HOMOGENIZATION-LIMIT OF A MODEL SYSTEM FOR
INTERACTION OF FLOW, CHEMICAL REACTIONS AND
MECHANICS IN CELL TISSUES

WILLI JAGER*, ANDRO MIKELICT, AND MARIA NEUSS-RADU%

Abstract. In this article we obtain rigorously the homogenization limit for a fluid-structure-
reactive flow system. It consists of cell tissue and intercellular liquid, transporting solutes. The
cell tissue is supposed linearly elastic and deforming with a viscous non-stationary flow. The elastic
moduli of the tissue change with cumulative concentration value. In the limit, when the scale
parameter goes to zero, we obtain the quasi-static Biot system, coupled with the upscaled reactive
flow. Effective Biot’s coefficients depend on the reactant concentration. Additionally to the weak
two-scale convergence results, we prove convergence of the elastic and viscous energies. This then
implies a strong two-scale convergence result for the fluid-structure variables. Next we establish the
regularity of the solutions for the upscaled equations. In our knowledge, it is the only known study
of the regularity of solutions to the quasi-static Biot system. The regularity is used to prove the
uniqueness for the upscaled model.
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generalized quasi-static Biot system.
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1. Introduction. Information on biophysical and biochemical processes on all
scales has enormously increased due to a revolution in experimental concepts and
technologies. Consequently, quantitative methods, based on mathematical modeling
and simulations are becoming more and more important in analyzing experimental
data and designing theories based on mathematical concepts. One of the numerous
challenges is modeling processes in tissues, including the molecular information on
micro-scale. In this paper, the following processes in cell tissues are included:

1. fluid flow in the extracellular space, diffusion, transport and reactions of
substances in the fluid,
2. exchange of substances at the cell membranes,
diffusion of substances and chemical reactions inside the cells,
4. changes of the mechanical properties of the cells due to the influence of chem-
ical substances, small deformations of the structure.
The corresponding microscopic system was formulated and analyzed by the authors
in [10], where the existence and uniqueness of solutions was proven. Also in [10],
the characteristic microscopic scale ¢ of this system was identified, depending on the
application in cell biology and the available real data.

In this paper, the scale limit ¢ — 0 is performed. For simplicity, the structure of
the tissue is assumed to be periodic, that means generated by translations of a properly
scaled geometric unit cell containing a biological cell connected with its adjacent
neighbor cells. Here, fluid flow is restricted to the intercellular region Q% (fluid region)
and interacting with the cell region Q¢ (solid region). A chemical substance is diffusing
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in the full domain £ and is transported by the fluid flow in Q%. In the interior of the
cells, the substance is reacting with an other substance, which on its part interacts
with the mechanical structure of the cell. It is assumed that the elasticity parameters
depend on this substance via a Volterra-functional of its concentration.

Using rigorous multiscale techniques, the homogenization limit is performed, and
a macroscopic (effective) model system is derived preserving relevant information
on the processes on the microscopic level. A set of estimates of the solutions to the
microscopic system and their dependence on the scale parameter ¢ is derived, allowing
to apply the method of two-scale convergence.

In the limit the quasi-static diphasic Biot system for the fluid-structure part is
obtained. Effective phase displacements, velocities and Biot’s pressure are kept, but
the acceleration terms are not present in the effective model. Its particular property
is the dependence on the concentration of transported reactant. At the other hand,
the homogenized reactive flow equations contain the transport velocity coming from
Biot’s diphasic system. The full homogenized system is presented in Section 3.2. This
system seems to be new in the literature, and we prove the corresponding regularity
and uniqueness results. We note that, in general, quasi-static elasticity problems do
not have unique solution (see e.g. result by Klarbring in [11]). Besides weak two-
scale convergence results, we prove convergence of the energies, which then allow us
to derive strong two-scale convergence results for the fluid-structure variables, see
Theorem 3.1, and Corollary 3.2.

These investigations were motivated by questions asked by physiologists interested
in perfusion an transport through tissue under varying mechanical and chemical con-
ditions. The effective permeability of the porous media is changed under the influence
of the mechanical changes in the solid phase. Note that for a flow through an elastic
pore the permeability depends on the pressure (see e.g. argument in [9]). Experimen-
tal studies were performed by [15] for thin layers of endothelial cells. These cell layers
were exposed either to chemicals or to shear stress caused by flow. The transmis-
sion through the membrane was measured and our results give a mathematical model
which could be used to explain the observations.

The interaction of fluid with solid structures has been studied in the literature in
several papers and passing to the homogenization limit the macroscopic law known
as Biot-law could be derived, see [6], [7], [8], [16]. The system, which is analyzed
here represents a larger class of problems coupling fluid flow, solid structure and
chemical reaction for slow flow velocity. Its study requires new ideas and methods
which are developed in this paper. The authors are not aware of mathematical results
for systems of this type.

This paper is organized as follows: In Section 2, the model system is formulated.
The assumptions on the data and the main results of the paper are formulated in
Section 3. Estimates of the solutions with explicit dependence on the scale parameter
¢ are formulated and derived in Section 4.3. In Section 5, the convergence is analyzed
and in Section 6 the limit equations are derived. We prove convergence for the energies
of the fluid-structure variables in Section 7. This result then implies strong two-scale
convergence for the homogenized displacement and velocity. Next, we establish higher
regularity for the variational solutions of the homogenized equations. The regularity
is used in Section 9 to prove uniqueness of the solutions of the effective model.

2. Setting of the model. Let € > 0 be a sequence of strictly positive numbers
tending to zero, with the property that % € N. Let [0,T] denote a time interval, with
T > 0. We consider the domain = (0,1)? consisting of two subdomains: the tissue
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part formed by the elastic cells and the fluid part representing the intercellular space,
see Fig 2.1. The tissue part is denoted by €25, the fluid part by 0%, and the fluid-solid
interface by I'® = 89‘3‘} N 09%. The boundary of the domain € consists of three parts

90 =T, UTyUTs,
where I'y = {z1 = 0} x[0,1]%, Ty = {z; = 1} x[0,1]> and '3 = Uj—0 3({z; = 0}U{z; =

1}) x (0,1)%. The outer unit normal to 99 is denoted by v. On the interface I'*, we
denote by v the outer unit normal to the solid part 5. The microscopic structure of

X1

Fic. 2.1. The domain Q with the components Q5 and Q5.

QF and Q5 is periodic, and is obtained by the repetition of the standard cell Y = (0,1)3
scaled with the small parameter ¢, see also Fig. 2.1. We denote by Yy and Y the fluid
respectively the solid part of Y. The outer unit normal to dY; is also denoted by v.
Furthermore, let Fy, and F be the fluid respectively the solid part of the face F; of
the unit cell Y, i.e.

