γ(U2|r=Rk
− (u2)k)

}
dϑdzdξ

After summation over k , we get

1
2π

N∑

k=1

πR2
k

2

∫ H

0

u2
k(z, t) dz +

d

2π

N∑

k=1

πR2
k

∫ t

0

∫ H

0

|∂uk

∂z
(z, ξ)|2 dzdη−

N∑

k=1

∫ t

0

∫

∂Pk

uk(z, ξ)
{
γ(U1|r=Rk

− (u1)k)− γ(U2|r=Rk
− (u2)k)

}
dSdξ ≤ 0 (3.9)

4. STEP Now we add the estimates (3.6), (3.7) and (3.9) and obtain

1
2

∫

K\P
U2(x, t) dx +

1
2

∫

K\P
V 2(x, t) dx +

1
2π

N∑

k=1

πR2
k

2

∫ H

0

u2
k(z, t) dz+

+
D

2

∫ t

0

∫

K\P
|∇U |2 dxdξ +

d

2π

N∑

k=1

πR2
k

∫ t

0

∫ H

0

|∂uk

∂z
(z, ξ)|2 dzdη+

N∑

k=1

∫ t

0

∫

∂Pk

(U |r=Rk
− uk)(z, ξ)

{
γ(U1|r=Rk

− (u1)k)−

γ(U2|r=Rk
− (u2)k)

}
dSdξ ≤ 3

2
C

∫ t

0

∫

K\P
(U2(x, ξ) + V 2(x, ξ)) dxdξ (3.10)

Using monotonicity of γ and Gronwall’s inequality , we easily conclude that
U(x, t) = 0 = V (x, t) and u = 0 .

Next we have

Theorem 3.2. Assume (A1), (B) and (C). Then Problem (P ′) has a unique
bounded non-negative solution {U, V, u,Υ} ∈ V 1,0

2 ((K\P )×(0, T ))2×V 1,0
2 ((0,H)×

(0, T ))N ×H1(0, T ) .

Proof. Let us suppose that there exist two solutions for the Problem (P ′) . Then
the difference of the solutions, denoted by {U, V, u, Υ} , is once more in V 1,0

2 ((K \
P )×(0, T ))2×V 1,0

2 ((0,H)×(0, T ))N×H1(0, T ) . We note that there are N capillary
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pipes Pi of the length H and consequently function u is vector valued with N

components.
We proceed in several steps.
1. STEP It is exactly the same as the Step 1 from Theorem 3.1 .

2. STEP It is again exactly the same as the Step 2 from Theorem 3.1 .

3. STEP Let uk takes value u at z = H . Then we test equation (3.8) by
uk and integrate with respect to z and ξ . Then we have

πR2
k

(1
2

∫ H

0

u2
k(z, t) dz +

∫ t

0

v(ξ)
2

u2(ξ) dξ + d

∫ t

0

∫ H

0

|∂uk

∂z
(z, ξ)|2 dzdξ−

d

∫ t

0

∂uk

∂z
(H, ξ)u(ξ) dξ

)
= 2π

∫ t

0

∫

∂Pk

uk(z, ξ)
{
γ(U1|r=Rk

− (u1)k)− γ(U2|r=Rk
− (u2)k)

}
dSdξ

After summation over k , we get

1
2π

N∑

k=1

πR2
k

2

∫ H

0

u2
k(z, t) dz +

d

2π

N∑

k=1

πR2
k

∫ t

0

∫ H

0

|∂uk

∂z
(z, ξ)|2 dzdη +

V

4
u2(t) +

1
2

∫ t

0

(V ϑ+

v(ξ)(
N∑

k=1

R2
k))u2(ξ) dξ −

N∑

k=1

∫ t

0

∫

∂Pk

uk(z, ξ)
{
γ(U1|r=Rk

− (u1)k)−

γ(U2|r=Rk
− (u2)k)

}
dSdξ = 0 (3.11)

and proceeding as in the Step 4 from the proof of Theorem 3.1, we conclude the
uniqueness.

4. Existence

Next, we prove the existence of a solution to problems (P) , (P ′) , (Pϑ) and (P ′ϑ) .
Because of maximum principle, proved in theorem 2.1, we start by considering the
existence of the strong solution for bounded and globally Lipschitz continuous non-
linearities γ , S and Φ . A possible approach would be to use the sectorial op-
erators, standard in the geometric theory of semilinear parabolic operators, and
establish a local existence and uniqueness. Then one should search for the maximal
time interval of the existence. This is the classical approach and we refer to the
classical book of D. Henry 12 for details. Nevertheless, we have complicated inter-
face conditions and manipulating the fractional powers of corresponding operators
seems to be quite technical. From this reason we prefer to give a simpler proof
by discretization in the space variables. The existence will follow from the energy
estimate and appropriate time estimates.

We start by considering the Problem (P) and the Problem (Pϑ) .

Theorem 4.1. Assume (A1), (B1), (C) and (D). Then Problem (P) and

the Problem (Pϑ) admit at least one solution {U, V, u} ∈
(

L2(0, T ;H1(K \
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P )) ∩L∞(0, T ; L2(K \ P ))
)
×

(
H1((K \ P )× (0, T )) ∩W 1,∞(0, T ;L2(K \ P ))

)
×

(
L2(0, T ; H1(0,H))∩L∞(0, T ;L2(0, H))

)N

, such that ∂t{U, V, u} ∈ L2((K \P )×
(0, T ))×H1(0, T ; L2(K \ P ))× (L2((0,H)× (0, T )))N .

