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Abstract. In this paper we present an incremental formulation of the phase field model for
a fluid filled crack in a poroelastic medium. The mathematical model represents a linear elasticity
system with fading elastic moduli as the crack grows that is coupled with an elliptic variational
inequality for the phase field variable. The convex constraint of the variational inequality assures
the irreversibility and entropy compatibility of the crack formation. We establish existence of a
minimizer of an energy functional of an incremental problem and convergence of a finite dimensional
approximation. Computational results of benchmark problems are provided that demonstrate the
effectiveness of this approach in treating fracture propagation.
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1. Introduction. The coupling of flow and geomechanics in porous media is a
major research topic in energy and environmental modeling. Of specific interest is
induced hydraulic fracturing or hydrofracturing commonly known as fracking. This
technique is used to release petroleum and natural gas that includes shale gas, tight
gas, and coal seam gas for extraction. Here fracking creates fractures from a wellbore
drilled into reservoir rock formations. In 2012, more than one million fracturing jobs
were performed on oil and gas wells in the United States and this number continues
to grow. Clearly there are economic benefits of extracting vast amounts of formerly
inaccessible hydrocarbons. In addition, there are environmental benefits of producing
natural gas, much of which is produced in the United States from fracking. Opponents
to fracking point to environmental impacts such as contamination of ground water,
risks to air quality, migration of fracturing chemical and surface contamination from
spills to name a few. For these reason, hydraulic fracturing is being heavily scrutinized
resulting in the need for accurate and robust mathematical and computational models
for treating fluid field fractures surrounded by a poroelastic medium.

Even in the most basic formulation, hydraulic fracturing is complicated to model
since it involves the coupling of (i) mechanical deformation; (ii) the flow of fluids
within the fracture and in the reservoir; (iii) fracture propagation. Generally, rock
deformation is modeled using the theory of linear elasticity which can be represented
by an integral equation that determines a relationship between fracture width and
the fluid pressure. Fluid flow in the fracture is modeled using lubrication theory that
relates fluid flow velocity, fracture width and the gradient of pressure. Fluid flow in
the reservoir is modeled as a Darcy flow and the respective fluids are coupled through
a leakage term. The criterion for fracture propagation is usually given by the con-
ventional energy-release rate approach of linear elastic fracture mechanics (LEFM)
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theory; that is the fracture propagates if the stress intensity factor at the tip matches
the rock toughness. Detailed discussion of the development of hydraulic fracturing
models for use in petroleum engineering can be found in [1] and in mechanical engi-
neering and hydrology in [25], [8], [17] and in references therein.

Major difficulties in simulating hydraulic fracturing in a deformable porous medi-
um are treating crack propagation induced by high-pressure slick water injection and
later the coupling to a multiphase reservoir simulator for production. A computational
effective procedure in modeling coupled multiphase flow and geomechanics is to apply
an iterative coupling algorithm as described in [21] and [22]. In the following, we
briefly recapitulate this approach:

Iterative coupling is a sequential procedure where either the flow or the mechanics
is solved first followed by solving the other problem using the latest solution informa-
tion. At each time step the procedure is iterated until the solution converges within
an acceptable tolerance. There are four well-known iterative coupling procedures and
we are interested primarily in one referred to as the fixed stress split iterative method.

In order to fix ideas we address the simplest model of real applied importance,
namely, the quasi-static single phase Biot system. Let C denote any open set home-
omorphic to an ellipsoid in R3 (a crack set). Its boundary is a closed surface ∂C. In
most applications C is a curved 3D domain, with two dimensions significantly smaller
than the dominant one. Nevertheless, we consider C as a 3D domain and use its
particular geometry only when discussing the stress interface conditions. We notice
that in many references on fracture propagation, the crack C is considered as a lower
dimensional manifold and the lubrication theory is applied to describe the fluid flow
(see e.g. [1] and [15]). We recall that the 3D flow in C can be reconstructed from a
lower dimensional lubrication approximation (see [24]). The quasi-static Biot equa-
tions (see e.g. [28]) are an elliptic-parabolic system of PDEs, valid in the poroelastic
domain Ω = (0, L)3 \ C, where for every t ∈ (0, T ) we have

σpor − σ0 = Ge(u)− αpI; − div {σpor} = ρbg; (1.1)

∂t
( 1

M
p+ div (αu)

)
+ div {K

η
(ρfg −∇p)} = f, (1.2)

where σ0 is the reference state total stress. Here, the boundary of (0, L)3 is denoted
by ∂Ω = ∂DΩ ∪ ∂NΩ divided into Dirichlet and Neumann parts, respectively. We
assume that meas(∂DΩ) > 0. Boundary conditions on ∂Ω = ∂DΩ ∪ ∂NΩ for the
above situation involve displacements and traction as well as pressure and flux.

SYMBOL QUANTITY UNITY
u displacement m
p fluid pressure Pa
σpor total poroelasticity tensor Pa
e(u) = (∇u +∇τu)/2 linearized strain tensor dimensionless
K permeability Darcy
α Biot’s coefficient dimensionless
ρb bulk density kg/m3

η fluid viscosity kg/m sec
M Biot’s modulus Pa
G Gassman rank-4 tensor Pa

Table 1.1
Unknowns and effective coefficients

The important parameters and unknowns are given in the Table 1.1.
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The fixed stress split iterative method consists in imposing constant volumetric
mean total stress σv. This means that the σv = σv,0 + Kdr div uI − αpI is kept
constant at the half-time step. The iterative process reads as follows:(

1

M
+

α2

Kdr

)
∂tp

n+1 + div {K
η

(ρfg −∇pn+1)} =

− α

Kdr
∂tσ

n
v + f = f − α div ∂tu

n +
α2

Kdr
∂tp

n; (1.3)

− div {Ge(un+1)}+ α∇pn+1 = 0. (1.4)

Remark 1. We remark that the fixed stress approach is useful in employing
existing reservoir simulators in that (1.3) can be extended to treat the mass balance
equations arising in black oil or compositional flows and allows decoupling of multi-
phase flow and elasticity.

Remark 2. Interest in the system (1.3)-(1.4) is based on its robust numerical
convergence. Under mild hypothesis on the data, the convergence of the iterations
was studied in [21] and it was proven that the solution operator S, mapping {un, pn}
to {un+1, pn+1} is a contraction on appropriate functional spaces with contraction

constant γFS =
Mα2

Kdr +Mα2
< 1. The corresponding unique fixed point satisfies

equations (1.1)-(1.2).

