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October 6, 2004

Abstract

In this article, we derive approximations and effective boundary
laws for solutions uε of the Poisson equation on a domain Ωε ⊂ R

n

whose boundary differs from the smooth boundary of a domain Ω ⊂
R

n by rapid oscillations of size ε. First, we construct a boundary
layer correction which yields an O(ε3/2) approximation in the energy
norm, and an O(ε2) approximation in the L2-norm if Ω is bounded.
Then, we show that for 1 ≤ p ≤ 2 an O(ε1+1/p)-approximation in the
Lp-norm can already be obtained by solving an effective equation on
Ω satisfying a boundary condition of Robin type.

Key Words: Homogenization, Poisson equation, oscillating boundary, curved
boundary, Robin boundary condition, boundary layer, unbounded domain.

1 Introduction

We consider the Poisson equation

−∆uε(x) = f(x) , x ∈ Ωε , uε(x) = 0 , x ∈ ∂Ωε (1)
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where Ωε ⊂ R
n with the additional assumption that uε is bounded in the case

where Ωε is unbounded. Ωε is a domain with a compact boundary ∂Ωε having
microscopic locally ε-periodic oscillations of size ε. For ε→ 0, the domain Ωε

is supposed to approximate a domain Ω with smooth boundary Γ = ∂Ω. It
is clear that for small ε, this problem is difficult to solve numerically because
of the intricate structure of the boundary. Therefore it is important to find
a way to approximate uε by solving only problems on Ω. The boundary law
of these problems will depend on the oscillation and can be computed by
solving locally a so-called boundary layer problem.

The study of problem (1) in the case of ∂Ω being a hyperplane has a long
history, see e.g. [8], [13], [4], [3] and the references therein. Studies in the case
of curved boundaries ∂Ω are [1], [2], and [9]. Here, [1] treats only the two-
dimensional case with uniform oscillations. However, the two-dimensional
case is very special because it allows for a global isometric parameterization of
the boundary, while in the multidimensional case even the correct formulation
of the problem setting is not obvious, see Section 2. Also the references [2] and
[9] consider a setting in the case Ω ⊂ R

2, but they allow variable oscillations.

They state an O(ε
3
2 ) error estimate in the energy norm, but they do not

contain proofs for this assertion. In [9], the boundary layer cell problem is
posed on a domain with a fixed thickness. However, this will usually not be
sufficient for obtaining the desired O(ε

3
2 )-error estimate because it introduces

an O(ε)-error in the effective boundary condition, see Remark 4.4.
The structure of this article is the following. Since the formulation of

the problems as well as the results do slightly differ, we have chosen to con-
sider the case of bounded domains Ω and Ωε first, and discuss the case of
unbounded domains separately in Section 9. In Section 2, we define the prob-
lem and especially the kind of ε-periodicity we are interested in. Section 3
considers the simple approximation of uε given by the solution u of

−∆u(x) = f(x) , x ∈ Ω , u(x) = 0 , x ∈ ∂Ω . (2)

The difference between uε and u is shown to be of size O(ε
1
2 ) in the energy

norm. Next, in Sections 4, 5, 6, we construct a better approximation which
involves the solution of a boundary layer problem. This approximation is
shown to yield an O(ε

3
2 )-error in the energy norm and an O(ε2)-error in the

L2-norm in Section 7. Finally, in Section 8, we show that interior O(ε2)-
approximations can also be obtained by solving the problem

−∆ueff (x) = f(x) , x ∈ Ω , ueff (x) = εcbl(x)
∂ueff

∂ν
(x) , x ∈ ∂Ω (3)
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where the function cbl : ∂Ω → R can be computed from the solution to the
boundary layer problem mentioned above.

2 Setting of the problem

Let Ω ⊂ R
n , n ≥ 2 be a bounded domain, such that its boundary Γ = ∂Ω is

a compact, smooth (n− 1)-dimensional Riemannian manifold with a metric
induced by the Euclidean metric in R

n.
Let ν : Γ → R

n be the outer normal vector field of Γ. A standard result
of differential geometry (see e.g. [5]) then implies that for a suitable choice
of δ > 0 the mapping

T : Γ × (−δ, δ) → T Γ ⊂ R
n , (x, t) 7→ x + tν(x) (4)

is a smooth diffeomorphism. Such a mapping T is called a tubular neighbor-
hood of Γ.

For ε > 0, let
γε : Γ → R (5)

be a function which satisfies

|γε(x)| ≤ εM <
δ

2
, x ∈ Γ , (6)

and which is locally ε-periodic in the following sense: there is an atlas AΓ =
{ϕi}i=1,...,N of Γ consisting of charts

Ui 3 x′ 7→ x = ϕi(x
′) ∈ Vi ⊂ Γ (7)

mapping open sets Ui ⊂ R
n−1 to open sets Vi ⊂ Γ such that

γε(x) = εγi(ϕ
−1
i (x),

ϕ−1
i (x)

ε
) (8)

with smooth functions γi : Ui ×R
n−1 → R which are 1-periodic in the second

variable.
The inequalities (6) ensure that γε defines an oscillating surface Γε by

Γε = {T (x, γε(x)) : x ∈ Γ} (9)

which is a submanifold of R
n bounding the domain

Ωε = (Ω \ TΓ) ∪ {T (x, t) : x ∈ Γ, −δ < t < γε(x)} . (10)
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∂Ω
∂Ωε

Figure 1: Ω and Ωε
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For later use, we also define local charts for the tubular neighborhood by

Ti : Ui × (−δ, δ) → T Γ
i , (x′, t) 7→ T (ϕi(x

′), t) . (11)

Example 2.1 A simple example of a domain with a smoothly varying oscil-
lating boundary is shown in Fig. 1. Here, Γ = ∂Ω is the unit circle S1. The
tubular neighborhood (4) is given as

T : S1 × (−δ, δ) → R
2 , (x, t) 7→ (1 + t)x (12)

for some δ ∈ (0, 1). The oscillating boundary is given in this special case as

Γε = {T (x, γε(x)) : x ∈ S1}

with

γε(x) =
1

20
sin2(arg x) sin

(arg x

ε

)
, ε =

1

40
.

Here, arg : S1 → (−π, π] is defined such that it maps x =
( cos ϕ

sinϕ

)
∈ S1 to

ϕ ∈ (−π, π].
In this case, we can choose for example the atlas consisting of the local

charts

ϕ1 : (−1, 1) → S1 − ( −1
0 ) , x′ 7→

(
cos(2πx′)
sin(2πx′)

)
(13)

and

ϕ2 : (0, 2) → S1 − ( 1
0 ) , x 7→

(
cos(2πx′)
sin(2πx′)

)
. (14)

With respect to these charts and for ε = 1
40

we have

γε(ϕi(x
′)) = εγi(x

′,
x′

ε
) , i = 1, 2

where
γi(x

′,y′) = 2 sin2(2πx′) sin
(
2πy′

)
, i = 1, 2 .