Proof. It is enough to consider Problem (Pϑ) with ϑ ≥ 0 .
1. STEP Let {ζj}j∈IN be a smooth basis for H1(K \P ) and {βj}j∈IN a

smooth basis for W = {ϕ ∈ H1(0,H) | ϕ(0) = 0} . Then we start by looking for an
approximate solution. More precisely, we look for

Um =
m∑

j=1

αj(t)ζj , Vm =
m∑

j=1

δj(t)ζj and um,k =
m∑

j=1

ωj,k(t)βj (4.1)

satisfying the system

∫

K\P
∂tUmζj dx + D

∫

K\P
∇Um∇ζj dx +

N∑

k=1

∫

∂Pk

(
γ(Um,k − um,k) + ϑUm,k

)
ζj dS+

∫

K\P
(λ + ϑ)Umζj dx +

∫

Σ−
(ϑ− q · ne)Umζj dS

+
∫

K\P
q∇Umζj dx =

∫

K\P
S(Vm − Φ(Um))ζj dx, ∀j ∈ {1, . . . , m} (4.2)

∫

K\P
∂tVmζj dx +

∫

K\P
S(Vm − Φ(Um))ζj dx+

∫

K\P
(µ + ϑ)Vmζj dx = 0, ∀j ∈ {1, . . . , m} (4.3)

∫ H

0

∂tum,kβl dz +
∫ H

0

v(t)∂zum,kβl dz + d

∫ H

0

∂zum,k∂zβl dz+

ϑum,k(H, t)βl(H) =
2

R2
k

∫

∂Pk

γ(Um,k − um,k)βl dS, ∀l ∈ {1, . . . ,m} (4.4)

Um(x, 0) = Um,0(x), Vm(x, 0) = Vm,0(x), um,k(z, 0) = um,k,0, (4.5)

where the initial values are projected to the corresponding functional spaces.
It is obvious that the Cauchy problem (4.2) -(4.5) has a unique continuously

differentiable solution on [0, Tm] .

2. STEP In this step we prove that Tm = T by obtaining the a priori
estimates.

First, as in Proposition 2.1, we prove the energy equality (2.17) for
{Um, Vm, um} . The equality (2.17), monotonicity of the non-linearities and Gron-
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wall’s inequality imply the following energy estimates :

‖Um‖L∞(0,T ;L2(K\P )) + ‖∇Um‖L2(0,T ;L2(K\P )) ≤ C (4.6)

‖Vm‖H1((0,T )×(K\P )) ≤ C (4.7)
N∑

k=1

πR2
k

{
sup

0≤t≤T

∫ H

0

1
2
u2

m,k(z, t) dz + d

∫ T

0

∫ H

0

|∂zum,k(z, ξ)|2 dzdξ

}
≤ C (4.8)

We need better estimates in time. In order to get them we test the equation (4.2)
with ∂tUm . Then we get
∫

K\P
|∂tUm|2(x, t) dx +

D

2
∂t

∫

K\P
|∇Um|2(x, t) dx +

∫

K\P
S(Vm − Φ(Um))∂tUm dx

+
∫

K\P
(λ + ϑ)Um∂tUm dx +

∫

K\P
q∇Um∂tUm dx +

∫

Σ−
(ϑ− q · ne)Um∂tUm dS+

N∑

k=1

∫

∂Pk

γ(Um,k − um,k)∂t(Um,k − um,k) dS +
N∑

k=1

∫

∂Pk

γ(Um,k − um,k)∂tum,k dS

+
N∑

k=1

∫

∂Pk

ϑUm,k∂tUm,k = 0. (4.9)

After using the equation (4.4) for transforming the term
N∑

k=1

∫
∂Pk

γ(Um,k −

um,k)∂tum,k dS , we obtain the following equality

∫ t

0

∫

K\P
|∂tUm|2(x, ξ) dxdξ +

D

2

∫

K\P
|∇Um|2(x, t) dx +

N∑

k=1

∫

∂Pk

ϑU2
m

2
(·, t) dS+

1
2

∫

K\P
(λ + ϑ)|Um(x, t)|2 dx +

1
2

∫

Σ−
(ϑ− q · ne)|Um(·, t)|2 dS −

N∑

k=1

∫

∂Pk

ϑU2
m,0

2
(·) dS

+
N∑

k=1

R2
k

2

{ ∫ t

0

∫ H

0

|∂tum,k|2(z, ξ) dzdξ +
ϑ

2
|um,k(H, t)|2 +

d

2

∫ H

0

|∂zum,k(z, t)|2 dz

}
+

N∑

k=1

∫

∂Pk

∫ (Um,k−um,k)(t)

Um,0−um,k,0

γ(η)dη dS = −
∫ t

0

∫

K\P
S(Vm − Φ(Um))∂tUm(x, ξ) dxdξ

+
∫

K\P

D

2
|∇Um,0|2(x) dx +

1
2

∫

K\P
(λ + ϑ)|Um,0(x)|2 dx +

1
2

∫

Σ−
(ϑ− q · ne)|Um,0(·)|2 dS+

N∑

k=1

R2
k

2

{
ϑ

2
|um,k,0(H)|2 +

d

2

∫ H

0

|∂zum,k,0(z)|2 dz −
∫ t

0

∫ H

0

v(ξ)∂zum,k∂tum,k dzdξ

}
−

∫ t

0

∫

K\P
q∇Um∂tUm dxdξ − 1

2

∫ t

0

∫

Σ−
∂tq · ne|Um|2(·, ξ) dSdξ (4.10)
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Using the a priori estimates (4.6)-(4.8) and the equality (4.10) we have

‖∇Um‖L∞(0,T ;L2(K\P )) + ‖∂tUm‖L2(0,T ;L2(K\P )) ≤ C (4.11)
N∑

k=1

πR2
k

{
sup

0≤t≤T

∫ H

0

d

2
|∂zum,k|2(z, t) dz +

∫ T

0

∫ H

0

|∂tum,k(z, t)|2 dzdt

}
≤ C

(4.12)

3. STEP We note that the strong L2− convergence of {Um}m∈IN im-
plies the same convergence of the sequence {Vm}m∈IN . Then the a priori estimates
(4.6)-(4.8), (4.11)-(4.12) allow us to choose strongly and weakly convergent subse-
quences. The obtained convergences allow an easy passing to the limit in the ap-
proximate problem. Thus all clusters are strong solutions for the Problem (Pϑ) .
As the estimates do not depend on ϑ ≥ 0 , we have simultaneously existence for
the Problem (P) .