Focus on crack propagation in the fixed-stress elasticity step
Because of the complexity of this coupled nonlinear fluid-mechanics system, we follow
the above splitting strategy and restrict our attention to a simplified model in which we
assume the pressure has been computed from the previous fixed-stress fluid iteration
step. Our focus in this paper is therefore on crack propagation in the framework of
the fixed-stress mechanics step (1.4) and we call this approach pressurized crack
surrounded by a poroelastic medium.

Remark 3. The extension to the full poroelastic system for crack propagation
and therefore employing a phase-field formulation of (1.3) is beyond the scope of this
paper. The latter method is called fluid-filled crack propagation in a poroelastic
medium and we refer the reader to [24].

In the following, we present an incremental formulation of the pressurized crack
surrounded by a poroelastic medium. The mathematical model involves the coupling
of a linear elasticity system with an elliptic variational inequality for the phase field
variable. With this approach, branching of fractures and heterogeneities in mechanical
properties can be effectively treated as demonstrated numerically in Section 5.

Our formulation follows Miehe et al. in [19] and is a thermodynamically con-
sistent framework for phase-field models of quasi-static crack propagation in elastic
solids, together with incremental variational principles. This work is based on the
variational approach to elastic fractures by Francfort and Marigo ([13] and [5]). Our
methodology represents an extension to cracks in a poroelastic medium containing a
viscous fluid. Recently, numerical phase field experiments of a pressurized quasi-static
brittle fracture were undertaken in [29] employing our phase-field model, as well as in
[7] using the method presented in [5].

Following Griffith’s criterion, we suppose that the crack propagation occurs when
the elastic energy restitution rate reaches its critical value Gc. If τ is the traction
force applied at the part of the boundary ∂NΩ, then we associate to the crack C the
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following total energy

E(u, C) =

∫
Ω

1

2
Ge(u) : e(u) dx−

∫
∂NΩ

τ · u dS −
∫

Ω

αpBdiv u dx+GcH2(C), (1.5)

where pB is the poroelastic medium pressure calculated in the previous iterative cou-
pling step and α ∈ (0, 1) is the Biot coefficient.

This energy functional is then minimized with respect to the kinematically ad-
missible displacements u and any crack set satisfying a crack growth condition. The
computational modeling of this minimization problem treats complex crack topologies
and requires approximation of the crack location and of its length. This is overcome
by regularizing the sharp crack surface topology in the solid by diffusive crack zones
described by a scalar auxiliary variable. This variable is a phase-field that interpolates
between the unbroken and the broken states of the material.

The model proposed in this paper is a basic one that can be analyzed both as a
minimization and as a variational PDE formulation. For simplicity the presentation
here is based on energy minimization whereas our treatment of the corresponding
variational formulation can be found in [23]. In the numerical analysis of fracture
propagation in solid mechanics, solving the minimization problem by considering the
variational formulation is treated in [9]. Here we have chosen our computational
framework to be based on the variational formulation since more additional realistic
physical interface effects (see Fig. 2.1 and [1]) and associated dissipative terms and
nonlinear physical models can be employed.

The outline of our paper is as follows: In Section 2, we introduce an incremental
formulation of a phase-field model for a pressurized crack. Here, the crack-pressure is
incorporated with an interface law. In Section 3, we present a mathematical analysis
of the incremental problem. In Section 4, a numerical formulation is briefly described.
Finally in Section 5 we provide numerical experiments for classical benchmark cases,
e.g. Sneddon’s pressurized crack with constant fluid pressure (see Subsection 5.2 and
[26]).

2. An incremental phase field formulation. We introduce the time-depen-
dent crack phase field ϕ, defined on (0, L)3 × (0, T ). The regularized crack functional
reads

Γε(ϕ) =

∫
(0,L)3

(
1

2ε
(1− ϕ)2 +

ε

2
|∇ϕ|2) dx =

∫
(0,L)3

γ(ϕ,∇ϕ) dx, (2.1)

where γ is the crack surface density per unit volume. This regularization of H2(C),
in the sense of the Γ−limit when ε→ 0, was used in [4].

Our further considerations are based on the fact that evolution of cracks is fully
dissipative in nature. First, the crack phase field ϕ is intuitively a regularization of
1− 1C and we impose its negative evolution

∂tϕ ≤ 0. (2.2)

Next we follow [19] and [7] and replace energy (1.5) by a global constitutive dissipation
functional for a rate independent fracture process. That is

Eε(u, ϕ) =

∫
(0,L)3

1

2

(
(1− k)ϕ2 + k

)
Ge(u) : e(u) dx−

∫
∂NΩ

τ · u dS−∫
(0,L)3

αϕ1+bpBdiv u dx+Gc

∫
(0,L)3

(
1

2ε
(1− ϕ)2 +

ε

2
|∇ϕ|2

)
dx, b ≥ 0. (2.3)
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where b is a fixed nonnegative constant and k is a positive regularization parame-
ter for elastic energy, with k � ε. We note that the pressure cross term reads∫

(0,L)3
αϕ1+bpBdiv udx instead of

∫
(0,L)3

αϕpBdiv udx. This is linked to the behavior

for negative values of the phase field. If ϕ ≤ 0, then there should be no contribution.

Therefore instead of

∫
(0,L)3

αϕpBdiv u dx, we should have

∫
(0,L)3

αϕ+pBdiv u dx.

However, this functional is not C1 and would lead to complications in numerical sim-
ulations. For 0 ≤ ϕ ≤ 1, using ϕ1+b

+ , b ≥ 0, instead of ϕ+ in the pressure cross
term should not affect the phase field approximation. If ϕ = 1C , we do not see any
difference. In summary, adding b > 0 is a way to avoid difficulties linked to the lack
of smoothness.

In the following, we consider a quasi-static formulation where velocity changes
are small. First, we derive an incremental form, i.e., we replace the time derivative in
inequality (2.2) with a discretized version; more precisely

∂tϕ→ ∂∆tϕ = (ϕ− ϕp)/(∆t),

where ∆t > 0 is the time step and ϕp is the phase field from the previous time step.
After time discretization, our quasistatic constrained minimization problem becomes
a stationary problem, called the incremental problem.

Second, the crack is pressurized and the energy Eε given by (2.3) is incomplete;
we next model the crack-pressure based on an interface law. A general description of
a crack embedded in a porous medium is illustrated in Figure 2.1. Here, we consider a
simplified situation in which the complex interface crack/pore structure is neglected.
We notice that such a complex structure would require the solution of a variational
problem since the formulation as energy minimization might not be well defined.
Furthermore, we assume that the crack is a 3D thin domain with width much less
than length, then lubrication theory can be applied. Hence, the leading order of the
stress in C is −pfI. At the crack boundary we have the continuity of the contact
force, which yields

σn = (Ge(u)− αpBI)n = −pfn, (2.4)

where pf denotes the fracture pressure and n the normal vector.