Fleﬁ{ylzl}, FfZYfﬁ{ylzl}, and Fs:ﬁﬂ{ylzl} (21)

We assume that
1. Y = Ys U Yf.
2. Yy and Y, are open, connected sets of strictly positive measure in Y, with
Lipschitz boundary.
3. The sets

E, = U Yk = U (k+Y,) and E;:= U Yfk: U (k+7Yy)
kezZ3 kez3 kez3 kezZ3

are open, connected, and have Lipschitz boundary.
Then, we define

Q;=QNeE,, and QF=QNeky. (2.2)
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Throughout the paper we denote by e; the j-th unit vector in R3.

Let us now formulate the equations which model the processes at the microscopic
level. We suppose small deformations of the cell structure. It means that in the solid
part ¢ the equations of linear elasticity hold. The interaction of the chemical sub-
stance with the mechanical properties of the cells is modeled by considering elasticity
coefficients A which depend on the concentration ¢j of chemical substance. Thus we
have

8%u®

ps s = Ve(o(u) = 0 in Q5 x (0,7), (2.3)

where u® is the microscopic displacement, D(u®) is the strain tensor, and o(u®) is the
stress tensor given by

o(u’) = A(F(c1))D(u’). (2.4)

If the cells are considered as homogeneous and isotropic bodies, the elasticity coeffi-
cients A are given with the help of Lamé’s coefficients A and p and the stress tensor
has the following form

o(u) = A(F(c1))V - (u°]) + 2u(F(c1)) D (u®). (2.5)

The dependence of the elasticity coeflicients on the concentration ¢ is nonlinear and
nonlocal; the coeflicients change as a function of cumulated quantity of chemical
substance. To describe this dependence, we introduce the operator F acting on the
concentration, and given by

F:L*(Q5 x [0,T)) — L*(QE x [0,T)) (2.6)

F(5)(x, t) = (Kx F(c5))(x,t) = /0 Kt —7)F(ci(z,7)) dr, (2.7)

where F' € C?(R) is Lipschitz, and the kernel K has the following properties

K € C®0,T], K(0)=K'(0)=K"(0)=0. (2.8)

In the intercellular space Q%, we consider the linearized Navier-Stokes system
for a viscous and incompressible fluid. The interface between the tissue and liquid
is also linearized. This simplified equations for the flow are obtained in [10] by a
dimensional analysis based on a set of characteristic values for the physical parameters.
In its dimensionless form, the fluid-structure interaction is described by means of the
microscopic displacement function u®, and the fluid pressure p®. It has the following
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form (for a detailed description we refer to [10]).

82 5 8“5 1 €
9 .
V- ( " ) =0 in Q5 x (0,7) (2.10)
vt 1 ey - (e
2 E_QV - (AD(u%)) in Q% x (0,7) (2.11)
uxo; =uxo: onI* x (0,T) (2.12)
1 . ou® 1 R R
(—?p I+2D ( 5 )) ‘v = E—QAD(u )-v onT® x (0,T) (2.13)
1 ou®
<__2p5]+2D< u )) e = (2.14)
on (T1NQ5)x(0,7T)
Lg P1,82783) on (PQQQE) ( ,T)
1 0 on (U NQE) x (0,7)
_2( D)o = s s o oo s 219
8 XQ +uxa: =0 onT'3 x (0,T) (2.16)
ws(z,0) = 0, %it(:c, 0)=0inQ (2.17)

We remark that the size of the elastic modulii and of the characteristic fluid pressure
is of order O(1/e?), whereas the viscosity forces are of order O(1). See [10] for more
details.

Next, we have the equations describing the distribution of the chemical substances
involved in our model. There is one chemical with concentration ¢§ diffusing only
inside cells and interacting with the elastic cell structure, and a second chemical,
which is present in the cells and in the intercellular space, and influencing diffusion
and reactive change of the first chemical substance. We remark that the concentration
c5 of the second chemical substance is discontinuous at the interface I'*. In order to
work with the usual Sobolev spaces we redefine ¢5 on the solid part, such that the
concentration is continuous at the interface. However, this transformation then leads
to discontinuities in the coefficients of the equation for ¢§. For details concerning this
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transformation, see again [10].

(>
ocg

5 V- (di(c3)Vei) = g1(cf,¢5) in Q5 x (0,T) (2.18)
dy(c5)Vei-v=00on 09 x (0,T) (2.19)
c5(0) = 10 in O (2.20)
dcg ~ Ou®
;f + a—“t V5 — dyAcs = g5(c5) in Q5 x (0,T) (2.21)
1 0c 1
= ;t? - 2 daAG = g5(¢5,65) in Q% % (0,7) (2.22)
du® e e dae, o e
5 2~ d2Vey | xos v = —?VC2XQ§ v on I'* x (0,7) (2.23)
chxa; = c3xa: on ' x (0,7) (2.24)
CZXQ§ + CZXQE = cop On (Fl U Fg) X (0, T) (2.25)
ou® d
( ;t 5 — d2vc§> Xas v — Ezvchgg .v="00n I's x (0,7) (2.26)
(caxas + chxa:)(0) = cz in € (2.27)

In the equations for the concentrations, the nonlinear terms g; represent chemical
reactions rates and d; are diffusion coefficients.

Let for a given bounded domain G C R3, W™4(G), 1 < q < +00, m € N, denote
the Sobolev space of functions from L9(G) having derivatives of order m in LI(G).
For ¢ = 2, these spaces are denoted by H™(G). We also use the spaces of functions
depending on space and time Wq?“(G x (0,7), £ > 0, consisting of functions having
derivatives with respect to space up to order 2¢ and with respect to time up to order
¢ in L9. For the precise definition of these spaces see [13].

In [10], the existence, uniqueness and stability of a solution (u¢, 5, ¢5), with

u® € W>(0, T L*()) N W>°(0,T; H'(Q)) N H*(0,T; H'(Q53)),

& e WPHQ%), and ¢ e W Q)N W (QUQL),

of problem (2.9)-(2.27), has been proven, under the assumptions on the data given in
the next section. Here we used the notations

Q=0x(0,T), Q=09 x(0,T), QF)=95x(0,T).