Now we consider the problems (P ′) and (P ′ϑ) . Here the calculations are bit
more involved. We have

Theorem 4.2. Assume (A1), (B1), (C) and (D). Then the Problem (P ′) and
the Problem (P ′ϑ) admit at least one solution

{U, V, u, Υ} ∈ (
L2(0, T ; H1(K \ P )) ∩ L∞(0, T ; L2(K \ P ))

)×(
H1((K \ P )× (0, T )) ∩W 1,∞(0, T ;L2(K \ P ))

)

×
(

L2(0, T ;H1(0,H)) ∩ L∞(0, T ; L2(0,H))
)N

×H1(0, T ), such that

∂t{U, V, u, Υ} ∈ L2((K \ P )× (0, T ))×H1(0, T ;L2(K \ P ))×
(L2((0, H)× (0, T )))N × L2(0, T ) and u(H, t) = Υ(t)1.

Proof. As before, it is enough to consider Problem (P ′ϑ) with ϑ ≥ 0 .
1. STEP Let {ζj}j∈IN be a smooth basis for H1(K \ P ) and {ξj}j∈IN a

smooth basis for H1
0 (0,H) . Then we start by looking for an approximate solution.

More precisely, we look for





Um =
m∑

j=1

αj(t)ζj , Vm =
m∑

j=1

δj(t)ζj ,

wm,k =
m∑

j=1

ωj,k(t)ξj and um(t)
(4.13)
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satisfying the system

∫

K\P
∂tUmζj dx + D

∫

K\P
∇Um∇ζj dx +

N∑

k=1

∫

∂Pk

γ(Um,k − wm,k − z

H
um(t))ζj dS+

N∑

k=1

∫

∂Pk

ϑUm,kζj dS +
∫

K\P
(λ + ϑ)Umζj dx +

∫

Σ−
(ϑ− q · ne)Umζj dS

+
∫

K\P
q∇Umζj dx =

∫

K\P
S(Vm − Φ(Um))ζj dx, ∀j ∈ {1, . . . ,m} (4.14)

∫

K\P
∂tVmζj dx +

∫

K\P
S(Vm − Φ(Um))ζj dx+

∫

K\P
(µ + ϑ)Vmζj dx = 0, ∀j ∈ {1, . . . , m} (4.15)

∫ H

0

∂twm,kξl dz + ∂tum(t)
∫ H

0

z

H
ξl dz +

∫ H

0

v(t)∂zwm,kξl dz + v(t)um(t)
∫ H

0

1
H

ξl dz+

d

∫ H

0

∂zum,k∂zξl dz =
2

R2
k

∫

∂Pk

γ(Um,k − wm,k − z

H
um(t))ξl dS, ∀l ∈ {1, . . . , m}

(4.16)

dum

dt
+ ϑum = − πd

HV
um(t)

N∑

k=1

R2
k +

2π

V

N∑

k=1

∫

∂Pk

γ(Um,k − wm,k − z

H
um(t))

z

H
dS

− π

V

N∑

k=1

R2
k

∫ H

0

v(t)∂zwm,k
z

H
dz − π

V

N∑

k=1

R2
k

∫ H

0

∂twm,k
z

H
dz−

πH

3V

dum(t)
dt

N∑

k=1

R2
k −

π

V

v(t)um(t)
2

N∑

k=1

R2
k (4.17)

Um(x, 0) = Um,0(x), Vm(x, 0) = Vm,0(x), wm,k(z, 0) = Pm(uk,0 − z

H
u0), um(0) = u0,

(4.18)

where the initial values are projected to the corresponding functional spaces.
Showing that the Cauchy problem (4.14) -(4.18) has a unique continuously dif-

ferentiable solution on [0, Tm] is equivalent to show that the matrix containing the

coefficients in front of the time derivatives of
dωj,k

dt
, j ∈ {1, . . . ,m}, k ∈ {1, . . . , N}

and um , is non-degenerate. Without loosing generality, we can suppose that {ξj}
is an orthonormal basis for L2(0,H) and an orthogonal basis for H1

0 (0,H) . Then

dωj,k

dt
= −dum

dt

∫ H

0

z

H
ξj dz + Fjk(~ω1, . . . , ~ωN , ~α, ~δ, um), (4.19)

where Fjk are determined by (4.16).

Next we plug the expressions for
dωj,k

dt
into (4.17). It turns out that (4.17) can
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be written in the form

{1 +
Hπ

3V

N∑

k=1

R2
k −

π

V
(

N∑

k=1

R2
k)

m∑

j=1

(
∫ H

0

ξj
z

H
dz)2}dum

dt
= F(~ω1, . . . , ~ωN , ~α, ~δ, um)

(4.20)
Since

m∑

j=1

(
∫ H

0

ξj
z

H
dz)2 <

∞∑

j=1

(
∫ H

0

ξj
z

H
dz)2 =

H

3

we see that (4.20) gives an expression for
dum(t)

dt
. Hence the coefficient matrix of

the system (4.14)-(4.18) is non-degenerate and this Cauchy problem has a unique
C1 solution on [0, Tm] , for some Tm > 0 .

2.STEP In this step we prove that Tm = T by obtaining the a priori
estimates.