Example 2.2 For Ω,Ωε ⊂ R
n with n ≥ 3, the oscillation usually occurs

only on some part of the boundary. A simple example for such a situation
would be that γj ≡ 0 for all j = 1, . . . , N with j 6= i, while γi(x, y) has to
vanish only for x ∈

⋃
j 6=i ϕ

−1
i (Vi ∩ Vj).
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Now, let f ∈ L∞(Rn). We consider the problem

−∆uε = f , x ∈ Ωε ,

u(x) = 0 , x ∈ Γε .
(15)

The variational formulation of this problem is: find uε ∈ H1
0 (Ωε) such

that ∫

Ωε

∇uε∇ϕε dx =

∫

Ωε

fϕε dx , ∀ϕε ∈ H1
0 (Ωε) . (16)

By the Lax-Milgram lemma, this problem has a unique solution.

3 First approximation

The solution uε from (15) can be approximated by the solution u of the
problem

−∆u(x) = f(x) , x ∈ Ω ,

u(x) = 0 , x ∈ Γ .
(17)

We extend u to Ωε by 0 and denote this extension by ũ. We are in-
terested how well ũ approximates uε in H1(Ωε) resp. L2(Ωε). For proving
error estimates, we introduce the corrector θε : Ωε → R as a solution to the
problem

−∆θε(x) = 0 , x ∈ Ωε \ Γ ,

θε(x) = 0 , x ∈ Γε \ Ω ,

θε(x) = −u(x) , x ∈ Γε ∩ Ω ,[
∂
∂ν
θε

]
(x) = −

[
∂
∂ν
ũ
]
(x) = ∂

∂ν
u(x) , x ∈ Γ ∩ Ωε ,

(18)

where the brackets denote the jump across the interface Γ:

[ϕ] (x) = lim
s↓0

(ϕ(x + sν(x)) − ϕ(x− sν(x))) . (19)

The variational form of this problem is: find θε ∈ H1(Ωε) satisfying the
boundary conditions from (18) on Γε such that

∫

Ωε

∇θε∇ϕdx = −
∫

Γ∩Ωε

[
∂
∂ν
θε

]
ϕds = −

∫

Γ∩Ωε

∂
∂ν
uϕ ds , ∀ϕ ∈ H1

0 (Ωε) .

(20)
Then we can state
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Theorem 3.1 Let uε, u, ũ, θε be as defined above. Then we have

‖∇(uε − ũ− θε)‖L2(Ωε) . ε
3
2‖f‖L∞(Ωε\Ω) (21)

and
‖uε − ũ− θε‖L2(Ωε) . ε2‖f‖L∞(Ωε\Ω) . (22)

Proof: For all ϕ ∈ H1
0 (Ωε), we have

∫

Ωε

∇(uε − ũ− θε)∇ϕdx =

∫

Ωε\Ω

fϕ dx . (23)

Because of Hölder- and Poincaré inequality, we have
∫

Ωε\Ω

fϕ dx ≤ ‖f‖L∞(Ωε\Ω)‖ϕ‖L1(Ωε\Ω) . ε
1
2‖f‖L∞(Ωε\Ω)‖ϕ‖L2(Ωε\Ω)

. ε
3
2‖f‖L∞(Ωε\Ω)‖∇ϕ‖L2(Ωε\Ω) (24)

Setting ϕ = uε − ũ− θε ∈ H1
0 (Ωε) yields (21).

For proving (22), we set

Ω′ = {x ∈ Ω : d(x,Γ) > Mε} . (25)

We then note that v = uε − ũ− θε satisfies

‖v‖L2(Ωε\Ω′) . ε‖∇v‖L2(Ωε\Ω′) . ε
5
2 (26)

due to Poincaré’s inequality. Furthermore, a standard trace estimate yields

‖v‖L2(∂Ω′) . ε
1
2 ‖∇v‖L2(Ωε\Ω′) . ε2 .

Now we can apply Theorem 3.2 (in the special case ∆v = 0) to obtain

‖v‖L2(Ω′) . ‖v‖L2(∂Ω′) . ε2 . (27)

(22) now follows by combining (26) and (27). �

Theorem 3.2 Let Ω′ be as defined in (25). Let v ∈ C2(Ω′) ∩ C0(Ω̄′) satisfy
supp(∆v) ⊂ TΓ ∩ Ω′ together with

‖v‖L2(∂Ω′) . ε2 (28)

and

|∆v(x)| . e−λ
d(x,∂Ω′)

ε , x ∈ Ω′ . (29)

Then
‖v‖L2(Ω′) . ε2 . (30)
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Proof: In the case ∆v ≡ 0, (30) is a special case of the very weak estimates
for the Laplace equation, see e.g. [12], Chap. 5, (1.21). For proving (30)
under the assumption (29), let w ∈ H1

0 (Ω′) be the solution of the problem

−∆w(x) = v(x) , x ∈ Ω′ ,

w(x) = 0 , x ∈ ∂Ω′ .
(31)

First, we note that by H2-regularity of the problem (31), we have ‖w‖H2(Ω′) .

‖v‖L2(Ω′). Multiplying now (31) by v and integrating over Ω′ we obtain

∫

Ω′

v2 dx = −
∫

Ω′

v∆w dx =

∫

Ω′

∇w∇v dx−
∫

∂Ω′

∂w

∂ν
v ds .

Here, the second term on the right-hand side can be estimated as

|
∫

∂Ω′

∂w

∂ν
v ds| . (‖∇w‖L2(Ω′) + ‖∇2w‖L2(Ω′))‖v‖L2(∂Ω′)

. ‖v‖L2(Ω′)‖v‖L2(∂Ω′) .

Thus, together with (28) this term can be estimated as desired. For estimat-
ing the first term

∫
Ω′
∇w∇v dx, we set, for t < 0,

S(t) = T (Γ × {t}) = {x ∈ Ω′ : d(x,Γ) = −t}

and obtain by partial integration and Fubini’s theorem

|
∫

Ω′

∇w∇v dx| = |
∫

Ω′

w∆v dx| ≤
∫ −Mε

−δ

‖w∆v‖L1(S(t)) dt .

∫ −Mε

−δ

‖w‖L2(S(t))e
λ t

ε dt

The function

w◦T ∈ H2(Γ×(−δ,−Mε)) ⊂ H2((−δ,−Mε), L2(Γ)) ⊂ C1((−δ,−Mε), L2(Γ))

satisfies (w ◦ T )(·,−Mε) ≡ 0, so that we obtain the estimate

‖(w ◦ T )(·, t)‖L2(Γ) . ‖w ◦ T ‖H2(Γ×(−δ,−Mε))|t+Mε|

and using a standard transformation formula also

‖w‖L2(S(t)) . ‖w‖H2(Ω′)|t+Mε| .
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Therefore, we get
∫ −Mε

−δ

‖w‖L2(S(t))e
λ t

ε dt . ‖w‖H2(Ω′)

∫ −Mε

−δ

|t+Mε|eλ t
ε dt . ε2‖v‖L2(Ω′) .