C

Ω

(0, L)3

Fig. 2.1. A crack C embedded in a porous medium. Here, the dimensions of the crack are
assumed to be much larger than the pore scale size (black dots) of the porous medium.

Before introducing the phase field, we eliminate the traction crack surface integrals
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and obtain∫
Ω

αpBdiv w dx+

∫
∂C
σnw dS =

∫
Ω

αpBdiv w dx−
∫
∂C
pfwn dS =∫

Ω

αpBdiv w dx−
∫

Ω

div (pBw) dx+

∫
∂NΩ

pBwn dS =

∫
Ω

(α− 1)pBdiv w dx−∫
Ω

∇pBw dx+

∫
∂NΩ

pBwn dS,

where wn denotes the normal component of the vector function w.
Remark 4. In the previous calculations, the first line reads∫

Ω

αpBdiv w dx+

∫
∂C
σnw dS =

∫
Ω

αpBdiv w dx−
∫
∂C
pfwn,poroelastic dS.

Setting now p = pf in the crack and p = pB in the poroelastic medium, then the above
calculations yield∫

Ω

αpBdiv w dx−
∫
∂C
pfwn,poroelastic dS =

∫
(0,L)3

αpdiv w dx+∫
C
∇pw dx−

∫
C

div (pw) dx−
∫
∂C
pfwn,poroelastic dS =∫

(0,L)3
αpdiv w dx+

∫
C
∇pw dx−

∫
∂C
p(wn,poroelastic − wn,crack) dS.

The last term coincides with the virtual work of the pressure force as introduced in
[10] and applied in [7]. In the above calculations, surface integrals are now treated
with Gauss’ divergence theorem:

−
∫
∂NΩ

τ ·w dS +

∫
∂C
pwn dS −

∫
Ω

αp div w dx = −
∫

Ω

(α− 1)p div w dx+∫
Ω

∇pw dx−
∫

Ω

div (T w) dx = −
∫

Ω

(α− 1)p div w dx+∫
Ω

(∇p− div T )w dx−
∫

Ω

T : e(w) dx, (2.5)

where T is a smooth symmetric 3×3 matrix with compact support in a neighborhood
of ∂(0, L)3, such that T n = τ+pn on ∂N (0, L)3. The tensor T is introduced in order
to handle the phase field only in volume terms. Supposing that the crack C does not
interact with ∂NΩ, it can be eliminated by using Green’s formula. Hence the solution
does not depend on the choice of T . We set

F = −(α− 1)pI − T , f = ∇p− div T . (2.6)

After the above transformations, we have the following variant of the energy func-
tional (2.3):

Ẽε(u, ϕ) =

∫
(0,L)3

1

2

(
(1− k)ϕ2 + k

)
Ge(u) : e(u) dx+

∫
(0,L)3

ϕ1+b(F : e(u)+

f · u) dx+Gc

∫
(0,L)3

(
1

2ε
(1− ϕ)2 +

ε

2
|∇ϕ|2

)
dx, b ≥ 0. (2.7)
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In the case of elastic cracks it can be shown that the phase field unknown satisfies
0 ≤ ϕ ≤ 1. In order to establish this property for the spatially continuous incremental
problem, we first modify (2.7) for negative values of ϕ. We now use ϕ+ instead of ϕ
in terms where negative ϕ could lead to incorrect physics in the bulk energy, traction
and pressure forces. With this modification, the final energy functional reads

Eε(u, ϕ) =

∫
(0,L)3

1

2

(
(1− k)ϕ2

+ + k
)
Ge(u) : e(u) dx+

∫
(0,L)3

ϕ1+b
+ (F : e(u)+

f · u) dx+Gc

∫
(0,L)3

(
1

2ε
(1− ϕ)2 +

ε

2
|∇ϕ|2

)
dx, b ≥ 0. (2.8)

As functional space of admissible displacements, we choose

VU = {z ∈ H1((0, L)3)3 | z = 0 on ∂DΩ }.

The entropy condition (2.2) is imposed in its discretized form and we introduce a
convex set K:

K = {ψ ∈ H1((0, L)3) | ψ ≤ ϕp ≤ 1 a.e. on (0, L)3}, (2.9)

where ϕp(x) is the value of the phase field from the previous time step. The incre-
mental minimization problem now reads

Definition 2.1. Find u ∈ VU and a nonnegative ϕ ∈ K such that

Eε(u, ϕ) = min
{v,ψ}∈VU×K

Eε(v, ψ). (2.10)

Note that the value of the phase field unknown ϕ from the previous time step enters
only the convex set K, as the obstacle ϕp. The goal of the next section is to establish
a solution to the minimization problem (2.10).

Remark 5. For b > 0, the corresponding Euler-Lagrange equations read

− div

((
(1− k)ϕ2

+ + k
)
Ge(u)

)
+ ϕ1+b

+ f − div (ϕ1+b
+ F) = 0 in (0, L)3, (2.11)

u = 0 on ∂D(0, L)3, (2.12)(
(1− k)ϕ2

+ + k
)
Ge(u)n = −ϕ1+b

+ Fn on ∂N (0, L)3, (2.13)

∂∆tϕ ≤ 0 on (0, L)3 and
∂ϕ

∂n
= 0 on ∂(0, L)3; (2.14)

−Gcε∆ϕ−
Gc
ε

(1− ϕ) + (1− k)Ge(u) : e(u)ϕ++

(1 + b)ϕb+(F : e(u) + f · u) ≤ 0 in (0, L)3, (2.15){
−Gcε∆ϕ−

Gc
ε

(1− ϕ) + (1− k)Ge(u) : e(u)ϕ++

(1 + b)ϕb+(F : e(u) + f · u)

}
∂∆tϕ = 0 in (0, L)3, (2.16)

where (2.16) is the strong form of Rice’ condition. This two-field formulation can
be compared with the Model I formulation given in [19] (see page 1289). The main
difference is that the system (2.11)-(2.16) is a variational inequality; and in [19] a
penalization term is used for solving the inequality.
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3. Well-posedness of the model.