First, as in Proposition 2.2, we prove the energy equality (2.20) for
{Um, Vm, um, um} . The equality equality (2.20), monotonicity of the non-linearities
and Gronwall’s inequality imply the following energy estimates :

‖Um‖L∞(0,T ;L2(K\P )) + ‖∇Um‖L2(0,T ;L2(K\P )) + ‖Vm‖H1((0,T )×(K\P )) ≤ C (4.21)
N∑

k=1

πR2
k

{
sup

0≤t≤T

∫ H

0

1
2
u2

m,k(z, t) dz + d

∫ T

0

∫ H

0

|∂zum,k(z, ξ)|2 dzdξ

}
≤ C (4.22)

We need better estimates in time. In order to get them we test the equation (4.14)
with ∂tUm . Then we get

∫

K\P
|∂tUm|2(x, t) dx +

D

2
∂t

∫

K\P
|∇Um|2(x, t) dx +

∫

K\P
S(Vm − Φ(Um))∂tUm dx

+
∫

K\P
(λ + ϑ)Um∂tUm dx +

∫

K\P
q∇Um∂tUm dx +

∫

Σ−
(ϑ− q · ne)Um∂tUm dS+

N∑

k=1

∫

∂Pk

γ(Um,k − um,k)∂t(Um,k − um,k) dS +
N∑

k=1

∫

∂Pk

γ(Um,k − um,k)∂tum,k dS+

N∑

k=1

∫

∂Pk

ϑ∂Um,kUm,k dS = 0. (4.23)

After using the equation (4.16) for transforming the term
N∑

k=1

∫
∂Pk

γ(Um,k −
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um,k)∂tum,k dS, we obtain the following equality

∫ t

0

∫

K\P
|∂tUm|2(x, ξ) dxdξ +

D

2

∫

K\P
|∇Um|2(x, t) dx +

N∑

k=1

∫

∂Pk

ϑU2
m

2
(·, t) dS+

1
2

∫

K\P
(λ + ϑ)|Um(x, t)|2 dx +

1
2

∫

Σ−
(ϑ− q · ne)|Um(·, t)|2 dS −

N∑

k=1

∫

∂Pk

ϑU2
m,0

2
(·) dS+

N∑

k=1

R2
k

2

{ ∫ t

0

∫ H

0

|∂tum,k|2(z, ξ) dzdξ +
d

2

∫ H

0

|∂zum,k(z, t)|2 dz

}
+

V

2π

∫ t

0

|∂tum|2(τ) dτ+

V ϑ

4π
u2

m(t) +
N∑

k=1

∫

∂Pk

∫ (Um,k−um,k)(t)

Um,0−um,k,0

γ(η)dη dS = −
∫ t

0

∫

K\P
S(Vm − Φ(Um))∂tUm(x, ξ) dxdξ

+
∫

K\P

D

2
|∇Um,0|2(x) dx +

1
2

∫

K\P
(λ + ϑ)|Um,0(x)|2 dx +

1
2

∫

Σ−
(ϑ− q · ne)|Um,0(·)|2 dS+

N∑

k=1

R2
k

2

{
d

2

∫ H

0

|∂zum,k,0(z)|2 dz −
∫ t

0

∫ H

0

v(ξ)∂zum,k∂tum,k dzdξ

}
+

V ϑ

4π
u2

0−
∫ t

0

∫

K\P
q∇Um∂tUm dxdξ − 1

2

∫ t

0

∫

Σ−
∂tq · ne|Um|2(·, ξ) dSdξ (4.24)

Using the a priori estimates (4.21)-(4.22) and the equality (4.24) we have

‖∇Um‖L∞(0,T ;L2(K\P )) + ‖∂tUm‖L2(0,T ;L2(K\P )) ≤ C (4.25)
N∑

k=1

πR2
k

{
sup

0≤t≤T

∫ H

0

d

2
|∂zum,k|2(z, t) dz +

∫ T

0

∫ H

0

|∂tum,k(z, t)|2 dzdt

}
≤ C

(4.26)

‖um‖H1(0,T ) ≤ C (4.27)

3. STEP We note that the strong L2− convergence of {Um}m∈IN

implies the same convergence of the sequence {Vm}m∈IN . Then the a priori esti-
mates (4.21)-(4.22), (4.25)-(4.27) allow us to choose strongly and weakly convergent
subsequences. The obtained convergences allow an easy passing to the limit in the
approximate problem. Thus all clusters are strong solutions for Problem (P ′ϑ) .
As the estimates do not depend on ϑ ≥ 0 , we have simultaneously existence for
the Problem (P ′) .

Remark 4.1. The strong solutions obtained in the previous theorems are unique.

Let us now prove the regularity for Problem (Pϑ) and Problem (P) . The
extension of the results to Problem (P ′ϑ) and Problem (P ′) are straightforward.

Theorem 4.3. (regularity theorem) Let us suppose (A1), (B1) , (C) and
(D1). Then the strong solutions for Problems (Pϑ) , (P) , (P ′ϑ) , (P ′) belong



December 10, 2005 20:33 WSPC/INSTRUCTION FILE RemedPrim-
icMikFinal

Modelling and homogenizing a problem of sorption/desorption in porous media 21

to
(
C2,1((K \ P ) × (0, T ))2 × C2,1((0,H) × (0, T ))N

) ∩ (
C(K \ P × [0, T ])2 ×

H1,1/2([0, H]× [0, T ])N
)
.

Proof. We apply the regularity theory from 17 . We proceed in several steps.
First, direct application of Th. 9.1, page 341 from 17 gives uk ∈ W 2,1

2 ((0,H)×
(0, T )).

Next, we use uk as data in the equation for U . Using once more Th. 9. 1 from
17 , we get U ∈ W 2,1

2 ((K \ P )× (0, T )) and the same is true for V . Consequently,
using the embedding lemma 3.3., page 80, from 17 , we conclude that U |Pk

∈
L10/3((0, T )× ∂Pk) .

Now, we go back to the equation for uk and find out that the right hand side
belongs to L10/3((0,H×(0, T )) . Thus uk ∈ W 2,1

10/3((0,H)×(0, T )) ⊆ H1,1/2([0,H]×
[0, T ]) .