Thus, (30) is proved. �

The following theorem then gives an estimate for the size of θε which in
turn yields an estimate for the difference uε − ũ.

Theorem 3.3 Let uε, u, ũ, θε be as defined above. Then

‖∇θε‖L2(Ωε) . ε
1
2

(
‖u‖W 1,∞(Ω) + ‖f‖L∞(Ω)

)
(32)

which implies also

‖∇(uε − ũ)‖L2(Ωε) . ε
1
2

(
‖u‖W 1,∞(Ω) + ‖f‖L∞(Ω)

)
. (33)

Proof: Let ψ : R
n → [0, 1] be a smooth cut-off function satisfying ψ(x) = 1

for d(x,Γ) ≤Mε, ψ(x) = 0 on Ωε \ S where

S = {x ∈ Ω : d(x,Γ) < 2Mε} , (34)

and ‖∇ψ‖∞ . ε−1, ‖∆ψ‖∞ . ε−2. Suitable application of Poincaré’s in-
equality on S yields for all ϕ ∈ H1

0 (Ωε)
∫

Ωε

∇(θε + ψũ)∇ϕdx

= −
∫

Ωε\Γ

∆(ψũ)ϕdx

= −
∫

Ωε\Γ

(∆ψ)ũϕ dx− 2

∫

Ωε\Γ

∇ψ∇ũϕ dx−
∫

Ωε\Γ

ψfϕ dx

. ε
1
2

(
‖∇ũ‖L∞(Ω) + ‖f‖L∞(Ω)

)
‖∇ϕ‖L2(Ωε) .

Setting ϕ = θε + ψũ we obtain ‖∇(θε + ψũ)‖L2(Ωε) . ε
1
2 , and because of

‖∇(ψũ)‖L2(Ωε) . ε
1
2‖∇ũ‖L∞(Ω)

the assertion follows by applying the triangle inequality. �

Remark 3.4 1. θε is the solution of a problem posed on Ωε, and is there-
fore as difficult to compute as the solution uε itself. The following
sections construct an approximation which is easier to calculate.

2. In general, the estimate (32) is optimal. This is also a side-result of
the more explicit approximation constructed below.
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4 The boundary layer

Boundary correctors for domains with smooth curved boundaries in the case
of elliptic problems with rapidly oscillating coefficients have been defined
in [11] by using boundary layers parametrized by the boundary parameters.
Using similar ideas we define boundary layers βi in the coordinate charts of
the atlas A as follows.

Let ϕi : Ui → Vi ⊂ Γ be a chart in the atlas A of Γ and let Ei = Ui ×R
n.

We set

Ai(x
′) =

(
((Dϕi(x

′))t(Dϕi(x
′)))−1 0

0 1

)
, x′ ∈ Ui (35)

which is the n×n-matrix corresponding to the Laplace operator in the chart
Ti of the tubular neighborhood.

The following definition unifies the settings of [7], [10] and [3], see Re-
mark 4.4 below.

Definition 4.1 The boundary layers βi : Ei → R are defined such that
βi(x

′,y) = βi(x
′, (y′,yn)) solves on each fiber Ex′ = {x′} × R

n the equation

− divy

(
Ai(x

′)∇yβi(x
′,y)

)
= 0 , 0 6= yn < γi(x

′,y′) ,

βi(x
′,y) is 1-periodic in y1, . . . ,yn−1.[

∂βi

∂yn

(x′,y)

]
= 1 , 0 = yn < γi(x

′,y′) ,

βi(x
′,y) = 0 , yn ≥ max(γi(x

′,y′), 0) ,

βi(x
′,y) = −yn , γi(x

′,y′) ≤ yn ≤ 0 ,

|∇yβi(x
′,y)| → 0 , yn → −∞ .

(36)

Remark 4.2 We note that problem (36) is member of a family of prob-
lems parametrized by the position s ∈ R where the interface condition holds,
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Figure 2: Boundary layer cell.

namely

− divy

(
Ai(x

′)∇yβ
(s)
i (x′,y)

)
= 0 , s 6= yn < γi(x

′,y′) ,

β
(s)
i (x′,y) is 1-periodic in y1, . . . ,yn−1.[

∂β
(s)
i

∂yn
(x′,y)

]
= 1 , s = yn < γi(x

′,y′) ,

β
(s)
i (x′,y) = 0 , yn ≥ max(γi(x

′,y′), s) ,

β
(s)
i (x′,y) = s− yn , s ≤ yn ≤ γi(x

′,y′) ,

|∇yβ
(s)
i (x′,y)| → 0 , yn → −∞ .

(37)

For arbitrary s1 < s2 ∈ R, the unique solvability of (37) shows that the

corresponding solutions β
(s1)
i , β

(s2)
i are related as

(β
(s2)
i − β

(s1)
i )(x′,y) =





s2 − s1 yn ≤ s1

s2 − yn s1 ≤ yn ≤ s2

0 yn ≥ s2

. (38)

Theorem 4.3 We have

1. βi ∈ C0(Ei) ∩ C∞({(x′,y) ∈ Ei : 0 6= yn < γi(x
′,y′)}).
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2. There is some λi = λi(γi, Ai) > 0 and a function cbli ∈ C∞(Ui,R) such
that

|βi(x
′, (y′,yn)) − cbli (x′)| . eλiyn , (x′, (y′,yn)) ∈ Ei . (39)

3. For every (x′,y) ∈ Ei and ~k ∈ N
n−1, ~l ∈ N

n with |~l| ≥ 1 we have

|D~k
x′D

~l
y
βi(x

′, (y′,yn))| . eλiyn , 0 6= yn < γi(x
′,y′) . (40)

Defining β̄i : E → R as

β̄i(x
′, (y′,yn)) := βi(x

′, (y′,yn)) − cbli (x′) (41)

we have for all ~k ∈ N
n−1, ~l ∈ N

n that

|D~k
x′D

~l
y
β̄i(x

′, (y′,yn))| . eλiyn , 0 6= yn < γi(x
′,y′) . (42)

The constants in (40) and (42) depend only on ~k, ~l, γi, and Ai.