3.1. Existence of a minimizer to the energy functional Eε. In this section,
we seek for a solution to the minimization problem (2.10). The strategy is to consider
the integrand of (2.8), using the notation z := (v, φ), and ξ stands for the components
of the gradient of the displacements and the gradient of the phase-field function. With
z4, we access the fourth component of z, namely the phase-field function. Lastly, z4+

denotes the positive part of the phase-field unknown. Then,

g(x, z, ξ) =
1

2

(
(1− k)(inf{z4+, 1})2 + k

) 3∑
i,j,k,r=1

Gijkrξkrξij +Gc(
1

2ε
(1− z4)2+

ε

2
|∇z4|2) + (inf{z4+, 1})1+b(

3∑
i,j=1

Fijξij +

3∑
i=1

fizi), (3.1)

defined on (0, L)3 × R4 × R12 → R ∪ {+∞}. It is convex in ξ and we will prove that
it is
(i) a Caratheodory function (i.e. a continuous function on R4×R12 for every x from

(0, L)3 and a measurable function on (0, L)3 for every {z, ξ} from R4 ×R12);
(ii) the energy functional (2.8) is coercive.
Then Corollary 3.24, page 97, from Dacorogna’s monograph [11] yields the lower
semi-continuity of the energy functional. Proving existence of at least one point of
minimum is then classical.

We start with a result which follows directly from the basic theory:
Lemma 3.1. Let f and F ∈ L2; and Gc, b be nonnegative constants. Let ε be

a positive small parameter. Then the integrand g given by (3.1) is a Caratheodory
function.

Proposition 3.2. Under the assumptions of Lemma 3.1, the functional

Φ(v, φ) =

∫
(0,L)3

g(x, {v, φ}, {e(v),∇φ}) dx (3.2)

is coercive over VU ×H1((0, L)3) ∩K, i.e.

lim Φ(v, φ)→∞, when ||v||VU
+ ||φ||H1 →∞. (3.3)

Proof. Let us introduce the abbreviation φ̃ = inf{φ+, 1}. Let c be a generic
constant. We estimate all terms one by one:

|
∫

(0,L)3
(φ̃)b+1(f · v + F : e(v) dx| ≤ ||v||L2 ||f ||L2 + ||φ̃e(v)||L2 ||F||L2 . (3.4)

The elastic energy terms yields∫
(0,L)3

(
(1− k)(φ̃)2 + k

)
Ge(v) : e(v) dx ≥ ck||e(v)||2L2 + c(1− k)||φ̃e(v)||2L2 . (3.5)

We recall that, by Korn’s inequality,

||v||H1((0,L)3) ≤ CK ||e(v)||L2((0,L)3), ∀v ∈ VU . (3.6)
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Therefore, putting together (3.4) and (3.5), and using (3.6), yields

Φ(v, φ) ≥ Gc
∫

(0,L)3

( (1− φ)2

2ε
+ε|∇φ|2

)
dx+

ck

4
||e(v)||2L2+

c(1− k)

4
||φ̃e(v)||2L2 −

||F||2L2

c(1− k)
−
C2
K ||f ||2L2

ck
. (3.7)

The coerciveness property (3.3) follows from (3.7).

Our goal is to prove the following theorem:

Theorem 3.3. (Existence of a minimizer to the incremental phase field problem)
Let ε, k > 0, b ≥ 0 and F , f ∈ L2, ϕp ∈ H1, 0 ≤ ϕp ≤ 1 a.e. on (0, L)3. Then the
minimization problem (2.10) has at least one solution {u, ϕ} ∈ VU × K and ϕ ≥ 0
a.e. on (0, L)3.

Proof. (of Theorem 3.3) Let {uk, ϕk}k∈N ∈ VU × K be a minimizing sequence
for the minimization problem (2.10) for Φ; that is a sequence of elements of VU ×K
such that Φ(uk, ϕk)→ infVU×K Φ(v, φ). By proposition (3.2) and the inequality (3.7)
infVU×K Φ(v, φ) 6= −∞. The sequence {uk, ϕk}k∈N is uniformly bounded in VU ×K
and {ϕk+}k∈N is uniformly bounded in L∞((0, L)3). Therefore there exists {u, ϕ} and
a subsequence, denoted by the same superscript, such that for k →∞

{uk, ϕk} → {u, ϕ} weakly in VU ×H1((0, L)3), strongly in Lq((0, L)3)4, q < 6,

and a.e. on (0, L)3. (3.8)

Next, the inequality (3.7) yields

g(x,v, ξ) ≥< a(x), ξ > +B, {v, ξ} ∈ R4 × R12 and a.e. x ∈ (0, L)3,

with a ∈ L2 and B ∈ R. Consequently, we are in situation to apply Corollary 3.24,
page 97, from [11]. It yields the weak lower semicontinuity of the functional Φ and
hence

Φ(u, ϕ) ≤ lim inf Φ(uk, ϕk) = inf
VU×K

Φ(v, φ). (3.9)

Hence {u, ϕ} ∈ VU ×H1((0, L)3) ∩K is a solution for the minimization problem.

It remains to prove that ϕ is nonnegative. We evaluate the functional Φ at the
point {u, ϕ+}. Obviously ϕ+ ∈ K. A direct calculation yields

Φ(u, ϕ+) = Φ(u, ϕ)− Gc
2ε

∫
(0,L)3

ϕ−(ϕ− − 2) dx− εGC
2

∫
(0,L)3

|∇ϕ−|2 dx. (3.10)

Therefore {u, ϕ} can be a point of minimum only if ϕ− = 0 and we conclude that
ϕ ≥ 0 a.e. on (0, L)3.
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Corollary 3.4. Let the hypotheses of Theorem 3.3 be satisfied and b > 0. Then
the Euler-Lagrange equations corresponding to the minimization problem (2.10)∫

(0,L)3

(1− k)ϕψGe(u) : e(u) dx+Gc

∫
(0,L)3

(
− 1

ε
(1− ϕ)ψ + ε∇ϕ · ∇ψ

)
dx

+(1 + b)

∫
(0,L)3

ϕb(f · u + F : e(u))ψ dx ≤ 0, ∀ψ ∈ H1((0, L)3), ψ ≥ 0 a.e. on (0, L)3,

(3.11)∫
(0,L)3

(1− k)ϕ(ϕp − ϕ)Ge(u) : e(u) dx+Gc

∫
(0,L)3

(
− 1

ε
(1− ϕ)(ϕp − ϕ)+

ε∇ϕ · ∇(ϕp − ϕ)
)
dx+ (1 + b)

∫
(0,L)3

ϕb(f · u + F : e(u))(ϕp − ϕ) dx = 0. (3.12)

∫
(0,L)3

(
(1− k)ϕ2 + k

)
Ge(u) : e(w) dx+

∫
(0,L)3

ϕb+1(F : e(w) + f ·w) dx = 0, ∀w ∈ VU .