Finally, we need the internal regularity for solution U of the parabolic problem
with the nonlinear Neumann conditions (involving γ ) and semilinear nonlinearities
S and Φ . The classical theory from 17 , chapter 5.7, and 9 , chapter 7.5, implies
that {U, V } ∈ C2,1((K \ P )× (0, T ))2 ∩ (

C(K \ P × [0, T ])2 .

Remark 4.2. Now, for ϑ > 0 , we can apply the maximum principle, proved in
theorem 2.1, to conclude that solution satisfies the bounds (2.4)-(2.6). This justifies
the assumption that non-linearities are bounded and globally Lipschitz.

Remark 4.3. If ϑ = 0 , the classical maximum principle from theorem 2.1 doesn’t
apply directly. Nevertheless, for sequence {Uϑ, V ϑ, uϑ} , both the energy estimates
(4.6)-(4.8), (4.11)-(4.12) and the L∞ -bounds (2.4)-(2.6) apply independently of ϑ .
Then using the weak compactness, we conclude there are clusters {U, V, u} , which
satisfy the bounds (2.4)-(2.6), the energy estimates (4.6)-(4.8), (4.11)-(4.12) and
the equations. The uniqueness theorem applies and, consequently, there is a unique
limit. This proves that for ϑ = 0 the solution satisfies the bounds (2.4)-(2.6).

5. Homogenization of a periodic network of parallel pipes

In this section we consider the model with many pipes obtained by periodic rep-
etition of an elementary section of size ε in the smooth domain Q ⊂ IR2 . An
elementary section is a fixed open circle YC = {(x, y) ∈ Y : x2 + y2 < ρ2

C < 1/4}
inside the unit cell Y = (0, 1)2 . Other possibility is to have a finite number of
circles at positive distances from each other and from ∂Y . Then YC would be
their union. For simplicity we suppose here only one circle.
Let εZZ2 be a set of lattice points with edge of length ε , i.e. εZZ2 = {pi

ε : i ∈ Z2} .
We make the periodic repetition of YC and set Pi

ε = pi
ε +εYC , Y i

ε = pi
ε +εY . The

set of capillary pipes is given by Pε =
⋃

i{Pi
ε : Y i

ε ⊂ Q} . The porous medium part
is

Mε =
(
Q \ Pε

)× (0,H) (5.1)
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After covering Q with this mesh of size ε , we see that there are Nε = (ε−2)C(1+
O(1)) capillary pipes .

After 5 and 16 there exists an extension operator Π̃ ∈ L(H1(Y \ ȲC),H1(Y ))
such that

‖∇(Π̃φ)‖L2(Y )2 ≤ ‖∇φ‖L2(Y \ȲC)2 , ∀φ ∈ H1(Y \ ȲC).

Then for every ε > 0 there exists an extension operator Πε ∈ L(H1(Q\Pε),H1(Q))
such that

‖∇(Πεφ)‖L2(Q)2 ≤ ‖∇φ‖L2(Q\Pε)2 , ∀φ ∈ H1(Q \ Pε). (5.2)

We note that this approach generalizes to a huge class of arbitrary elementary
sections strictly included in the unit cell. Then the extension operator is constructed
as in 4 .

Now we define auxiliary problems corresponding to various values of a given
constant vector λ ∈ IR2 .



−∆wλ = 0 in YC ;

∂wλ

∂n
|∂YC = 0

wλ − λ · (y1, y2) is Y − periodic.
(5.3)

If wk = wek
, then the effective diffusion matrix is given by Aij =

∫

YC

∇wi ·
∇wj dy1dy2 . It is well-known that A is positive definite and symmetric matrix.
Furthermore





η̃ε
λ = ∇wλ(

x

ε
,
y

ε
)χ

Q \ Pε
⇀ Aλ weakly in Lα

loc(IR
2),

χ
Q \ Pε

⇀ θ = |Y \ ȲC | = 1− ρ2
Cπ weakly in Lβ

loc(IR
2), ∀β ∈ [1,+∞).

(5.4)

Remark 5.1. Let us suppose that YC is a circle of small radius ρ . Then, following
16 , we find

A = (1− 2ρ2π)I + o(ρ2) (5.5)

Next we need an auxiliary result for the interfaces. Homogenization of the non-
homogeneous Neumann problem for the Laplace’s operator in perforated domains
was studied in 6 and the following result was proved on pages 120-122 :

Lemma 5.1. Let φ ∈ H1(Q) . Then we have

ε2ρC

∑

i

∫ 2π

0

φ|
∂Pi

ε
dϑ → |∂YC |

∫

Q

φ dxdy as ε → 0. (5.6)

Furthermore,

|ε2ρC

∑

i

∫ 2π

0

φ|∂Pi
ε

dϑ− |∂YC |
|Y \ ȲC |

∫

Q \ Pε

φ dxdy| ≤ Cε‖φ‖H1(Q) (5.7)
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Next we suppose that the non-linearity γ(·) has the form εγ(·) . This assump-
tions guarantees the balance between the volume and surface terms in the limit
ε → 0 .

Since Problem (P ′) is the most interesting case, we concentrate only on it.
For other case, the result is analogous and slightly simpler. We leave the details to
the reader.