Proof: Because of Remark 4.2, it is sufficient to consider the case where
γi(x

′,y) is strictly positive, say γi(x
′,y) > 1 everywhere. For Z ′ = (−1

2
, 1

2
)n−1

let Z = Z ′ × (−∞, 1). We define an additional transformation

Φi : Ui × Z → Ei ,

(x′, (ŷ′, ŷn)) 7→
{

(x′, (ŷ′, ŷn)) ŷn ≤ 0

(x′, (ŷ′, γi(x
′, ŷ′)ŷn)) ŷn > 0

,

and consider the transformed function

β̂i : Ui × Z → R , (x′, (ŷ′, ŷn)) 7→ βi ◦ Φi(x
′, (ŷ′, ŷn)) . (43)

Because Φi is smooth, application of the chain rule transfers decay estimates
for β̂i, β̂i − cbl , and their derivatives immediately into the corresponding
estimates (40) and (42) for βi, β̄i and their derivatives.

Now, β̂i(x
′, ·) is the solution of the following problem: given the function

space

V = {v ∈ H1
loc(Z) : v(ŷ′, ŷn) is 1-periodic in ŷ1, . . . , ŷn−1,

v(ŷ′, 1) = 0,

∫

Z

|∇v(ŷ)|2 d̂y <∞}
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find β̂i(x
′, ·) ∈ V , such that

∫

Z

(∇ŷϕ)ta(x′, ŷ)∇ŷβ̂i(x
′, ŷ) d̂y = −

∫

Z′×{0}

ϕ(ŷ)dŷ , ϕ ∈ V , (44)

where
a(x′, ŷ) = (∇ŷΦi)

−tAi(x
′)(∇ŷΦi)

−1 det(∇ŷΦi) . (45)

First, we prove exponential decay of ∇ŷβ̂i for ŷn → −∞. For an arbitrary
α > 0, we set

W 1
α = {v ∈ V : e−αŷn∇v ∈ L2(Z)} , ‖v‖W 1

α
= ‖e−αŷn∇v‖L2(Z)

and

W 0
α = {v ∈ W 1

α : e−αŷnv ∈ L2(Z)} , ‖v‖2
W 0

α
= ‖v‖2

W 1
α

+ ‖e−αŷnv‖L2(Z) .

Then we observe that the right-hand side F (ϕ) = −
∫

Z′×{0}
ϕ(ŷ) d̂y of (44)

satisfies for all α > 0 and ϕ ∈ W 0
α the estimate

F (e2αŷnϕ) = F (ϕ) . ‖ϕ‖W 0
α
. (46)

This is precisely condition (10.37) of [8], such that Theorem 10.1 of [8] (which
is based on a Lemma by Tartar) is applicable. This yields the existence of a
λi ∈ (0, α] depending only on the ellipticity of the coefficient matrix a, such

that (44) has a unique solution β̂i ∈ W 1
λi

. Standard results about regularity

of solutions of elliptic differential equations then yield for every ~l ∈ N , |~l| ≥ 1
the estimate

|D~l
ŷ
β̂i(x

′, ŷ)| . eλiŷn , 0 6= ŷn < 1 , (47)

which also implies the existence of some constant cbli (x′) with

|β̂i(x
′, ŷ) − cbli (x′)| . eλiŷn , 0 6= ŷn < 1 . (48)

The negative sign of cbli (x′) follows from the maximum principle because the
right-hand side F is negative in a generalized sense.

From (48) we obtain immediately (39), (40) and (42) for ~k = 0.
Differentiating (44) with respect to x′ then yields the following equation

for the derivative ζi(x
′, ŷ) := ∇x′β̂i(x

′, ŷ):
∫

Z

(∇ŷϕ)ta(x′, ŷ)∇ŷζi d̂y = L(ϕ)
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with

L(ϕ) =

∫

Z

(∇ŷϕ)tDx′a(x′, ŷ)∇ŷβ̂i(x
′, ŷ)∇ŷϕ(ŷ) d̂y

. ‖β̂i(x
′, ·)‖W 1

λi

‖ϕ‖W 1
λi

, ϕ ∈ W 1
λi
.

We easily see that L(·) again satisfies condition (46) such that the application

of Theorem 10.1 from [8] yields the estimate ‖ζi‖W 1
λi

. ‖β̂i(x
′, ·)‖W 1

λi

. Again,

standard results yield pointwise estimates for D
~l
ŷ
ζi for yn 6= 0 such that (40)

follows for |~k| = 1. Furthermore, one easily sees (e.g. by Fourier expansion
in the region yn ≤ 0), that cbli (x′) can be computed by

cbli (x′) = F (β̂i) =

∫

Z′

β̂i(x
′, (y′, 0))dy′ .

Since F is linear and continuous in W 1
λi

, we obtain the differentiability of cbli
and the estimate (42) for |~k| = 1.

Finally, repeated differentiation proves (40) and (42) for arbitrary ~k ∈
N

n−1. �

Remark 4.4 For the numerical solution of (37), one will choose s ∈ R

usually such that for all x′ ∈ Ui and y′ ∈ R
n−1 either γi(x

′,y′) ≥ s or
γi(x

′,y′) ≤ s. If this is the case already for s = 0, this corresponds to the
settings Ω ⊂ Ωε (see [7],[10]) or Ωε ⊂ Ω (see [3]). A further possibility to
compute βi is to solve for the function

χi(x
′, (y′,yn)) = min{yn, 0} + βi(x

′, (y′,yn)) (49)

instead which is a solution to the problem

− divy

(
Ai(x

′)∇yχi(x
′,y)

)
= 0 , 0 6= yn < γi(x

′,y′) ,

χi(x
′,y) is 1-periodic in y1, . . . ,yn−1.

χi(x
′,y) = 0 , yn ≤ γi(x

′,y′) ,

|∇y(χi(x
′,y) − yn)| → 0 , yn → −∞ .

(50)

Now, χi can be approximated well by functions χL
i , L > M , defined on the

strip
{(y′,yn) ∈ E ′

x
: γi(x

′,y′) > yn > −L} (51)
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which are solutions to

− divy

(
Ai(x

′)∇yχ
L
i (x′,y)

)
= 0 , 0 6= yn < γi(x

′,y′) ,

χL
i (x′,y) is 1-periodic in y1, . . . ,yn−1.

χL
i (x′,y) = 0 , yn ≤ γi(x

′,y′) ,

∂χL
i

∂yn

(x′,y) = 1 , yn = −L .

(52)

This is very similar to the cell problem suggested in [2] and [9]. However, it

is important that L has to be chosen larger than |log ε|
λ

, because otherwise χi

is approximated by χL
i only up to an ε-independent error of size e−λL.