(3.13)

admit a solution {u, ϕ} ∈ VU ×H1((0, L)3)∩K, such that ϕ ≥ 0 a.e. on (0, L)3. We
observe that equation (3.12) is the Rice condition (see e.g. [14]).

3.2. A finite dimensional approximation. Let {ψr}r∈N be a smooth basis
for H1((0, L)3) and {wr}r∈N be a smooth basis for VU . We start by defining a finite
dimensional approximation to the minimization problem (2.10).

Definition 3.5 (of a penalized approximation). Let us suppose the assump-
tions of Theorem 3.3 and a penalization parameter δ ∈ R and in particular, let δ :=
M ∈ N in this section. Let ϕ̃ = inf{1, ϕ+}. The pair {uM , ϕM}, uM =

∑M
r=1 arw

r

and ϕM =
∑M
r=1 brψr, is a finite dimensional approximative solution for problem

(2.10) if it is a minimizer to the problem

inf
VM
U ×WM

{Φ(v, φ) +

∫
(0,L)3

δ

2
(φ− ϕMp )2

+ dx}, (3.14)

where VMU = span {wr}r=1,...,M , WM = span {ψr}r=1,...,M and ϕMp is a projection

of ϕp on WM .
Remark 6. For b > 0, every solution for the problem (3.14) satisfies the discrete

variational formulation∫
(0,L)3

(
(1− k)(ϕ̃M )2 + k

)
Ge(uM ) : e(wr) dx+∫

(0,L)3
(ϕ̃M )b+1(F : e(wr) + f ·wr) dx = 0, ∀r = 1, . . . ,M, (3.15)

Gc

∫
(0,L)3

(
− 1

ε
(1− ϕM )ψr + ε∇ϕM · ∇ψr

)
dx+

∫
(0,L)3

δ(ϕM − ϕMp )+ψr dx+

(1 + b)

∫
(0,L)3

(ϕ̃M )b(F : e(uM ) + f · uM )ψr dx+∫
(0,L)3

(1− k)ϕ̃MψrGe(uM ) : e(uM ) dx = 0, ∀ r = 1, . . . ,M. (3.16)
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Proposition 3.6. We assume the hypotheses of Theorem 3.3 and b > 0. Then
there exists a penalized finite dimensional approximation for problem (3.14) that sat-
isfies the a priori estimate

Gc

∫
(0,L)3

(1− ϕM )2

ε
dx+

∫
(0,L)3

M(ϕM − ϕMp )2
+ dx+

k||e(uM )||2L2 + ||ϕ̃Me(uM )||2L2 ≤ c, (3.17)

where c is independent of M,k and ε.

Proof. This is a consequence of (3.7) in Proposition (3.2) and the continuity of
the integrand.

Theorem 3.7. Assume the hypotheses of Theorem 3.3 and let b > 0. Then there
exists a subsequence of {uM , ϕM} ∈ VMU ×WM , denoted by the same symbol, and
{u, ϕ} ∈ VU ×H1((0, L)3) ∩K, ϕ ≥ 0 a.e., being a minimizer to the problem (2.10)
and such that

{uM , ϕM} → {u, ϕ} in VU ×H1((0, L)3). (3.18)

Proof. (of Theorem 3.7) By Proposition 3.6 there is a solution {uM , ϕM} for
problem (3.14), satisfying a priori estimate (3.17). Therefore there exists {u, ϕ} and
a subsequence, denoted by the same superscript, such that

{uM , ϕM} → {u, ϕ} weakly in VU ×H1((0, L)3),

strongly in Lq((0, L)3)4, q < 6, and a.e. on (0, L)3, as M →∞. (3.19)

Obviously (ϕM − ϕMp )+ → 0, as M →∞, and ϕ ∈ K.

Next, let φ ∈ KN = {z ∈WN : z(x) ≤ ϕMp (x) a.e. on (0, L)3}, N ≤M . Then we
have

Φ(uM , ϕM ) +

∫
(0,L)3

M

2
(ϕM − ϕMp )2

+ dx ≤ Φ(v, φ), ∀{v, φ} ∈ V NU ×WN ∩K.

and the limit M →∞ yields

Φ(u, φ) ≤ Φ(v, φ), ∀{v, φ} ∈ V NU ×WN ∩K.

After passing to the limit N → ∞, we conclude that {u, ϕ} ∈ VU ×H1((0, L)3) ∩K
is a solution to problem (2.10). As before, it still can be shown that ϕ is nonnegative.

It remains to establish strong convergence of the gradients.

Passing to the limit in equation (3.15) is straightforward and we conclude that
{u, ϕ} satisfies equation (3.13). Next we choose w = uM as test function in (3.15)
and pass to the limit M →∞. Thus,∫

(0,L)3

(
(1− k)(ϕ+)2 + k

)
Ge(u) : e(u) dx+

∫
(0,L)3

(ϕ+)b+1(F : e(u) + f · u) dx = 0.

(3.20)
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Therefore we have the convergence of the weighted elastic energies

lim
M→∞

∫
(0,L)3

(
(1− k)(ϕ̃M )2 + k

)
Ge(uM ) : e(uM ) dx =∫

(0,L)3

(
(1− k)(ϕ+)2 + k

)
Ge(u) : e(u) dx. (3.21)

Using Fatou’s lemma we have∫
(0,L)3

lim inf
M→∞

(
(1− k)(ϕ̃M )2 + k

)
Ge(uM ) : e(uM ) dx

≤ lim inf
M→∞

∫
(0,L)3

(
(1− k)(ϕ̃M )2 + k

)
Ge(uM ) : e(uM ) dx

=

∫
(0,L)3

(
(1− k)(ϕ+)2 + k

)
Ge(u) : e(u) dx. (3.22)

Consequently

uM → u strongly in VU , as M →∞. (3.23)

For every ψ ∈ L∞((0, L)3) ∩H1((0, L)3), (3.23) implies

lim
M→∞

|
∫

(0,L)3
ϕ̃MψGe(uM − u) : e(uM − u) dx| → 0, as M →∞,

and ∫
(0,L)3

ϕ̃MψGe(uM ) : e(uM ) dx =

∫
(0,L)3

ϕ̃MψGe(uM − u) : e(uM − u) dx+

2

∫
(0,L)3

ϕ̃MψGe(uM ) : e(u) dx−
∫

(0,L)3
ϕ̃MψGe(u) : e(u) dx→∫

(0,L)3
ϕ+ψGe(u) : e(u) dx, as M →∞. (3.24)

Next we use Minty’s lemma and write equation (3.16) in the equivalent form∫
(0,L)3