After these auxiliary results we write the Problem (P ′) in the weak form :

Find Uε ∈ L2(0, T ;H1(Mε))× L∞(Mε × (0, T )), Υε ∈ H1(0, T ),

uε − z

H
Υε1 ∈ L2(0, T ; H1

0 (0,H))Nε ∩ L∞((0,H)× (0, T ))Nε and

V ε ∈ H1(Mε × (0, T )) ∩ L∞(Mε × (0, T )), such that ∂tU
ε ∈ L2(Mε × (0, T )),

∂tu
ε ∈ L2((0,H)× (0, T ))Nε , with non-negative initial values

uε(·, 0) = u0(·), ‖uε‖L∞(0,H) ≤ M, u0(0) = 0, u0(H) = u01, u0 ∈ (0,M), (5.8)

Uε(·, 0) = U0(·) ∈ (0,M), and V ε(·, 0) = V0(·) ∈ (0, Φ(M)), (5.9)

which satisfy the following variational equations

d

dt

∫

Mε

Uεφ dx +
∫

Mε

{
D∇Uε · ∇φ− S

(
V ε − Φ(Uε)

)
φ

}
dx+

∫

Mε

q∇Uεϕ dx +
∫

Mε

λUεϕ dx−
∫

Σ−
q · neU

εϕ dS+

ε

Nε∑

i=1

∫ H

0

∫

∂Pi
ε

γ

(
Uε − uε

i

)
φ dSdz = 0, ∀φ ∈ H1(Mε), t > 0, (5.10)

2πε

∫ H

0

∫

∂Pi
ε

g(z)γ
(

Uε|∂Pi
ε
− uε

i

)
dSdz =

d

dt

∫ H

0

∫

Pi
ε

uε
i g dz+

v(t)
∫ H

0

∫

Pi
ε

∂uε
i

∂z
g dz + d

∫ H

0

∫

Pi
ε

∂uε
i

∂z

dg

dz
dz, ∀g ∈ H1

0 (0,H) (5.11)

∂V ε

∂t
+ µV ε + S

(
V ε(x, t)− Φ(Uε(x, t))

)
= 0, x ∈ Mε, t > 0, (5.12)

dΥε

dt
=

2π

V

Nε∑

i=1

∫ H

0

∫

∂Pi
ε

γ

(
Uε − uε

i

)
z

H
dSdz − π

V

Nε∑

i=1

ε2ρ2
C

{
∂t

∫ H

0

uε
i

z

H
dz

+v(t)
∫ H

0

∂zu
ε
i

z

H
dz +

d

H
Υε

}
, Υε(0) = u0, uε

i |z=H = Υε(t), ∀i, (5.13)

where uε
i = uε|∂Pi

ε
on Pi

ε , ∀i . The existence of a smooth solution for the equations
(5.10)-(5.13), satisfying initial conditions (5.8)-(5.9) was established in preceding
sections. In order to study the limit ε → 0 we need a priori estimates uniform with
respect to ε .

Proposition 5.1. Let the extension of V ε be defined by

∂t(Π̂εV
ε
) + µΠ̂εV ε = −S(Π̂εV

ε − Φ(ΠεUε)), Π̂εV
ε
(x, 0) = V0(x). (5.14)
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Then the functions {Uε, V ε, uε, Υε} , defined by Problem (P ′) , are non-negative
and satisfy the following a priori estimate

‖ΠεUε‖L∞(0,T ;H1(K)) + ‖∂tΠεUε‖L2(0,T ;L2(K)) ≤ C (5.15)

‖∂tΠ̂εV ε‖L2(0,T ;L2(K)) + sup
0≤t≤T

‖Π̂εV ε(·+ h)− Π̂εV ε(·)‖L2(K) ≤ C
√

h, ∀h > 0,

(5.16)

‖ΠεUε‖L∞(K×(0,T )) ≤ M ; ‖Π̂εV ε‖L∞(K×(0,T )) ≤ Φ(M) (5.17)

sup
1≤i≤Nε

‖uε
i‖2L∞(Pi

ε×(0,T )) +
Nε∑

i=1

( ∫ T

0

∫ H

0

∫

Pi
ε

|∂tu
ε
i |2 dxdt + sup

0≤t≤T

∫ H

0

∫

Pi
ε

|∂zu
ε
i |2 dx

)
≤ C.

(5.18)

Proof. First we note that (5.17) follows from the maximum principle. Next, in
order to get the energy estimate we test (5.11) by g = uε

i − Υεz/H , sum with
respect to i and add (5.13) tested with V Υε . Then we test (5.10) with ϕ = Uε

and (5.12) by h = Φ−1(V ε) . Finally, we combine all three integral equalities.
Then, as in derivation of the a priori estimates (4.21)-(4.22) in the existence proof,
it follows that

sup
0≤t≤T

{ ∫

Mε

(
|Uε(t)|2 +

∫ V ε

0

Φ−1(η) dη

)
dxdydz +

Nε∑

i=1

∫ H

0

∫

Pi
ε

|uε
i (t)|2 dx + V ·Υε(t)2

}

+D

∫ T

0

∫

Mε

|∇Uε|2 dxdydz + d

Nε∑

i=1

∫ T

0

∫ H

0

∫

Pi
ε

|∂uε
i

∂z
|2 dxdydz ≤

Cε2
Nε∑

i=1

‖ui0‖2L2(0,H) + C + C

∫

K

(
|U0|2 +

∫ V0

0

Φ−1(η) dη

)
(5.19)

where C depends on the boundary data and nonlinearities, but not on ε .
Further time estimates for Uε , uε and V ε follow from the equality (4.24). We

have

D

2
sup

0≤t≤T

∫

Mε

|∇Uε(t)|2 dxdydz +
∫ T

0

∫

Mε

|∂tU
ε|2 dxdt+

Nε∑

i=1

{ ∫ T

0

∫ H

0

∫

Pi
ε

|∂tu
ε
i (t)|2 dx +

d

2
sup

0≤t≤T

∫ H

0

∫

Pi
ε

|∂uε
i

∂z
|2 dxdydz

}
≤

Cε2
Nε∑

i=1

(
‖∂zui0‖2L2(0,H) + ‖ui0‖2L∞(0,H)

)
+ C + C

∫

K

|∇U0|2 dx (5.20)

‖∂tΥε‖L2(0,T ) + ‖∂tV
ε‖L2(Mε×(0,T )) ≤ C (5.21)

Next we note that (5.19)-(5.20) apply to ΠεUε , as well, proving (5.15) and (5.18).
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For V ε we introduce the extension by (5.14). Then
∫

K

|Π̂εV ε(x + h, t)− Π̂εV ε(x, t)|2 dx ≤
∫

K

|V0(x + h)− V0(x)|2 dx+

C

∫ t

0

∫

K

|ΠεUε(x + h, ξ)−ΠεUε(x, ξ)|2 dxdξ ≤ C|h|, ∀h ∈ IR3, ∀t ∈ (0, T ),

(5.22)

proving (5.16).