We complete this section by the variational formulation of the microscopic problems.
This formulation will be the starting point in proving estimates for the microscopic
solutions, and also for performing the homogenization limit ¢ — 0.
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2.1. Variational formulation of the microscopic problems. Find (u¢, 5, ¢§)
with ¢§ — cap € {¢p € L*(0,T; H'(Q)); ¢ = 0onT'; U Ty}, satisfying for a.e. t € (0,7T)

Opu® (t)pdx + 2 D(0pu®(t)) : D(p) dx + (2.28)
Q s
1 (> g 1 € € 1
% | AFEDEE @) Do) = % [ (Phsispeds
V. guf =0, in Q5 x (0,T), (2.29)
u®(2,0) =0, Ou’(z,0)=0, in (2.30)
8tc§1/1dz—|—/ d1(c5)Vei () VY dx :/ g1(c5, c5)dx, (2.31)
25 25 25

1 1
{xa: + —=xa:}0ic5 (dr + [ da{xas + —=xa:} VS (H)V(dz (2.32)
o K Q K

- [ o 0e0cds = [ faa(chna; +0a(c5,ehxas
Q; Q
c;(0)=c1p in QF, 5(0)=cy in Q, (2.33)

for all p € V, ¢ € HY(QZ), and ¢ € H*(Q) with ( = 0 on I'; UTe. The space V is
defined as follows:

V={pecH(Q)? V-9¢=0in Q%, ¢=0on I'3}.

3. Assumptions on the data and the main result.

3.1. Assumptions on the data. We assume that the components of the sym-
metric fourth order elasticity tensor A belong to C3(R) as functions of F, and that
there exists A\g € R, A\g > 0 such that

1
/\ollMIIQSA(')MMS)\—OIIMIIQ, (3.1)

for all symmetric matrices M, a.e. on R. Further, we suppose that the normal stresses
(P5,S5,S5) on the boundary T'y have the following properties: P € C3([0, 7], H(T'2)),
such that ||Pf||cs(jo,1],m1(ry)) is uniformly bounded with respect to €, and

Pi — PY strongly in L((0,T) x T'y), (3.2)

with P € C3([0, T], H>/?(I'y)). Furthermore,

S; = Xﬁgmrzcgs‘ + 5XQ;0FQC;= (3.3)
with
s f
1€ s g0, 77,1% () + 1€ oo, 7y, 1% ry) < & (34)
for 7 = 2, 3. Finally, we suppose that

For the diffusion coefficients, we assume that d; € C%(R) is strictly positive, bounded
and Lipschitz continuous and ds > 0. Concerning the reaction terms, we assume that
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g1, g2, g3 are Lipschitz continuous with respect to their arguments. This implies that
there exist positive constants C7,Cs and C3 such that

91(y,2)| < C1(1 +](y,2)]) for all (y, 2) € R? (3.6)
lg2(2)] < Ca(1+|2|) forallzeR (3.7)
l93(y, 2)] < C3(1+ |y, 2)]) for all (y,2) € R (3.8)

Additionally we have to impose on g1, g2, g3 structural conditions which guarantee
positivity of the solutions and for ¢ also a uniform upper bound. A possible choice
of such conditions is given in the following.

a”gi(a”,y) <Clam)? (3.9)

y galy”) < Cly™)? (3.10

y ga(z,y7) <C((@ )+ (y7)?) (3.11)

for all z,y € R, where 2~ = min{x,0}. We also require that there exist constants
Al,Ml S R,Al >0,M; >0, such that

gi(z,y) < Az, forax > M, yeR. (3.12)

For the initial and boundary concentrations we assume that
ci1o € C2(Q§) with Vego-v =00n 095, and 0 < ¢19 < My, (3.13)

where M is the constant in the assumption (3.12). We also assume that there exists
B > 0 and My > 0, such that

c20 € HY(Q) N CP(Q) N C*HP(Q5) N C*P(Q5) (3.14)
and
c20|(r,urs) = C2p|(ryurs)xfoys Voo - v =0o0nT3, and 0 < cyo < Mo. (3.15)

Finally, for the boundary concentration cop we require

cap € HY(Q % (0,T)) N C%%(Q x [0,T]), (3.16)
cap € CHHOIFE(Q2 % [0,T]) N C*HA145(Q5 x [0,T)), (3.17)

and
OSCQD SMQ (318)

3.2. Main result. In the limit ¢ — 0, the solutions of the microscopic sys-
tem (2.9)-(2.27) converge to the unique solution of the following homogenized system
of differential equations. The effective system for the homogenized fluid-structure
variables u?, u', p f,wo,wo, consists of the homogenized equations for the structure
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variables:

—Divy { A(F(})(t,2))(Dy(u”) + Dy(u'))} =01in (0,7) x Q x Y,

A(F(e)(t,2))(Da(u’) + Dy(ah)) - v +pyxy, (y) - v =0
on (0,T) x  x (9Y; \ 9Y)

ul is Y — periodic

—m%{@Am@mwmw+Dwﬁmﬁ+HHWWw@—o
in (0,7) x Q

(AAm@mmmﬁ+mmw@4mmmwﬁel

- 0, on (0,T)xTIy
B (P07|F5|C§7|FS|C§)7 on (O,T) X 1—‘2
u’(t,2) =0 on (0,T) x I3,

coupled with the generalized Darcy’s law for the fluid variables:

—Ay(OwW?) + V7 = —V,p; in (0,T) x Q x Yy
div,(0w?) =0 in (0,T) x Q x Yy
w’ =0 on (0,7)x Q x (Y \9Y)

w', 7% are Y — periodic

div, <|Yf|8tu0(t,3:) + 8two(t,x,y)dy> :/ div,0pu (¢, 7, y)dy
Yf YS

in (0,7) x Q
pr=0 on (0,7)xI;
pr="P% on (0,T)x Ty

owldy-v=0 on (0,T) x I's.
Yy

Here, the tensor A is given by
t
AF () (z,t) = A (/ Kt —7)F((r, x))dT) .
0

The effective system for the fluid-structure-interaction is coupled with the homog-
enized system for the concentrations c?,ct,cJ, and c¢}. The two-scale homogenized
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problem for the first chemical is given by:
—div, {d()(Vacl(t,2) + Vyeh(t,)} =0 in (0,T) x 2 x Y,
di(c)(Vaec) +Vye) - v=0 on (0,T) x Q x (9Y5 \ 9Y)
c} is Y — periodic

Yz |0;c) — div, (/ di () (Vo (t, ) + Vyc} (t,x, y))dy)

s

= [Yilg(c?, ) on(0,T) x Q
/ dy (cg)(vwc(l)(t, x) + Vyc}(t, x,y))dy-v=0 on (0,T) x 00

Ys

c(lJ(O,x) =cyp in9

The tow-scale homogenized problem for the concentration of the second chemical
species reads:

—div, {k(y)(Va(t, ) + Vye3(t, 2, 9)) — xv, (y)9u’cd} =0
n(0,T)xQxY

¢} is Y — periodic

(/Y k(y)dy> B¢y — dadiv, (/Y k(y)(Vach(t, x) + Vyc%(t,x,y))dy>

+div, <(|Yf|6tu0+/ 8tw0)cg>
Yy

= [Yelga(cl, 3) + [¥ylgs(c)) in (0,T) x Q

(dg/ k(y)(Vach + Vyed)dy — (|Yr|0pa® + 8two)cg> v=0
Y Yy

on (0,T) x T's
&S =rcop on (0,T)x (I'; UTy)
3(0,z) = cop in Q.