(1− k) inf{ϕM+ , 1}(ψ − ϕM )Ge(uM ) : e(uM ) dx+Gc

∫
(0,L)3

( (ψ − 1)

ε
(ψ − ϕM )

+ε∇ψ · ∇(ψ − ϕM )
)
dx+ (1 + b)

∫
(0,L)3

(inf{ϕM+ , 1})b (f · uM + F : e(uM ))(ψ − ϕM )dx

+

∫
(0,L)3

M(ψ − ϕMp )+(ψ − ϕM ) dx ≥ 0, ∀ ψ ∈WM . (3.25)

After taking ψ = ϕMp , we use the convergence (3.24) pass to the limit M →∞ (see e.
g. [18]), and obtain

lim
M→∞

Gc

∫
(0,L)3

ε|∇ϕM |2 dx = −
∫

(0,L)3
(1− k)ϕ(ϕ− ϕp)Ge(u) : e(u) dx+∫

(0,L)3

(Gc
ε

(1− ϕp)(ϕ− ϕp)−
Gc
ε

(ϕ− ϕp)2 + ε∇ϕ · ∇ϕp
)
dx−

(1 + b)

∫
(0,L)3

ϕb (f · u + F : e(u))(ϕ− ϕp) dx = Gc

∫
(0,L)3

ε|∇ϕ|2 dx. (3.26)
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4. Numerical approximation. We now formulate finite element approxima-
tions to (3.11) - (3.13), which are analogous to equations (3.15)–(3.16). For spatial
discretization, we apply a standard Galerkin finite element method on quadrilater-
als. Specifically, we approximate displacements by continuous bilinears and refer to
the finite element space as Vh. Also, we take ϕ to be bilinears in order to assure
continuity, and denote this space as Wh. Here h represents the standard approxi-
mation parameter. In this section, we present the discretization of our phase-field
formulation; ∫

(0,L)3

(
(1− k)(ϕ̃h)2 + k

)
Ge(uh) : e(w) dx+∫

(0,L)3
(ϕ̃h)b+1(F : e(w) + f ·w) dx = 0 ∀w ∈ Vh, (4.1)

Gc

∫
(0,L)3

(
− 1

ε
(1− ϕh)ψ + ε∇ϕh · ∇ψ

)
dx+

∫
(0,L)3

δ(∂∆tϕ
h)+ψ dx+

(1 + b)

∫
(0,L)3

(ϕ̃h)b(F : e(uh) + f · uh)ψ dx+∫
(0,L)3

(1− k)ϕ̃hψGe(uh) : e(uh) dx = 0 ∀ ψ ∈Wh, (4.2)

with b > 0. In our numerical examples presented in this paper, we note that T ≡ 0
because the applied forces are either Dirichlet displacement conditions or specified
pressure pB . Then, the terms in (2.6) for F and f reduce to F = −(α − 1)pI and
f = ∇p.

The incremental formulation (4.1)-(4.2) corresponds to the (pseudo-) time step-
ping scheme based on a difference quotient approximation with backward differences
for the time derivatives. In the quasi-static model the time derivative δ[∂tϕ]+ is
present and is discretized as follows

δ[∂tϕ]+ → δ[∂∆tϕ]+ = δ
[ϕ− ϕn−1]+

∆t
,

with the time step size ∆t, where n − 1 is used to indicate the preceding time step.
We then obtain for the weak form:

δ(ϕ+ − ϕn−1
+ , ψ)L2 + ∆t(B,ψ)L2 = 0, ∀ψ ∈Wh. (4.3)

Here, (·, ·) denotes the discrete scalar product in L2 and A and B denote the operators
of all remaining terms for the present time step in the weak formulation, where the
equation (4.3) is related to equations (4.1) and (4.2). Finally, the spatially discretized
semi-linear form can be written in the following way:

Finite Element Formulation 1. Find Uh := {uh, ϕh} ∈ Vh ×Wh such that:

A(Uh)(Ψ) = δ([ϕh − ϕh,n−1]+, ψ)L2 + ∆tAS(Uh)(Ψ) = 0,

with

AS(Uh)(Ψ) =
(

((1− k)(inf{ϕh+, 1})2 + k)Ge(uh), e(w)
)
L2
− 〈τ,w〉∂NΩ

− ((inf{ϕh+, 1})1+b(α− 1)pB ,∇ ·w)L2 + (∇pB(inf{ϕh+, 1})1+b,w)L2+(
(1− k)Ge(uh) : e(uh)(inf{ϕh+, 1}), ψ

)
L2
− Gc

ε
(1− ϕh, ψ)L2 +Gcε(∇ϕh,∇ψ)L2

− (1 + b)
(

(inf{ϕh+, 1})b
(
(α− 1)pB∇ · uh −∇pB · uh

)
, ψ
)
L2

= 0,
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for all Ψ = {w, ψ} ∈ Vh×Wh, where AS(·)(·) is the sum of equations (4.1) and (4.2)
and equality (2.5) is applied in the relation between τ and T . Later in the simulations
we choose b = 1 since for 0 < b < 1 could lead to numerical difficulties in computing
the second derivative, i.e, the Jacobian.

4.1. Linearization and Newton’s method. The nonlinear problem is solved
with Newton’s method. For the iteration steps m = 0, 1, 2, . . ., it holds:

A′(Uh,m)(∆Uh,Ψ) = −A(Uh,m)(Ψ), Uh,m+1 = Uh,m + λ∆Uh,

with ∆Uh = {∆uh,∆ϕh}, and a line search parameter λ ∈ (0, 1]. Here, we need the
(approximated) Jacobian of Finite Element Formulation 1 (defined without using the
subscript h):

A′(U)(∆U,Ψ) =
(
ϕ+∆u,w

)
L2

+ δ(∆[ϕ− ϕn−1]+, ψ)L2 + ∆tA′S(U)(∆U,Ψ),

with

A′S(U)(∆U,Ψ) =
(

2(1− k) inf{ϕ+, 1}H(1− ϕ)∆ϕGe(u) + ((1− k)(inf{ϕ+, 1})2

+k)Ge(∆u), e(w)
)
L2
− ((1 + b)(inf{ϕ+, 1})bH(1− ϕ)∆ϕ(α− 1)pB ,∇ ·w)L2

+((1 + b)(inf{ϕ+, 1})bH(1− ϕ)∆ϕ∇pB ,w)L2 +
(

2(1− k)Ge(u) : e(∆u) inf{ϕ+, 1}

+(1− k)Ge(u) : e(u)H(1− ϕ)∆ϕ,ψ
)
L2

+
Gc
ε

(∆ϕ,ψ)L2 +Gcε(∇∆ϕ,∇ψ)L2−

(α− 1)(1 + b)(pB(b(inf{ϕ+, 1})b−1H(1− ϕ)∆ϕ∇ · u + (inf{ϕ+, 1})b∇ ·∆u), ψ)L2

+(1 + b)
(
∇pB · (b(inf{ϕ+, 1})b−1H(1− ϕ)∆ϕu + (inf{ϕ+, 1})b∆u), ψ

)
L2

= 0,

for all Ψ = {w, ψ} ∈ Vh ×Wh. H(·) is Heaviside’s function.
Remark 7. Due to the nonconvexity of the energy functional Eε, the Jacobian

matrix is indefinite. Therefore, in the numerical computations, we replace ϕh in the
elasticity equation by a time-lagged ϕh, which has been demonstrated computationally
to provide a robust and stable numerical scheme.