5 Local boundary corrector

With the help of the solutions βi : Ui × R
n → R of the previous section and

the map Ti from (11) we now construct a boundary corrector which is defined
on

Γε
δ,i := Ti(Ui × (−δ, δ)) ∩ Ωε . (53)

This corrector can be split in a smooth part and a rapidly oscillating part

with exponential decay. The smooth part c̃bli : Γε
δ,i → R is defined as

c̃bli : x = Ti(x
′,xn) 7→ cbli (x′) (54)

where cbli is the function defined in (39). The oscillating part β̃ε
i : Γε

δ,i → R

is defined as
β̃ε

i : x = Ti(x
′,xn) 7→ β̄ε

i (x
′,xn) (55)

where β̄ε
i is defined using β̄i from (41) as

β̄ε
i : Ui × R → R , (x′,xn) 7→ β̄i(x

′,
x′

ε
,
xn

ε
) . (56)

The estimates for β̄i from Theorem 4.3 yield the following estimates for
β̃ε

i .

Theorem 5.1 For an arbitrary choice

λ ∈ (0, min
i=1,...,N

λi) , (57)
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we have the estimates

|D~k
xβ̃

ε
i (x)| . ε−|~k|e−λ d(x,Γ)

ε , x ∈ Γε
δ,i \ Γ , ~k ∈ N

n (58)

and

|∆β̃ε
i (x)| .

1

ε
e−λ d(x,Γ)

ε , x ∈ Γε
δ,i \ Γ . (59)

Furthermore, we have

[
∂β̃ε

i

∂ν
(x)

]
=

1

ε
, x ∈ Γε

δ,i ∩ Γ (60)

and

β̃ε
i (x) =

{
−c̃bli (x) x ∈ Γε

δ,i ∩ (∂Ωε \ Ω)
d(x,Γ)

ε
− c̃bli (x) x ∈ Γε

δ,i ∩ (∂Ωε ∩ Ω)
. (61)

Proof: Using (42) and the chain rule of differentiation immediately yields

|D~k
x
β̄ε

i (x
′,xn)| . ε−|~k|eλi

xn
ε , (x′,xn) ∈ Ui × R (62)

and therefore also (58). Also (60) follows because
∂β̃ε

i

∂ν
(x) for x ∈ Γ is equal

to 1
ε

∂β̄i

∂yn
(x′, x

′

ε
, 0) in (36). It remains to show (59). We have

∆xβ̃
ε
i =

n∑

j=1

∂2

∂xj∂xj

(
β̄ε

i ◦ T −1
i

)

=
n∑

j,k=1

∂

∂xj

(( ∂

∂xk
β̄ε

i

)
◦ T −1

i

∂(T −1
i )k

∂xj

)

=

n∑

j,k,l=1

( ∂2

∂xl∂xk
β̄ε

i

)
◦ T −1

i

∂(T −1
i )k

∂xj

∂(T −1
i )l

∂xj

+

n∑

k=1

( ∂

∂xk
β̄ε

i

)
◦ T −1

i ∆x(T −1
i )k .

Because of (62), the second summand can be estimated as desired. With
respect to the first summand, we note that the smoothness of Ti and the
equation

∇Ti(x
′, 0) =

(
Dϕi(x

′), ν(ϕi(x
′))

)
(63)
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imply that

(∇T −1
i (x))(∇T −1

i (x))t =
(
(∇Ti(x))t(∇Ti(x))

)−1

=
(
(∇Ti(x

′, 0))t(∇Ti(x
′, 0))

)−1
+ S(x′,xn)

= Ai(x
′) + S(x′,xn)

where ‖S(x′,xn)‖∞ . xn and

Ai(x
′) =

(
Dϕt

i(x
′)Dϕi(x

′) 0
0t 1

)−1

(64)

is the matrix introduced in (35).
Therefore, we have to estimate

n∑

k,l=1

∂2β̄ε
i

∂xl∂xk
(x)(Ai(x

′))kl +

n∑

k,l=1

∂2β̄ε
i

∂xl∂xk
(x)(S(x′,xn))kl . (65)

Using again (62), the second summand can be estimated as

n∑

k,l=1

∂2β̄ε
i

∂xl∂xk
(x)(S(x′,xn))kl .

1

ε2
|xn|eλi

xn
ε .

1

ε
eλxn

ε (66)

for λ from (57).
Denoting by ξ resp. ζ the first and second variable of β̄i : Ui × R

n → R,
the first summand can be written as

n∑

k,l=1

(Ai(x
′))kl

∂2β̄ε
i

∂xl∂xk
(x) =

n∑

k,l=1

(Ai(x
′))kl

∂2

∂xl∂xk
(β̄i(x

′, (
x′

ε
,
xn

ε
)))

=
1

ε2

n∑

k,l=1

(Ai(x
′))kl

∂2β̄i

∂ζk∂ζl

(
x′, (

x′

ε
,
xn

ε
)
)

+
2

ε

n−1∑

k=1

n∑

l=1

(Ai(x
′))kl

∂2β̄i

∂ξk∂ζl

(
x′, (

x′

ε
,
xn

ε
)
)

+

n−1∑

k,l=1

(Ai(x
′))kl

∂2β̄i

∂ξk∂ξl

(
x′, (

x′

ε
,
xn

ε
)
)

Here, the first summand on the right-hand side vanishes because of (36) and
the remaining summands can be estimated using (42) by ε−1eλxn

ε resp. eλxn
ε .

This completes the proof. �
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6 Global boundary corrector

For i = 1, . . . , N , let ψi ∈ C∞(Γ, [0, 1]) with supp(ψi) ⊂ Vi be a partition of
unity subordinate to the covering {Vi}i=1,...,N of Γ = ∂Ω. With this partition
of unity we can define

cbl(x) =

N∑

i=1

ψi(x)c̃bli (x) , x ∈ Γ (67)

Notation 6.1 In the following we will use for a point x ∈ T Γ the repre-
sentation in the coordinates of the tubular neighborhood x = T (x′, xn), with
(x′, xn) ∈ Γ × (−δ, δ).

Then we can define a global boundary corrector β̃ε on the set

Γε
δ = T Γ ∩ Ωε (68)

by

β̃ε(x) =

N∑

i=1

ψi(x
′)β̃ε

i (x) , x ∈ Γε
δ . (69)

We see that cbl and β̃ε depend on the partition of unity ψi. Nevertheless,
the difference between cbli and cblj (as well as between β̃ε

i and β̃ε
j ) on the

overlap regions Vi ∩ Vj are small enough to ensure that the local estimates

proved for the β̃ε
i in Theorem 5.1 lead to analogous global estimates for β̃ε.