Here, we denoted

E(y) == xv; (y) + %XYS (y).

Besides the standard convergences of the microscopic variables to the effective
ones, given in Theorems 5.3, and Theorem 5.4, we also prove the following conver-
gences of the energies:

THEOREM 3.1. For the limit functions u®,u', w
convergences in energy:

O and ¢, we have the following

T
hm/0 /sg A(F(c7))D(u®) : D(u®) dadt (3.19)

e—0

—/OT/Q/Y A(F(E)(D,(u®) + Dy(uh)) : (D (u®) + D, (u')) dydzdt,

lim |aD(u€)|2(t)da::/ |D,(w®)?(t)d, (3.20)
Qs QJy;
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lim | ARG @)D () : D (D) dadt (3.21)

= /Q/Y A(F (A (1)) (Da (0 (1)) + Dy(u')) : (Da(u®(t)) + Dy (uh)(1)) dyde,

a.e. on (0,T)

T T
1im/ / 52|D(8tu5)|2d:1:dt:// |Dy (9, w°)|?dxdt. (3.22)
=0Jo Jas o JalJy;

The convergence of the energies imply strong two-scale convergence results for the
fluid-structure variables:
COROLLARY 3.2. The following strong two-scale convergence results hold

2

lim D (ug(t, z) —u’(t,z) — eu'(t, E)) ‘ dx =0, (3.23)
e—0 Qs 5
for almost every t € (0,T), and
T 2
111%/ / £ ‘D (8tua(t,x) — 9wt —))‘ dzdt = 0. (3.24)
e—=0 Jg e 9
g

4. Estimates of the microscopic solutions. In this section we prove esti-
mates for the solutions of the microscopic problem (2.9)-(2.27). Herby, the depen-
dence of the parameter ¢ is given explicitly. Based on these estimates, we are able to
perform the homogenization limit ¢ — 0, which leads to a macroscopic description of
the investigated processes.

A fundamental tool in the proof of estimates is given in the following.

PROPOSITION 4.1. Let £ € C([0,T], H'(2))? with

£(0) =0, and &(t,x) =0, for ae. (t,z) € (0,T) x Is. (4.1)
The following estimate holds for all t € [0,T], with a constant C independent of e

t
€@ |20 < C {||D(§(f))||L2(szg)9 +€/0 ||D(ar§(7)||L2(sz;)9dT}- (4.2)

Proof. For every t € [0,T], let £(t) be the H'-extension of & o- t0 Q, as in [1].

Let w(t) = £(t) — £(t) on Q5. Then for every t € (0,T), we have w(t) € H'(Q5)?, and
w(t,z) = 0 for x € T'°. Thus Poincare’s inequality for rigid, periodic porous media
together with Korn’s inequality imply

lw (@)l L25)2 < Cel|Vw(t)lr2(02)0 < Cel|D(w (b))l L2039, (4.3)

for all t € (0,T). Here we use Korn’s inequality on the e-dependent domain ch, see
e.g. Theorem 4.5, Chapter 1 in [14]. Using (4.3), and the properties of the extension
&, see [1], we obtain

1€ L2(05)s (4.4)
< 1€ llz2a)s + Ce {IIDED)lrz(ag)e + 1DED) 225y |

< CllE@| L2 sy + CIDEE L2 (0z)0 + Cel[DE(R))]]L2(03)0
< ClDEM)|L2(0syo + CellD(E)) ] 12(02)0
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The last estimate in (4.4) follows from the fact that the displacement is zero at
the lateral boundary I's, and we have a Poincare type inequality for the extended
displacement. Next, we remark that using £(0) = 0, we have

t t
IDEE e <1 | DEO-drliaage < [ 1D@Eizaypar. (@45)

Estimates (4.4), and (4.5) now imply (4.2), and the proposition is proved. O

We first derive uniform L°°-estimates for the concentration cj. Since cj enters
the elasticity coefficients, these estimates are also needed when proving estimates for
the fluid-structure variables.

PROPOSITION 4.2. Under the assumptions on the data from Section 3, the fol-
lowing estimates hold

0<c < Mett ae onl0,T]x 0, 4.6
1 s

where the constants A1, and My are given by (3.12).

Proof. The proof of the estimates for ¢ is based on the assumptions (3.9), and
(3.12), for the nonlinear reaction term g;, and is done analogously to the corresponding
proof for positivity and boundedness of the concentration ¢; in [10]. O

PROPOSITION 4.3. The solutions to problem (2.9)-(2.27) satisfy the following
estimates, with a constant C independent of €

C
1000 || o= 0,75 22(0) + 10060 [| = (0,75 200) < = (4.7)
C
|[0¢t2 || Lo 0,7 2(02)) F |Oeeee0 || oo (0,7:22(0)) < - (4.8)
[[D(u®)|| Lo (0,122 (0)) + [1D(0eu®)|[ L= 0,1:22(05)) < C (4.9)
[[D(0ee )| Lo (0,7;L2(02)) + [[D(Fees0®)|| Lo (0,7502(02)) < C (4.10)
C
1D (90| 2((0,7)x025)) + 1D (00| 2((0,1)x025)) < - (4.11)
C
1D @eeu)l[ 20,1y x5)) + 1D (Oeteet®)llL2(0,m)x05)) < = (4.12)

Proof. We start from the variational formulation (2.28)-(2.33), and insert ¢ =
dyu® as test function. It yields

t t
/ /877u587u5+2/ / |D(0;u®)|* + (4.13)
0 JQ 0 Jaos
1/t 1/t
—2/ A(F(&)D(uE) : DO,u’) = _2/ / (P, 85, 85)0u dS.
€ Jo Jas € Jo Jry,
Let us first transform the third term as follows
t
/O [ AF(E) D) DOw)

= A(f(C‘i(t)))D(uE(t)):D(us(t))—/o A(F(e1))D(0-u%) : D(u®)

Qs 2

¢
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/ / 5 (u) : D(O) (4.14)
QE

! / / 5 ) () D) : D)