5. Numerical Tests. We perform four different tests. In the first example,
we neglect the pressure and reproduce benchmark results for crack growth in a pure
(brittle) elastic regime with homogeneous material [20] and nonhomogeneous material.
The second test assumes a constant pressure pB = 10−3 that is injected into the
domain (Sneddon’s 2d benchmark [27]). In the final example, we study two interacting
propagating fracture subject to nonconstant pressure. The programming code is a
modification of the multiphysics program template [30], based on the finite element
software deal.II (see [2]).

5.1. Single edge notched tension test. In this first example, we compute the
single edge notched tension test without using a pressure, i.e., pB = 0. We use this test
for code verification for benchmark tests in pure elasticity. The geometric and material
properties are the same as used in [20]. The configuration is displayed in Figure 5.1.
We use µ = 80.77kN/mm2, λ = 121.15kN/mm2, and Gc = 2.7N/mm. The crack
growth is driven by a non-homogeneous Dirichlet condition for the displacement field
on Γtop, the top boundary of Ω . We increase the displacement on Γtop at each time
step, namely

uy = ∆t× ū, ū = 1 mm.
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5mm

5mm

5mm5mm

Fig. 5.1. Example 1: Single edge notched tension test: configuration (left) and mesh. In detail,
the boundary conditions are: uy = 0 (homogeneous Dirichlet) and traction free in x-direction on the
bottom. On the top boundary Γtop, we prescribe ux = 0 and uy as provided in the text. All other
boundaries including the slit are traction free (homogeneous Neumann conditions).

Furthermore, we set k = 10−10 and ε according to the theory of Γ-convergence;
namely, h = o(ε) with ε = ch0.25 with c = 0.125. Computations are shown for three
mesh levels 4 + 1, 4 + 2, 4 + 3 (4 times global mesh refinement plus 1, 2, 3 times local
mesh refinement, respectively, in the region where we expect the crack to grow) in
order to show the robustness and numerical stability of our approach. Here, h = 0.022
on 4 + 1, h = 0.011 on 4 + 2, and h = 0.0056 on 4 + 3. The time step size is chosen
10−4 until time step 58 and is then switched to 10−6 (as suggested by Miehe et al.
[20]). The penalization parameter is δ = 0. We evaluate the surface load vector on
the Γtop as τ = (Fx, Fy),

where we are particularly interested in Fy as illustrated in Figure 5.2, we identify
the same behavior for the load-displacement curve as observed in [20].
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Fig. 5.2. Example 1: Single edge notched tension test: load-displacement curves for different
mesh levels (left) and evaluation of bulk and crack energies (right). The load-displacement curves
are very close to Miehe et al. [20] and Borden’s et al. [3] findings and in addition show the
same evolution on different mesh levels, which indicates numerical robustness and stability of our
approach. The energy evolutions confirm the theory that bulk energy is transformed into crack energy
when the material is broken.
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In addition, we compute the bulk and crack energy respectively,

EB =

∫
Ω

([1 + κ]ϕ2
+ + κ)ψ(e), (5.1)

with the strain energy functional ψ(e) := µtr(e(u)2) + 1
2λtr(e(u))2, e := e(u) :=

1
2 (∇u+∇uT ). The crack energy is computed as

EC =
Gc
2

∫
Ω

( (ϕ− 1)2

ε
+ ε|∇ϕ|2

)
dx, with |∇ϕ|2 := ∇ϕ : ∇ϕ.

Fig. 5.3. Example 1: Single edge notched tension test: crack pattern in red for three different
displacement steps.

In Figure 5.3, we identify the crack pattern for three different displacement steps.
We extend the previous configuration in order to demonstrate the performance

of our approach. The distributed Lamé coefficients are used to simulate a heteroge-
neous material. Here, the regularization parameter ε is linked to the heterogeneities.
In other words, as briefly described by [19], ε can be interpreted as a length-scale
parameter that is linked to material properties. Nonhomogeneous material leads to
non-planar and curvilinear crack-growths, branching and joining of cracks without
any modifications in the program. The Lamé parameters are randomly distributed.
The previous configuration is modified with respect to the geometry and the µ-λ-fields
as displayed in Figure 5.4. Here, µ varies between 8.1× 104 − 5.8× 105 and λ varies
between 1.2 × 105 − 6.2 × 105. All the other parameters remain the same as in the
previous test. The load-displacement curve is observed in Figure 5.4. Finally, the
crack path in this setting is shown in Figure 5.5.

5.2. Constant pressure in a crack (Sneddons’s 2d benchmark). The sec-
ond example is motivated by [7, 29] and is based on Sneddon’s theoretical calculations
[27, 26]. Specifically, we consider a 2D problem where a (constant) pressure pB is used
to drive the deformation and crack propagation. We assume a dimensionless form of
the equations.

The configuration is displayed in Figure 5.6. We prescribe the initial crack implic-
itly (see e.g. Borden et al. [3]). Therefore, we deal with the following geometric data:
Ω = (0, 4)2 and a (prescribed) initial crack on the y = 4.0-line ΩC = (1.8, 2.2) ⊂ Ω
with length 2l0 = 0.4. As boundary conditions we set the displacements zero on ∂Ω.
We perform two time steps since the test is stationary (a computational analysis has
been performed in [29]).

Applying the theory of Γ-convergence based on a related finite element analysis
in [6], we choose h � k � ε, i.e., k = 0.25

√
h and ε = 0.5

√
h. Furthermore, it
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Fig. 5.4. Example 1 with heterogeneous material: Geometry and µ-distribution at left. At right,
the load-displacement curve is shown, which shows similar qualitative behavior as in the previous
example without heterogeneities.