Next we extend uε to K by

ũε(x, y, z, t) = uε
i (z, t) if (x, y) ∈ Y i

ε , (5.23)

Obviously, uε is a non-negative function, uniformly bounded in L∞ with respect
to ε . Furthermore

‖∂zũ
ε‖L2(K×(0,T )) + ‖∂tũ

ε‖L2(K×(0,T )) ≤ C (5.24)

Nevertheless, since they are locally constant with respect to x and y , these exten-
sions don’t have derivatives with respect to x and y , in the sense of distributions,
in L2 . This means that we should estimate the translations with respect to x and
y , if we wish to prove compactness of the sequence uε . We note the analogy with
the approach from 1 .

Proposition 5.2. Let us suppose that ∀k ∈ ZZ2 we have

ε2ρC

∫ H

0

Nε∑

i=1

|ui+k,0 − ui,0|2 dz ≤ C|k|. (5.25)

Let ũε be extended by zero outside K . Then ∀h = (h1, h2) ∈ IR2 we have

sup
0≤t≤T

∫ H

0

∫

Q

|ũε(x+h1, y+h2, z, t)−ũε(x, y, z, t)|2 dxdydz ≤ C
(
ε3/2+|h|). (5.26)

Proof. The idea is to use the equation (5.11) and the a priori estimates (5.15)-
(5.18).

Clearly, it is enough to prove the result for h = (k1ε, k2ε) , k ∈ ZZ2 .
Let uε,k

i = uε
i (x + k1ε, y + k2ε, z, t) .We test the equation (5.11) with g =

uε,k
i − uε

i and get

1
2

∫ H

0

∫

Pi
ε

|uε,k
i −uε

i |2(t)+d

∫ t

0

∫ H

0

∫

Pi
ε

|∂z(u
ε,k
i −uε

i )|2 =
1
2

∫ H

0

∫

Pi
ε

|uε,k
i,0 −uε

i,0|2+I,

(5.27)
where

I = 2π

∫ t

0

∫ H

0

∫ 2π

0

ε2ρC

(
γ(Uε,k

i − uε,k
i )− γ(Uε

i − uε
i )

)
(uε,k

i − uε
i ) dϑdzdη (5.28)
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At this stage we make use of an auxiliary function, systematically used in 15 , β ,
being the solution with zero mean to the problem

−∆β = −|∂YC |
|YC | in YC ;

∂β

∂n
= 1 on ∂YC (5.29)

Then βε(x, y) = β(x/ε, y/ε) is uniformly bounded and its derivatives behave as
ε−1 .

Next we note that the term I involves Uε and we estimate it as follows :

|I| = |
∫ t

0

∫ H

0

∫ 2π

0

ε3ρC

(
γ(Uε,k

i − uε,k
i )− γ(Uε

i − uε
i )

)
(uε,k

i − uε
i )

∂βε

∂n
dϑdzdη|

≤ C

∫ t

0

∫ H

0

∫

Pε
i

|ΠεUε(·+ εk, z, η)−ΠεUε(x, y, z, t)| · |uε,k
i − uε

i | dxdydzdη

+C‖ε∇x,yβε‖ε3 (5.30)

Finally we insert (5.30) into (5.27) and get

∫ H

0

∫

Pi
ε

|uε,k
i − uε

i |2(t) + d

∫ t

0

∫ H

0

∫

Pi
ε

|∂z(u
ε,k
i − uε

i )|2 ≤ Cε2

∫ H

0

|uk
i,0 − ui,0|2 dz

+C

∫ t

0

∫ H

0

∫

Pi
ε

|ΠεUε(·+ εk, z, η)−ΠεUε(x, y, z, t)|2 + Cε3 (5.31)

Insertion of the assumptions on the data and (5.15) into (5.31) implies the desired
result.

These estimates lead to the following compactness result

Proposition 5.3. There are subsequences of {ΠεUε, Π̂εV ε, ũε, Υε} , denoted by
the same indices, and functions {U, V, u, Υ} ∈ H1(K× (0, T ))2×L∞(K× (0, T ))×
H1(0, T ) , with ∂zu ∈ L2(K × (0, T )) and ∂tu ∈ L2(K × (0, T )) such that

ΠεUε → U weakly in H1(K × (0, T )) and strongly in L2(K × (0, T )) (5.32)

ũε → u weak∗ in L∞(K × (0, T )), ∂tΥε → ∂tΥ weakly in L2(0, T ) (5.33)

{∂zũ
ε, ∂tũ

ε} → {∂zu, ∂tu} weakly in L2(K × (0, T ))2 (5.34)

ũε → u strongly in L2(K × (0, T )) (5.35)

Π̂εV ε → V weakly in H1(K × (0, T )) and strongly in L2(K × (0, T )) (5.36)

ΠεUε → U and Π̂εV ε → V weak∗ in L∞(K × (0, T )), (5.37)

Υε = ũε|z=H → Υ = u|z=H uniformly on [0, T ] (5.38)

In order to pass to the limit in the interface integrals containing uε we prove
the following result
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Proposition 5.4. We have

Nε∑

i=1

∫ T

0

∫ H

0

∫ 2π

0

ε2ρCϕ|∂Pi
ε
γ(Uε|∂Pi

ε
− uε

i ) dϑdzdt →

|∂YC |
∫ T

0

∫

K

γ(U − u)ϕ dxdydzdt, ∀ϕ ∈ L2(0, T ; H1(Ω)) (5.39)

Proof. Since we don’t have good estimates for the derivatives of uε with respect
to x and y , we can’t directly use results from 6 . We proceed as in the estimate
for the translations in x and y and introduce β , as the solution with zero mean
to the problem (5.29). Then we have

lim
ε→0

Nε∑

i=1

∫ T

0

∫ H

0

∫ 2π

0

ε2ρCϕ|∂Pi
ε
γ(Uε|∂Pi

ε
− uε

i ) dϑdzdt =

lim
ε→0

ε2

∫ T

0

∫ H

0

∫

Pε

divx,y(ϕ∇x,yβεγ(ΠεUε − ũε)) dxdydzdt =

lim
ε→0

∫ T

0

∫ H

0

∫

Pε

|∂YC |
|YC | γ(ΠεUε − ũε)ϕ dxdydzdt = |∂YC |

∫ T

0

∫

K

γ(U − u)ϕ dxdydzdt

and the result is proved.