We start by estimating the boundary term in (4.13). To this end, we introduce 751E by

Thus, we have

751€($1,$2,I3,t) = P1€($27x3;t):171

Obviously, 75f = P§, and we have

|F2

t t
/ (PZ,0,0)0u¢ dS — / PEOUEy dS (4.15)
FQ F2

= 1 Tu® 1 dS / 8 P 1 dSdr.
>
We estimate the first term on the right hand side of (4.15) as follows:

Piuty(t)dS = [ Peus(t)-vdS = [ div(P{us(t))dx (4.16)
'y o0 Q

VPiuE(t)dz + [ Pidivu®(t)dzx
Q Qs

Using the assumptions on the data, and Proposition 4.1, we conclude that

PR (05| < Cllu Ol + CIDOG @) liaep (017)
s

t
I llazy +2 [ IDOA Dl liagyoar

Next, the second term on the right hand side of (4.15) is estimated as follows:
t

0, Peuy dSdr (4.18)

t
/ V (0, P5)uf dadr| +

¢
/ 0-Pidivu® dadr
0 Jas

t
< [ {ID@) 20 +£l|D@r 1) 20y
0

To complete the estimate of the boundary term in (4.13), we still have to estimate
following term:

t
//(O,SS,Sg)(?TuEdS (4.19)
I'>
// OS§,S€8u5dS+// (0,85, 85)0, u° dS
FZOQE FQﬁQ
:/ / (O,C§,C§)6Tu5d5+5/ / (0,¢4,¢f)a,uc ds,
0 F2ﬁﬁ§ 0 Fzﬂ@
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where for the last equality, we have used the representation formula (3.3). Let us first
consider the first term in the right hand side of (4.19).

t
/O/F _(0,65,C5)0ru" s (4.20)
2MQ§

t
:/ (O,C§,C§)u5(t)d5—// (0,0,C5,0-C5)usdSdr
I'>NQe 0 JIranQe
t
= /F (0,C5,C5)0° () xp, gz 45 — /O /F (0,0-C3, 0:C5) X,z 0 dSdr
< € {110.3.C5) | e o 7,22 rarimey 10 D)l )

t
RITONG NS [ —— /O ||u€<7)||H1(Q§))dT}.

where, for every ¢t € [0,7T], 4°(¢) is the H'-extension of u®

q- t0 2, asin [1]. In a
similar way, we estimate the second term in the right hand side of (4.19), and get

t .
a// _(0,¢f,¢)d,uf dS (4.21)
0 Fzﬁﬂ?

< = {1100.€4. €)1 0. 2rarmmy 0 D 1105

TN T g ——— / 0 ()l o w}

Using now the results from (4.14) - (4.21) in (4.13), we obtain

//8 (0;u%) da:dT—l—Z// D(0,u) PdxdT +

o / AC(E(0) DO (1) = Dl (1)

//g Cilj;( )D(uf) : D(uf)

{IID( DIFEIGHE +/ [[D(u ||L2(Qs)9d7'—|—€/ |[D(8,0° (7))|| 2 Qs)gdr}
Hg a7y [ [ AR < D)

& [ ararmer e [ | ararmes oo

—/ ||D (9 U. ||L2(Q€)9dT

1
— 2¢2

Now, using the regularity properties of the elasticity coefficients, the uniform bounds
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on ¢f from Proposition 4.2, together with Gronwall’s inequality, we obtain

/|3t t)| dm+2/ / D(0-v)dzdr (4.22)
+%A&AG@WWD@UDJMﬂmd§

and thus we arrive at

C
1000 o= 0,7 22(0)) + [[D(800) 2201y x025)) < 7
ID()][ L= 0.1:22(05) < C-
Next, we differentiate (2.28) with respect to t. It yields
Opru® () pdx + 2 D(0nu®(t)) : D(p) dx (4.23)
Q s
1 dA . dF
— —_— t t)Du(t)) : D
Y G CONACDLINORE
1 1
o [ AFGEO)D@NC 1) Dlg) = 5 [ (P55 8D)pds
Qe I

We test (4.23) by ¢ = 9yu®, and get

%/ |8ttu8 ——/ |8ttu |2+2/ / -,—-,—ll (424)

/ /g df< ¢)D(u’) : D(0--u)

—/LE D(0,u) : D(O 1)

- / | 0:(P1, S5, 83)0r-u dSr.

To get an information about d¢u®(0), we evaluate equation (2.28) at t = 0, and obtain
forall p e V

/ Opu® (0)pdx + 2 D(0:u®(0)) : D(p)dx + (4.25)
Q Qs

1
e Jae

(1 € 1 € € €
AGF(GO)D(0): D(e) = 5 [ (PS5 59)(0)¢ d5:
Now, the homogeneous initial conditions for u®, and (P5, S5, S5), see (2.30), and (3.5),

imply

Ouu®(0)pdr =0, forallp e V. (4.26)
Q

Thus, we have 0xu®(0) =0 for a. e. x € Q.
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Next, we have to transform several terms in (4.23).

/ | A 5 D(0,u) : D(O 1) (4.27)

= —/SE A(F (1)) D(9a(t)) : D(Oa(t))

__/ /s ; DS () D(O.u) Do)
/ /s : ) (C‘?)D(HE) : D(0-7u%) (4.28)
B /Q df(f( i(lt)))(Zj(Cl(lt))D(ua(lt)) - D(3uc (t))

/ /s d]-' ( ¢5)D(0,u%) : D(9;u®)

d2A P dABF . .
/0 /E{d—]‘?(%> —I—ﬁW}D(u):D(&.u )

To estimate the right hand side in (4.23), we start with

¢ t
/ 0 P{O 0l dSdr = | O/PLOE(t)dS — / / Or+P{Oruj dSdr,
0 JI'o T T

leading to

< C{lIova ()| p2()s + [ID(Orus (1)) L2(eye b (4.29)

t
/ 8 73187-7-111
0 JI'o
t
+0 [ {ID@w s + DO 2oy}

Similarly, we have

~0,(0,C5,C5)02u" dSdr (4.30)
'2NQE
t
< o {lom Olmiasy + [ 100 masyoar |
0
and
9-(0,¢4,¢Ho?u® dSdr (4.31)
Fgﬁﬂ_‘;

t
< Ce {||6tu€(t)||H1(Q;)3 +/ ||(9.,.u5||H1(Q§)3dT} .
0

t
<Ce / [N
0
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Inserting the results from (4.26) - (4.31) in (4.23), we obtain

/|8ttu |2+2// (Drru®) (4.32)
Q SE

+§;LA@@WWD@&@%D@&@MI
<5 QE ' ‘ D(0,u®)dwdr
+§j5§\EMMﬂmwmm%m
M/[j2(>2§%§WﬂW@ﬂ

O € K €
S {ID0wE OMlzsase + [ DO apar

C t
+2 [ D@2 12(asyedr
0

Now, the first estimate in (4.9) together with Poincaré’s inequality yield
C

10| L= (0,7 22(0)) + [ID(O )| 20,1y x05)) < =

[[D(0¢a®)|| o< (0,7522(022)) < C-

The estimates (4.8), (4.10), and (4.12) on the higher time derivatives are obtained by
differentiating (4.23) two more times with respect to ¢, and using similar estimates as
above. 0

Next, we will get improved estimates for J;u®. These estimates will play an
important role for the estimation of the transport terms in the equation for ¢§, and
for the compactness arguments needed to pass to the limit & — O.