Theorem 6.2 With β̃ε from (69), cbl from (67), Γε
δ from (68), and λ from

(57) we have

|D~kβ̃ε(x)| . ε−|~k|e−λ
d(x,Γ)

ε , x ∈ Γε
δ \ Γ , ~k ∈ N

n (70)

as well as

|∆β̃ε(x)| .
1

ε
e−λ d(x,Γ)

ε , x ∈ Γε
δ \ Γ . (71)

Furthermore, we have
[
∂β̃ε

∂ν
(x)

]
=

1

ε
, x ∈ Γ ∩ Ωε , (72)

and

β̃ε(x) =

{
−cbl(x) x ∈ ∂Ωε \ Ω
d(x,Γ)

ε
− cbl(x) x ∈ ∂Ωε ∩ Ω

. (73)
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Proof: Let ψ̃i ∈ C∞(Γε
δ) be defined as ψ̃i(x) = ψi(x

′). Then the product
rule leads to

D
~k(

N∑

i=1

ψ̃i(x)β̃
ε
i (x)) =

N∑

i=1

ψ̃i(x)D
~kβ̃ε

i (x) + . . .+
N∑

i=1

β̃ε
i (x)D

~kψ̃i(x) (74)

Since ψi ∈ C∞(Γ) and because of (58), the first term leads to an estimate of

the form ε−|~k|eλ xn
ε whereas the following terms are of lower order in ε. Thus,

(70) is proved. (72) is obvious, and (71) follows by

N∑

i=1

∆(ψ̃i(x)β̃
ε
i (x))

=

N∑

i=1

ψ̃i(x)∆β̃
ε
i (x) +

N∑

i=1

2∇ψ̃i(x)∇β̃ε
i (x) +

N∑

i=1

β̃ε
i (x)∆ψ̃i(x)

. ε−1eλ xn
ε

using (58), (59) and the product rule. �

The error estimate in the following section will be based on the estimates
in the following two theorems.

Theorem 6.3 With β̃ε from (69) and Γε
δ from (68), we have for 1 ≤ p <∞:

‖β̃ε‖Lp(Γε
δ
) . ε

1
p . (75)

Proof: (75) follows from (70) because of

‖β̃ε‖p
Lp(Γε

δ
) .

∫ Mε

−δ

eλp xn
ε dxn . ε .

�

Theorem 6.4 Let β̃ε and Γε
δ be defined as in (69),(68), let ϕ ∈ H1

0 (Ωε) and
assume that χ ∈ W 1,∞(Γε

δ) satisfies χ(x) = 0 for x ∈ ∂Γε
δ \ ∂Ωε. Then, for

1 ≤ p <∞, we have
∫

Γε
δ

χ∇β̃ε∇ϕdx = −1

ε

∫

Γ∩Ωε

χϕdx′ +O(ε
1
2 ‖χ‖W 1,∞(Γε

δ
)‖∇ϕ‖L2(Γε

δ
)) . (76)
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Proof: By partial integration and use of (72) we obtain
∫

Γε
δ

χ∇β̃ε∇ϕdx = −
∫

Γε
δ

∇χ∇β̃εϕdx−
∫

Γε
δ
\Γ

χ∆β̃εϕdx− 1

ε

∫

Γ∩Ωε

χϕdx′

= (I) + (II) + (III) .

Here, we can estimate (I) as follows. With M being the constant from (6)
and denoting by ϕ̃ the trivial extension of ϕ to Γε

δ we have for −δ < xn ≤Mε
∫

Γ

|ϕ̃ ◦ T (x′, xn)|dx′ .
√
Mε− xn‖∇ϕ‖L2(Γε

δ
) , ϕ ∈ H1

0 (Ωε) , (77)

such that using (70) we obtain

(I) =

∫

Γε
δ

∇χ∇β̃εϕdx

. ‖χ‖W 1,∞(Γε
δ
)ε

−1

∫ Mε

−δ

eλ xn
ε

∫

Γ

|ϕ̃ ◦ T (x′, xn)| dx′ dxn

. ε−1‖χ‖W 1,∞(Γε
δ
)‖∇ϕ‖L2(Γε

δ
)

∫ Mε

−∞

eλ xn
ε

√
Mε− xn dxn

. ε−1‖χ‖W 1,∞(Γε
δ
)‖∇ϕ‖L2(Γε

δ
)

∫ 0

−∞

eλ xn
ε

√
−xn dxn

. ε
1
2‖χ‖W 1,∞(Γε

δ
)‖∇ϕ‖L2(Γε

δ
) .

(II) can be estimated using (71) in the same way, such that the theorem is
proven. �

7 Improved approximation

Using the boundary corrector β̃ε constructed in Section 6, we approximate
the corrector θε from Section 3 as follows. Let η : Ω → R be defined as

−∆η(x) = 0 , x ∈ Ω ,

η(x) = cbl(x) ∂
∂ν
u(x) , x ∈ Γ ,

(78)

where ∂
∂ν

is again the derivative in direction of the exterior normal field
ν : Γ → R

n. We extend η to Ωε by defining η̃ : Ωε → R as

η̃ : x 7→
{
η(x) x ∈ Ω

η(x′) x = T (x′, xn) ∈ Ωε \ Ω
. (79)
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For estimating the energy error we need another correction term η̃ε which

is constructed as follows. Let ∂̃
∂ν
u be the extension of ∂

∂ν
u|Γ to Ωε given by

∂̃
∂ν
u : Ωε → R , x 7→

{
ρ(xn) ∂

∂ν
u(x′) x = T (x′, xn) ∈ Γε

δ

0 x 6∈ Γε
δ

, (80)

where ρ ∈ C∞(R, [0, 1]) is a cut-off function satisfying

ρ(xn) ≡ 1 , xn ≥ −Mε ,

ρ(xn) ≡ 0 , xn ≤ −δ .

Then η̃ε : Ωε → R is defined using β̃ε from (55) as

η̃ε(x) =

{
∂̃
∂ν
u(x)β̃ε(x) x ∈ Γε

δ

0 x 6∈ Γε
δ

. (81)

Now, the following theorem is the main result of this article.

Theorem 7.1 Assume f ∈ L∞(Ωε) and u ∈ W 2,∞(Ω) for the solution u of
(17). With θε from (20), η̃ from (79) and η̃ε from (81) we have

‖∇(θε − ε(η̃ + η̃ε))‖L2(Ωε) . ε
3
2 . (82)

Furthermore, we have

‖θε − ε(η̃ + η̃ε)‖L2(Ωε) . ε2 . (83)

Because of Theorem 3.1, this implies

‖∇(uε − ũ− ε(η̃ + η̃ε))‖L2(Ωε) . ε
3
2 (84)

and
‖uε − ũ− ε(η̃ + η̃ε)‖L2(Ωε) . ε2 . (85)

Proof: First, we note that ‖η̃‖W 1,∞(Ωε) and ‖ ∂̃
∂ν
u‖W 1,∞(Γε

δ
) can be estimated

in terms of ‖u‖W 2,∞(Ω), such that these norms may appear in the constants of
the following estimates. Next, we note that θε−ε(η̃+ η̃ε) vanishes on ∂Ωε\Ω,
but in general not on ∂Ωε∩Ω. Therefore, we introduce an additional corrector
ζε : Ωε → R defined as the solution to

−∆ζε(x) = 0 , x ∈ Ωε ,

ζε(x) = ũ+ ε(η̃ + η̃ε)(x) , x ∈ Γε .
(86)
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Now, θε − ε(η̃ + η̃ε) + ζε ∈ H1
0 (Ωε) and the energy norm of ζε can be shown

to be of order ε
3
2 using Lemma 7.2 below. For showing (82), it is therefore

sufficient to show
∫

Ωε

∇(θε − ε(η̃ + η̃ε) + ζε)∇ϕdx =

∫

Ωε

∇(θε − ε(η̃ + η̃ε))∇ϕdx

. ε
3
2‖∇ϕ‖L2(Ωε) , ϕ ∈ H1

0 (Ωε) .