Fig. 5.5. Example 1 with heterogeneous material: Crack path in red for three different time
steps. As before the green color indicates the transition zone with 0 < ϕ < 1.

is well-known that δ must depend on h, i.e., here, we choose δ = 100 × h−2. The
Biot coefficient and critical energy release rate are chosen as α = 0 and Gc = 1.0,
respectively. The mechanical parameters are Young’s modulus and Poisson’s ratio are
set to be E = 1.0 and νs = 0.2. The injected pressure is pB = 10−3.

The goal is to measure the crack opening displacement (COD) and the vol-
ume of the crack under spatial mesh refinement. To do so, we observe u along
ΩC . Specifically, the width is determined as the jump of the normal displacements
w = COD = [u · n]. This expression can be written in integral form as follows:

w = COD =

∫ ∞
∞

u · ∇ϕdy,

where ϕ is as before our phase-field function. We note that the integration is perpen-
dicular to the crack direction. Here, the crack is aligned with the x-axis and therefore
integration is along the y-direction. Second, following [12], p. 710, the volume of the
fracture is V = πwl0. The analytical expression for the width (to which we compare)

[12] is w = 4
(1−ν2

s )l0p
E . Then, the analytical expression for the volume becomes

V = 2π
(1− ν2

s )l20p

E
. (5.2)

In contrast to [7], we use the numerical approximation of the phase-field function
instead of a synthetic choice of the crack indicator function.
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Fig. 5.6. Example 2: Configuration (left) and crack pattern (right).

The crack pattern and the corresponding mesh are displayed in Figure 5.6. Our
findings for different spatial mesh parameters h are summarized in Figure 5.7. Specif-
ically, we observe overall convergence to Sneddon’s analytical solution [27] as well as
much better approximation of the crack tips under mesh refinement. The obtained
crack volumes are displayed in Table 5.1 in which the exact value is computed by
Formula (5.2).

Table 5.1
Example 2: Fracture volume.

h 8.8× 10−2 4.4× 10−2 2.2× 10−2 1.1× 10−2 exact

V 3.02× 10−4 2.77× 10−4 2.57× 10−4 2.49× 10−4 2.41× 10−4
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Fig. 5.7. Example 2: COD for different h. Sneddon’s turquoise line with squares corresponds
to his analytical solution. It is well observed that the crack tips must be resolved correctly as they
are not well approximated on coarse meshes.

5.3. Two-crack interaction subject to non-constant pressure. In this fi-
nal example, we extend the previous setting to study the interaction of two different
fractures that are subject to a linearly increasing pressure pB . In the first part, a
homogeneous material is considered and in the second part a heterogenous material
field. The pressure function is given by pB(t) = 0.1 + t · 0.1, where t denotes the total
time, and Young’s modulus is set to be E = 1 in the first part and it varies between
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1.1 and 11.0 in the second part. Poisson ratio is 0.2. The penalization parameter
is chosen as δ = 10h−2. The remaining parameters are chosen as in the previous
examples. Our results in the Figures 5.8 and 5.9 show two propagating, interacting
fractures. Specifically, they curve away due to stress-shadowing effects. The extension
to nonconstant pressure evolution using Darcy’s law and application of the fixed-stress
splitting is studied in [31] and [24].

Fig. 5.8. Example 3: crack evolution in red in a homogeneous material at times T = 0, 15, 30.

Fig. 5.9. Example 3: crack evolution in red in a heterogeneous material at times T = 30, 40, 50.
The light blue regions denote smooth material E ≈ 1 and dark blue stands for E ≈ 11.0.

6. Conclusion. In this paper, we formulated a phase-field model for pressurized
and propagating cracks in a poroelastic medium. The phase-field algorithm is based
on an incremental formulation and existence of a minimizer is established. Numerical
benchmarks are demonstrating the correctness of the theory. Specifically, this ap-
proach can treat crack growth in heterogeneous porous media and pressurized crack
evolutions. Ongoing computations involve coupling this framework to a multiphase
reservoir simulator for modeling hydraulic fracturing as well as treating intersecting
fractures.
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[9] S. Burke, C. Ortner, E. Süli, An Adaptive Finite Element Approximation of a Variational
Model of Brittle Fracture, SIAM J. Num. Anal. , Vol. 48 (2010), p. 980-1012.

[10] R. Calhoun, M. Lowengrub, A two dimensional asymmetrical crack problem, J. Elasticity, Vol.
4 (1974), p. 37-50.

[11] B. Dacorogna, Direct Methods in the Calculus of Variations, Second Edition, Springer Verlag,
New York, 2008.

[12] R.H. Dean, J.H. Schmidt, Hydraulic-Fracture Predictions with a fully coupled geomechanical
reservoir simulator, SPE Journal, (2009), p. 707-714.

[13] G.A. Francfort, J.-J. Marigo, Revisiting brittle fracture as an energy minimization problem. J.
Mech. Phys. Solids. 46 (8) (1998) : 1319–1342.
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[24] A. Mikelić, M. F. Wheeler, T. Wick : A phase-field method for propagating fluid-filled frac-
tures coupled to a surrounding porous medium, 2014, ICES Report 14-08, submitted for
publication.

[25] S. Secchi and B. A. Schrefler, A method for 3-D hydraulic fracturing simulation, Int J Fract ,
Vol. 178 (2012), p. 245–258.

[26] I. N. Sneddon, The distribution of stress in the neighbourhood of a crack in an elastic solid,
Proc. R Soc London A, Vol. 187 (1946), p. 229-60.

[27] I. N. Sneddon, M. Lowengrub, Crack problems in the classical theory of elasticity. The SIAM
series in Applied Mathematics. John Wiley and Sons (1969).

[28] I. Tolstoy, ed., Acoustics, elasticity, and thermodynamics of porous media. Twenty-one papers
by M.A. Biot, Acoustical Society of America, New York, 1992.

[29] M.F. Wheeler, T. Wick, W. Wollner, An augmented-Lagrangian method for the phase-field
approach for pressurized fractures, Comput. Methods Appl. Mech. Engrg. 271 (2014) :
69–85.

[30] T. Wick, Solving monolithic fluid-structure interaction problems in arbitrary Lagrangian Eule-
rian coordinates with the deal.ii library, 2013. Archive for Numerical Software, Vol. 1, pp.
1-19, www.archnumsoft.org/

[31] T. Wick, G. Singh, M.F. Wheeler Pressurized-fracture propagation using a phase-field approach
coupled to a reservoir simulator, SPE HFTC meeting in the Woodlands, SPE 168597-MS.

20