PROPOSITION 4.4. The following estimates hold with a constant C independent

of €

100 20,7y x02)2 + 110007 Lo 0,158 (026))2 < C (4.33)
|0 |[ L2 (o, T)xQ2)s + [[0w0®|| Lo (0, 7;L8(02))3 < C (4.34)
|00 ||L2 ((0,T)xQ5)3 + [|0peu|| oo (0,T;L6(Q<))3 <C (4.35)

Proof. Since % is a connected Lipschitz domain, we can apply the extension
result from [1] to find an extension of dyu®|,. to the domain Q. We denote this

extension by 8,U¢, and remark that 8,U¢ is zero at the lateral boundary 095 NT's.
Thus, using the properties of the extension, and Poincaré’s and Korn’s inequality on
Q, we obtain for all t € (0,7

10:0°®)l22(p») < CID@T O)llzaars) < CID@U W)@y (436
Estimate (4.36) together with the second estimate in (4.9) yield

||6tU€||Loo(07T;H1(Q)3) <, (4.37)
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and due to the continuous embedding of H!(Q) into L%(2), we obtain

10U || o< (0,752 (03) < C. (4.38)
Since 8,U°¢ coincides with d,u® on Q%, we conclude that

[1000®[| o< (0,756 (02)3) < C. (4.39)

Next, we prove the estimate for d;u® on Q3. We note that Us # u® on Q5.
However, due to the continuity of the velocities on I'*, we have that

U —duf =0, onT®x(0,T). (4.40)

Furthermore, the estimates from Proposition 4.3, together with properties of the
extension U® yield

I

1D(0:U° = 8:u®)[[ 12 (0,1 x22)0 < (4.41)

€

Now, Poincaré’s inequality for a periodic, porous medium of size e, implies
lo.U= — e[| L2((0,1)x02)2 < Ce||D(0,U° — 9a®)|[2((0,m)x02)0 < C. (4.42)
Thus, from (4.37), and (4.42), we can conclude that
||atu5||L2((o,T)xQ§)3 <C. (4.43)

This proves the proposition. O

We complete the estimates for the fluid/structure problem with the estimate for
the pressure.

ProrosITION 4.5. We consider the following extension of the pressure p® to
Qx(0,7)

e | p(x,t), (x,t) € Q%5 x(0,T)
p(t) ‘{ 0, (.)€ O % (0.7)

Then the following estimates hold

[15° (|2 (x (0,7)) + 11007 || L2 (2x (0,1)) + 100D || L2(2x (0,7)) < C- (4.44)

Proof. Testing the fluid/structure interaction problem (2.9) - (2.17) by ¢ €
H'(€), we obtain for a.e. t € (0,7T):

/ﬁs(t)divgad:c:/ p°(t)divp dx (4.45)
Q

Q;

=¢e? | Oyu®(t)pdr + 22 D(0pu®(t)) : D(p) dx
Q o}

+ / A(F(E)D@E (1)) : D(g) — / (P5, 85, 85)p dS

I'>

We note that for all g € L?(€2), there is p € H'(Q)3, with ¢ = 0 on the lateral
boundary, such that dive = g, and ||¢[|g1(0) < C|lgl|L2(q), see e.g. [17]. Hence, using
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the estimates from Proposition 4.3, and (4.45), we have for all g € L2(2 x (0,T)) the
following estimate

T
[ [ 5 tgtat)dzat] < Cllgllaorany < Cllaliasory.  (446)
0
This yields

[15°]| 2 (x (0,1)) < C. (4.47)

d

We continue by showing uniform estimates for the derivatives of the concentra-
tions cf, and c5.

PROPOSITION 4.6. For the concentration c5 the following estimates are valid with
a constant C independent of €

lle3l Lo 0,m;22()) + IV E5|lL2((0,m)x0) < C. (4.48)
1
||(XQ§ + Fxﬂi)atcg||L2(0)T;(W01*3(Q))/) <C. (4.49)

Proof. The estimate for Vc5 needs some special ideas, due to the presence of the
transport term. Let us test equation (2.32) with ¢ = & := ¢§ — cap, and obtain

1d 1 . 1 .
Sq Q(XQ; + 7o xe:) c§(t)|2d:c+d2/ﬂ()m; +FXQ§)|VC§(t)|2d$ (4.50)
- Ot Vesdr =
Q5
! 0 csdx — d ! VeapViésd
- Q(XQ; +EXQ§) tCapCod — da Q(XQ; +EXQ§) C2p VCydx

+ | OutepVisdr + / {g2(c5)x0s + g3(ci, ) xqz }éodr
: Q

Now, we have to estimate several terms. Let us start with the transport term on Q5.
Hereby, we exploit the fact that the estimates for the velocity d;u® are much better
on the solid part Q5 then on the fluid part ch Thus, we integrate by parts, and use
the continuity of the velocity on the interface I'¢, to obtain:

t 1 t
- / BUTEVE = —= / D - visEdSdt (4.51)
QE 2 0 JI's

/ / div(0rué5eés)
/ / div(9yu®)é5es + / Orutésves
: o Jas

To estimate the right hand side of (4.51), we use the Gagliardo-Nirenberg-type in-
equality, see e. g. inequality (2.9) on pag. 62 in [13], Young’s inequality, and the
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estimates for the velocity d;u® form Propositions 4.3 and 4.4. We obtain:

t
/ / div(Bue) s
0 H

t
smwwNmmwmﬂmm/H@mmm
0

<0|IVEs|1 720,00 + CONENT2(0,m)x02):

t
/ (%u 02
0 JQg

scmauﬂummjmmﬁn/|wau%QMV@me@m-
0

t
s<{£|uu@fnu%%nwa@mgw7 (4.52)

and

(4.53)

<C/H@UMMFWNHM

~e111/2 ~c113/2
< O [N ) V5
<d[|ve 2||L2((0,T)xszg) + 0(5)||é2||L2((0,T)><Q§)7

To estimate the terms on the right hand side in (4.50), we use Holder’s inequality,
the assumptions on the data, and the estimate (4.6) for ¢5. Since these estimates are
standard, we omit them.