(87)

This is done as follows. First, a standard trace estimate yields

∣∣∣∣ε
∫

Ωε

∇η̃∇ϕdx
∣∣∣∣ ≤ |ε

∫

Γ∩Ωε

∂
∂ν
η(x′)ϕ(x′) dx′| + |ε

∫

Ωε\Ω

∇η̃∇ϕdx|

. ε3/2‖η̃‖W 1,∞(Γε
δ
)‖∇ϕ‖L2(Ωε) .

Next, we have

ε

∫

Ωε

∇η̃ε∇ϕdx = ε

∫

Γε
δ

∇( ∂̃
∂ν
uβ̃ε)∇ϕdx

= ε

∫

Γε
δ

(∇ ∂̃
∂ν
u)β̃ε∇ϕdx+ ε

∫

Γε
δ

∂̃
∂ν
u(∇β̃ε)∇ϕdx

= (I) + (II)

Here, (I) can be estimated using (75) by

|(I)| . ε‖ ∂̃
∂ν
u‖W 1,∞(Γε

δ
)‖β̃ε‖L2(Γε

δ
)‖∇ϕ‖L2(Γε

δ
)

. ε
3
2 ‖ ∂̃

∂ν
u‖W 1,∞(Γε

δ
)‖∇ϕ‖L2(Γε

δ
) ,

and (II) can be written using (76) as

(II) = −
∫

Γ∩Ωε

∂
∂ν
u(x′)ϕ(x′) dx′ +O(ε

3
2‖ ∂̃

∂ν
u‖W 1,∞(Γε

δ
)‖∇ϕ‖L2(Γε

δ
)) .

Now, the first term on the right-hand side cancels with
∫
Ωε ∇θε∇ϕdx due

to (20), such that (87) is proved.
We now want to prove (83) by following the proof of (22). Setting v = θε−

ε(η̃+η̃ε) and using Ω′ from (25), we obtain easily the estimates ‖v‖L2(Ωε\Ω′) .

ε
5
2 and ‖v‖L2(∂Ω′) . ε2. The application of Theorem 3.2 then yields (83). �



23

Lemma 7.2 The corrector ζε defined by (86) satisfies

‖ζε‖L∞(Ωε) . ε2‖u‖W 2,∞(Ω) (88)

‖∇ζε‖L2(Ωε) . ε
3
2‖u‖W 2,∞(Ω) (89)

Proof: Let S be the region from (34). Then setting again x = T (x′, xn) we
define

v(x) = ũ(x) + ε(η̃(x) − η̃(x′) − xn

ε
∂̃
∂ν
u(x′)) , (90)

which satisfies

‖∇v‖L∞(S) . ‖∇ũ− ν ∂̃
∂ν
u‖L∞(S) + ε‖∇η̃‖L∞(S) + ε‖∇ ∂̃

∂ν
u‖L∞(S)

. ε‖u‖W 2,∞(Ω) . (91)

v vanishes on ∂Ωε \ Ω and satisfies for x ∈ ∂Ωε ∩ Ω with x = T (x′, t)

|v(x)| = ε|η(x) − η(x′)| − |ũ(x) − xn
∂̃
∂ν
u(x′)|

. Mε2(‖∇η‖L∞(Ω) + ‖u‖W 2,∞(Ω)) . ε2‖u‖W 2,∞(Ω) .

Thus, we conclude that

‖v‖L∞(S) . ε2‖u‖W 2,∞(Ω) . (92)

Since ζε = v on ∂Ωε, an application of the maximum principle yields (88).
With ψ denoting the cut-off function from the proof of Theorem 3.3 we

have

‖∇(ψv)‖L2(Ωε) ≤ ‖(∇ψ)v‖L2(S) + ‖ψ∇v‖L2(S)

. ε−
1
2‖v‖L∞(S) + ε

1
2 ‖∇v‖L∞(S)

. ε
3
2 ‖u‖W 2,∞(Ω) ,

where we used (91) and (92) in the last step. Since ζε is harmonic, we have
‖∇ζε‖L2(Ωε) ≤ ‖∇(ψv)‖L2(Ωε), and (89) follows. �

8 Effective law

First, we note that a good approximation in Lp(Ωε) with 1 ≤ p ≤ 2 can
already be obtained using only the correction η. From (75), we see that
under the assumptions of Theorem 7.1, we have

‖εη̃ε‖Lp(Ωε) . ε
1+ 1

p , 1 ≤ p < +∞ . (93)

Because of Theorem 7.1 and Theorem 3.1 this implies
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Corollary 8.1 Under the assumptions of Theorem 7.1 we have for 1 ≤ p ≤ 2
the estimates

‖θε − εη̃‖Lp(Ωε) . ε
1+ 1

p (94)

and
‖uε − ũ− εη̃‖Lp(Ωε) . ε1+ 1

p . (95)

Alternatively, we can prove better L2-error estimates for subdomains Ω′ ⊂
Ω ∩ Ωε which are strictly contained in Ω. The decay estimates (70) on β̃ε

imply that

‖εη̃ε‖L∞(Ω′) . εe−λ d(Ω′,∂Ω)
ε (96)

and εe−λ
d(Ω′,∂Ω)

ε ≤ ε2 when d(Ω′, ∂Ω) ≥ ε
|log ε|

λ
. Thus, we obtain

Corollary 8.2 Let Ω′ ⊂ Ω with d(Ω′, ∂Ω) ≥ max{Mε, ε
|log ε|

λ
}. Under the

assumptions of Theorem 7.1 we have also the estimates

‖θε − εη̃‖L2(Ω′) . ε2 (97)

and
‖uε − ũ− εη̃‖L2(Ω′) . ε2 . (98)

In some cases, it is possible to compute an approximation to u + εη

directly by changing the boundary condition of the effective equation. In the
following, we show how this is done in the case cbl ≤ 0.1

We set

Γ0 := {x ∈ Γ : cbl(x) = 0} , Γ− := {x ∈ Γ : cbl(x) < 0} (99)

and consider the problem: find ueff : Ω → R such that

−∆ueff (x) = f(x) , x ∈ Ω ,

ueff (x) = 0 , x ∈ Γ0 ,

ueff (x) = εcbl(x) ∂
∂ν
ueff (x) , x ∈ Γ−

(100)

1Note that for cbl > 0, problem (100) can be ill-posed without further restictions on ε

and cbl .
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where ∂
∂ν

denotes again the derivative in direction of the exterior normal of
Γ. Existence and uniqueness of this problem in the Hilbert space

V =
{
ϕ ∈ H1(Ω) : ϕ = 0 on Γ0 ,∫

Ω

|∇ϕ(x)|2 dx +

∫

Γ−

−1

εcbl(x)
|ϕ(x)|2 ds < +∞

}
.

can then be established easily by the lemma of Lax-Milgram.