The derivation of the homogenized problem is now immediate. We have

Theorem 5.1. Let θ = |Y \ ȲC | be the porosity and let the A be the effective
diffusion matrix. Then all cluster points {U, u, V, Υ} satisfy the system

θ∂tU −Ddiv
(
A∇U

)
+ |∂YC |γ(U − u) + λθU = θS(V − Φ(U)) (5.40)

2π
|∂YC |
|YC | γ(U − u) =

∂u

∂t
+ v(t)

∂u

∂z
− d

∂2u

∂z2
(5.41)

∂V

∂t
+ µV = −S(V − Φ(U)) (5.42)

1
1− θ

∂Υ
∂t

+ (
d|Q|
V H

+
(1− θ)|Q|

V
)Υ +

1
V H

∂t

∫

K

zu dxdydz =
v(t)|YC |

V H

∫

K

u dxdydz+

2π|∂YC |
V H(1− θ)

∫

K

γ(U − u)z dxdydz (5.43)

in K × (0, T ) , together with the following initial and boundary conditions
{

A∇U · ne = 0 on Σ+ × (0, T );
DA∇U · ne = Uq · ne on Σ− × (0, T );

(5.44)

u|z=H = Υ(t), u|z=0 = 0 on (0, T ) and u|t=0 = lim
ε→0

ε2
Nε∑

i=1

ui0(z) on K (5.45)

U |t=0 = U0, Υ(0) = u0 and V |t=0 = V0 on K. (5.46)
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Theorem 5.2. The problem (5.40)-(5.46) admits a unique solution in H1(K ×
(0, T ))×L∞(K×(0, T ))×H1(K×(0, T ))×H1(0, T ) , (∂zu, ∂tu) ∈ L2(K×(0, T ))2 .

Proof. The proof uses the energy estimates. We suppose 2 solutions and write the
system for the difference. Then the first equation is tested by U = U1 − U2 , the
second by u = u1 − u2 − z(Υ1 −Υ2)/H , the 3rd by V = V1 − V2 and the fourth
by Υ = Υ1 −Υ2 . We have

θ

∫

K

1
2
|U(t)|2 + D

∫ t

0

∫

K

A∇U∇U + |∂YC |
∫ t

0

∫

K

(
γ(U1 − u1)− γ(U2 − u2)

)
U

+λθ

∫ t

0

∫

K

|U |2 −
∫ t

0

∫

Σ−
q · neU

2 = θ

∫ t

0

∫

K

(
S(V1 − Φ(U1))− S(V2 − Φ(U2))U

(5.47)

1
2π
|YC |

∫

K

1
2
|u(t)|2 +

d

2π
|YC |

∫ t

0

∫

K

|∂zu|2 − |∂YC |
∫ t

0

∫

K

(
γ(U1 − u1)− γ(U2 − u2)

)
u

=
∫ t

0

1
2π

{
Υ(τ)|YC |

∫

K

z

H
u + |YC |v(τ)

∫

K

∂zu
z

H
Υ +

d|Q|
H

|YC |Υ2(τ)−

|∂YC |
∫

K

(
γ(U1 − u1)− γ(U2 − u2)

)
zΥ/H

}
(5.48)

∫

K

1
2
|V (t)|2 +

∫ t

0

∫

K

µV 2 +
∫ t

0

∫

K

(
S(V1 − Φ(U1))− S(V2 − Φ(U2))

)
V = 0

(5.49)

V

2π

1
2
Υ2(t) = −

∫ t

0

1
2π

{
Υ(τ)|YC |

∫

K

z

H
u + |YC |v(τ)

∫

K

∂zu
z

H
Υ+

d|Q|
H

|YC |Υ2(τ)− |∂YC |
∫

K

(
γ(U1 − u1)− γ(U2 − u2)

)
zΥ/H

}
(5.50)

We add (5.47) to (5.50) to get

1
2

{
θ

∫

K

(U2(t) + V 2(t)) +
|YC |
2π

∫

K

u2(t) +
V

2π
Υ2(t)

}
+
|YC |d
2π

∫ t

0

∫

K

|∂u

∂z
|2+

|∂YC |
∫ t

0

∫

K

(
γ(U1 − u1)− γ(U2 − u2)

)
(U − u) + D

∫ t

0

∫

K

A∇U∇U + λ

∫ t

0

∫

K

|U |2

−
∫ t

0

∫

Σ−
q · neU

2 + |Y \ ȲC |
∫ t

0

∫

K

µV 2 ≤ C

∫ t

0

∫

K

(|V |+ |U |)2 dxdydzdt.

(5.51)

Now the uniqueness is trivial.

Corollary 5.1. The whole sequence {ΠεUε, ũε, Π̂εV ε,Υε} converges to the unique
solution {U, u, V, Υ} for the system (5.40)-(5.46).

Remark 5.2. We note that our homogenized model corresponds to the models
found the direct modeling of the solute transport, involving insufficiently fast surface
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reactions. For more details we refer to the classical paper 23 . Problems related to
the system (5.40)-(5.46), with modeling borrowed from 23 , are studied in 10 .
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