Finally, integrating with respect to time in (4.50), and collecting the estimates
(4.51) - (9.5), we obtain

/ |d:v—|—/ /|V |d;c<c+c/ /|2|2d:cdt. (4.54)

Now, Gronwall’s lemma yields the estimate (4.48) for c5.

Let us now prove the estimate for the time derivative. To this end, we test
equation (2.32) with ¢ € L2(0,T; W, *(Q)). After integration with respect to time,
we obtain:

T T
1 1
/ /{XQ; + EXQg}atCZ Cdxdt = —/ / d2{xqs; + FXQg}VCZVC dxdt
0 Q 0 Q

T T
—|—/ 8tu5c§V<dxdt—|—/ {gz(c‘;)xgi + g3(ci, ¢5)xa: }¢dxdt,
o Jas o Ja

We have the following estimates

1
d2{xes; + EXﬂg}VCZVC < OIIVe|lezom = IVE L2 (0myx0),  (4.55)
Q

(4.56)

T
/ Oprut 5V {dadt
o Jas

T
< [ 100 o llel oo I V€l corde
0

< 10| Lo 0,152 )) €2l 20,6 () [V 20,7522 (25
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and
T
[ [ tsaleha; + s, hxos Yoot (457
0 Q
T
< C/ /(1 + xa:|ci| + |c3|)(dxdt
0 Q
< O+ leillzzo,myxae) + el L2,y <) C L2 (0.0 x2)-
Thus, for all ¢ € L*(0,T; W,*(R)) we have
T 1
/ /Q{XQ; + EXﬂi}atC; Cdzdt| < C||C||L2(O,T;W01‘3(Q))7 (4.58)
0

and estimate (4.49) is proved. O

For every t € [0,T], let us now denote by ¢5(¢) the H!-extension of cf(t) to
2, as in [1]. Due to the properties of the extension operator, we have that & €
L2(0,T; HY(Q)), and 0, € L*((0,T) x Q).

PROPOSITION 4.7. The following estimates are valid with a constant C indepen-
dent of €

16511 o= (0,m522(0)) + [IVE L2001y x0) < C, (4.59)
X 0:C1l| 20,1511 () < C. (4.60)

Proof. Estimate (4.59) is immediately obtained by testing equation (2.31) by ¢f,
and then using the properties of the extension operator. For the estimate on the time
derivative, we observe that 0;¢§ satisfies the following equation

/ Xz 0:¢1epdx +/ xa:d1(c5)VE () Vi do = / xa:91(€, ¢3)vdx (4.61)
Q Q Q
for all v € Hi(Q), and consequently we have

T
/ / Xz 0¢ €1 Ydxdt
0o Ja

+C + [[ef L2 (0, 1) x0s + 3]l L2 0,1 %)Yl L2 (0,7 x )
< Ol 20,75 ()

< OVl Lz o,y <a) IVl L2 (0,7 %) (4.62)

Thus, the proposition is proved. O

5. Compactness of the microscopic solutions. Based on the estimates form
Section 4, we prove compactness of the microscopic solutions, with respect to two-
scale convergence, and with respect to weak and strong L?-convergence. The results
concerning two-scale compactness are standard, and can be found e.g. in [3] or [6].
We will not repeat the proof here. Contrary to this, the strong compactness of the
concentrations is nonstandard, due to the very low regularity of the concentrations
with respect to the time variable. Thus, we have to generalize the well known com-
pactness theorem by Aubin and Lions to be able to deal with the situation given in
our problem. This is done in Lemma 5.1, and Proposition 5.2 in the beginning of this
section.
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LEMMA 5.1. Let a® be a uniformly bounded sequence in L™°(Q), such that a® — a
weakly in L*(Y), with a € L>=(Q), a(z) > 0 for a.e. x € Q. Further, let m > 0, and
n > 0 be given real numbers.

Then there exist v, > 0, and €9 > 0, such that for all c € H(Q), and all € < &,
we have

llellzz () < nllellm ) +mlla®cl|m-m(q)- (5.1)
Proof. Let us suppose that (5.1) is not true, and let sé, be a sequence with

limj_, o 56 = 0. Then, to every 56, there exists ¢/ < 5%, and ¢; € H'(Q),¢; # 0 such
that

lleillz2) = nllejl|ar ) + dlla® ¢jlla-—m ) (5.2)
Set
wj = 7Cj .
||Cj||H1(Q)

Obviously, we have ||w;|| g1 () = 1, and from (5.2) it follows that

|w;l|L2(0) > 77+j||a€jwj||H*m(Q)- (5.3)
Since ||w;||z2(n) < 1, the relation (5.3) yields
a’ w; — 0 strongly in H™™(Q). (5.4)
On the other hand, after passing to a subsequence, we have that
w; — w  strongly in L?(Q).
Taking into account the weak convergence of a= — a in L3(Q), we obtain that
asjwj — aw weakly in L?(9). (5.5)

Due to the compact embedding of L?(2) into H =" (), (5.4), and (5.5) imply aw = 0,
and due to a > 0, we have w = 0. Clearly, this contradicts (5.3), and the lemma is
proved. O

PROPOSITION 5.2. Let a® be a uniformly bounded sequence in L*°(Y), such that
a® — a weakly in L3(Q2), with a € L°(Q), a(x) > 0 a.e. in Q. Furthermore, let
be a sequence in L?(0,T; HY(Q)), and assume that a®0;c® € L*(0,T; H-™(Q)), with
m > 1.