Theorem 8.3 We assume that we have the setting of Theorem 7.1 with cbl ≤
0, and that ueff ∈ C1(Ω) is the restriction of some function ũeff ∈ C1(Rn)

with ‖ũeff ‖W 1,∞(Rn) . ‖ueff ‖W 1,∞(Ω). Then

‖uε − ũeff ‖Lp(Ωε) . ε1+ 1
p (‖u‖W 2,∞(Ω) + ‖ueff ‖W 1,∞(Ω)) (101)

for all 1 ≤ p ≤ 2. For domains Ω′ ⊂ Ω∩Ωε with d(Ω′, ∂Ω) ≥ max{Mε, ε
|log ε|

λ
},

we have the interior estimate

‖uε − ueff ‖L2(Ω′) . ε2‖u‖W 2,∞(Ω) . (102)

Proof: The error e = ueff − u− εη satisfies

−∆e = 0 , x ∈ Ω ,

e(x) = εcbl ∂
∂ν
e(x) + ε2cbl(x) ∂

∂ν
η(x) , x ∈ Γ .

(103)

Because of the maximum principle, e must attain its absolute maximum at
the boundary Γ. Therefore, let x∗ ∈ Γ be such that |e(x∗)| = maxx∈Ω|e(x)|.
If x∗ ∈ Γ0, e(x∗) = 0 and we are done. In the case x∗ ∈ Γ−, due to the Hopf
maximum principle, the derivative ∂

∂ν
e(x∗) is either zero or has the same sign

as e(x∗). Because of cbl < 0, we obtain

|e(x∗)| . ε2cbl(x∗)| ∂
∂ν
η(x∗)| . ε2‖η‖W 1,∞(Ω) . ε2‖u‖W 2,∞(Ω) . (104)

Thus, we have ‖e‖L∞(Ω) . ε2, and (102) is immediate from (98). For

proving (101), we note that ẽ := ũeff − ũ − εη̃ satisfies ‖∇ẽ‖W 1,∞(Rn) .

‖ueff ‖W 1,∞(Ω)+‖u‖W 2,∞(Ω), from which we easily obtain that ‖ẽ‖Lp(Ωε) . ε
1+ 1

p ,
which together with (95) implies (101). �
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9 Unbounded domains

In some applications, see e.g. [1], Ωε and Ω are unbounded, although the
boundaries Γε and Γ are compact. In this section, we want to give a brief
discussion how the above results change in this situation.

In general, for problems on unbounded domains one has to pose conditions
at infinity to ensure uniqueness of the solution. In our case, this can be done
by requiring that the solutions uε of (15), u of (17), θε of (18), η of (78),
and ueff of (100) have bounded energy. The variational formulation of those
problems then uses the spaces

V ε =

{
ϕ ∈ H1

loc(Ω
ε) : ϕ = 0 on Γε , ‖ϕ‖2

V ε :=

∫

Ωε

|∇ϕ|2 dx < +∞
}

(105)

instead of H1
0 (Ωε) and

V =

{
ϕ ∈ H1

loc(Ω) : ϕ = 0 on Γ , ‖ϕ‖2
V :=

∫

Ω

|∇ϕ|2 dx < +∞
}

(106)

instead of H1
0(Ω). Additionally, one has to pose further restrictions on the

right-hand side f . For example, one can require that f ∈ L∞(Rn) has com-
pact support which ensures that f induces a continuous functional on both
V and V ε. Thus, the Lax-Milgram lemma can be applied, and the existence
of uε and u follows.

Then the energy norm estimates (21), (82), and (84) carry over verbatim.
Also Sections 4, 5, 6 remain completely unchanged because the boundary cor-
rection occurs only in a neighborhood of the compact manifold Γ. However,
the L2-estimates in (22), (83), (85), (102) or the Lp-estimate in (101) are not
true in this form, due to the fact that the error might stabilize to a constant
at infinity. It is possible however, to obtain L2 or Lp-estimates on bounded
subdomains Ωε

R = Ωε ∩BR ⊂ Ωε, where BR is a ball with radius R > 0 such
that the whole region Γε

δ defined in (68) is contained in BR. For example,
a simple approach is to apply Poincaré’s inequality for obtaining estimates
where the L2(Ωε

R)-norm is estimated as O(ε
3
2 ) with a constant depending on

R.

10 Discussion

In this article, we have constructed a good approximation to the solution uε

of problem (1) which is valid for both bounded and unbounded domains Ωε ⊂
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R
n with curved boundary ∂Ωε. In practice, it is probably most convenient

to calculate first the solution u from (17), and then the solution η of (78).
The computation of η is best done inside a so-called heterogeneous multiscale
method, see [6], where the coefficient in the boundary condition of (78) is
evaluated by computing a boundary layer problem. Using the solution ueff

of (100) instead of u and η is an alternative, if one can guarantee that cbl ≤ 0
along Γ (which is usually true if Ω ⊂ Ωε).

Now, let us point out some directions in which one can extend this work.
First, although the approximation of second order in ε is probably good

enough for most applications, it is possible to construct approximations of
even higher order, see [9]. Naturally, the resulting boundary layer problems
and error estimates will then incorporate also higher order curvatures of the
manifold Γ.

Second, applications may require non-smooth domains Ωε and Ω (e.g. do-
mains with edges/corners) and/or abrupt changes in the oscillation pattern.
Now, the case where those corners or edges occur only in regions where ∂Ωε

coincides with ∂Ω (no oscillations) can easily be treated using the techniques
from this article. However, if this is not the case, more elaborate techniques
are necessary: for example, u ∈ W 2,∞(Ω) would not be an appropriate as-
sumption for such situations, and also the approximation order in the error
estimates would get worse.

Finally, it is of uttermost importance to transfer these results to other
types of equations. An obvious and easy extension would be to allow for
a smoothly varying diffusion coefficient. More important, however, is the
treatment of flow problems where additional difficulties arise. We will address
this in future work.
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