If we have that

¢ — ¢ weakly in L*(0,T; H'()), (5.6)
a®0yc® — adsc  weakly in L*(0,T; H=™()), (5.7)

then it follows that

& — ¢ strongly in L*((0,T) x Q). (5.8)
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Proof. For the sequences a®, and ¢®, Lemma 5.1 implies that for all n > 0 there
exists 7y,, such that

1(e® = )Dll2 () < 0ll(¢” =)Dl @) + mlla™(e = )E)a-—m@),  (5.9)

for a. e. t € (0,7).
Let § > 0 be given. Integrating (5.9) with respect to time and taking into account
that ||c® — ¢||p2(0,7;11 () < C1, we obtain

I~ llzzomxe < § +VIulla (e ~ llzoram@y,  (5.10)
where 7 was chosen such that v/2nC < g. Hence it remains to prove that
lim [la*(¢* = Ol 20 msm-m (2 = O- (5.11)
We split the sequence as follows

||(15 (CE — C)||L2(01T;H7m((2)) S ||(1€CE — aC||L2(07T;H—m(Q)) (512)

+ l[(a® = a)ellp2 0,151 (2)) -

To show the convergence of the first term on the right hand side of (5.12), we use
the information (5.7) about the time derivative. Thus, since a®c® — ac is bounded in
H(0,T; H-™(12)), we have

|la®c® — acllc(o,),1-m(0)) < C. (5.13)
Therefore, it is enough to prove that
(a°c® —ac)(t) = 0 in H-™(Q), fae. te€[0,T]. (5.14)
By (5.13), and (5.14) Lebesgue’s dominated convergence theorem then implies
lim [|a%¢® = acf| 20,7y (@) = 0- (5.15)

We write a®c® — ac as follows:

(a®c® —ac)(t) = . i " /:(a‘fcE —ac)(§)d¢ (5.16)
1

s—t

/t (s — €)0e(a" " — ac)(€))de

for s > t. Then, using (5.7), the second term can be estimated as follows:

1
s—1t

/ (5 — )0 (0 — ac)(&)d&H (5.17)

H-m(Q)

° € € 6
< [ 106 = a @l oy 6 < 5

for s sufficiently close to t. To estimate the first term in (5.16), we consider

1

s—t

1

s—t

/ (05 — ac)(©)de = / @ (E -+ (@ —a)d (©de (5.18)
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By Lebesgue’s Differentiation theorem, we have that

. 1
lim
s—ty §— 1

/ (e o)de = (¢ — )b,

Hence = [7(c® — ¢)(§)d¢ is bounded in H'(Q) and

S

1

s—t

/S(ca —¢)(&)dé — 0, weakly in H(Q).
t

By compactness of the embedding of H'() into L?(2), we have that - [’(¢ —
c)(€)d¢ converges strongly to zero in L2(£2), and thus the product

1

ass — /t (¢ —e)(€)dé — 0, weakly in L*(Q).

Finally, due to the compact embedding of L?(Q) into H~™(f2), we obtain

1 s
ass t/ (¢ —¢)(&)d¢ — 0, strongly in H™™(Q). (5.19)
—tJy
The convergence
(a® —a) ! t/ c(§)d¢ — 0, strongly in H™"(Q) (5.20)
—tJs

is straightforward, and thus (5.15) is proved.

The convergence to zero of the second term on the right hand side of (5.12) follows
by an approximation argument and the fact that a® — a does not depend on time.
Thus, (5.11) holds, and the theorem is proved. O

THEOREM 5.3. There exist limit functions u® € C3([0,T], H*(Q))3, u! € C3([0,T);
L2(9; HL,, (V) [R)), wO € C3((0, T); L(0; L, (Y)?)) 1 L2((0, T) x §; L2(Y, div)?),
and p® € L2((0,T) x Q2 xY), such that up to a subsequence, the following convergences
hold in the two scale sense:

u” — u’(t,z) + xv, w'(t, z,y) (5.21)

ot — 9’ (t, @) + xv, 0w (t, z,y) (5.22)

Opu® — By’ (t, ) + xv; 0w (t, 2, y) (5.23)

Oyppu® — Btttuo(t,:b)—I—XYfatttwO(t,:E,y) (5.24)
xe:D(u®) — Xy, [Do(u’(t,z)) + Dy(u'(t,2,9))] (5.25)
x0: DO) = v, [Da(0(t,2)) + Dy (@il (12, y))]  (5:20)
XaseD(a®) — Xv; Dy(WO(t, 2,9)) (5.27)
XaseD(0ru") — Xv; Dy (0w (t, z,y)) (5.28)
P — Pt a,y). (5.29)

THEOREM 5.4. There exist limit functions ¢ € L*(0,T; HY(Q)), ¢§ € L?(0,T; H(Q)),
ct € L*((0,T) x Q; HY,,(Y)/R), and c} € L*((0,T) x Q; HL,.(Y)/R), such that up to

per per
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a subsequence, the following convergence properties hold:

& — A(t,x) in two-scale sense
V& — Vo)t x) + Vyei(t,z,y)  in two-scale sense
& — A(t,x)  strongly in L*((0,T) x Q)
& — A(t,x)  weakly in L*(0,T; H(Q))
c5 — S(t,x) in two-scale sense
Vg — Vet o) + Vycs(t, z,y) in two-scale sense
5 — S(t,x)  strongly in L*((0,T) x Q)
5 — AS(t,x)  weakly in L*(0,T; H(Q)),
where for every t € [0,T], & is the H'-extension of ¢5 to Q, as in [1].

Proof. To show the strong convergences (5.32), and (5.36) of the concentrations,
we remark that for a subsequence,

& — ) weakly in L*(0,T; H'(2)),
Xa: 0] — |Ys|0c!  weakly in L*(0,T; H~1(Q2)), (5.38)

and
5 — 3 weakly in L2(0,T; H'(Q)),

1 1
(XQ? + ?X%) 5 — <|Yf| + §|YS|) orcy  weakly in L?(0,T; H™2(Q)),

for £ — 0. To verify that x:0;¢5 — |Y;]0;c} weakly in L?(0,T; H'(£2)), we consider
v € C5((0,T) x Q) and calculate

T T ¢
< X:0:C1, ¢ >:—/ /stgéiatSDZ/ /Xﬂg/ 10+ pdT.
o Ja o Ja 0

Thus, we have that

T t
< X:0iC], 0 >— / / |YS|/ A0, rpdr =< |Y,]0:cY, 0 > (5.39)
0 Jo 0

Convergence (5.39), together with estimate (4.60) yield (5.38). The corresponding
convergence for ¢§ can be proved analogously. Thus, by Proposition 5.2 the strong
convergences (5.32), and (5.36) follow. O

6. Passing to the limit in the microscopic equations. In this section, we
pass to the limit in the weak formulation of the microscopic equations (2.9)-(2.27),
for ¢ — 0. Using the compactness results from Theorem 5.3, and Theorem 5.4, and
choosing suitable test-functions, first a two-scale homogenized system is derived. In
a second step, the microscopic variable can be eliminated yielding the homogenized
system, with effective coefficients computed by means of cell-problems. The arguments
concerning the fluid-structure interaction are similar to those used in [6], however the
nonlinear dependence of the elasticity coefficients on the concentration c¢f leads to
additional difficulties. Thus, especially the strong convergence for the concentrations,
proved in Theorem 5.4, will be of big advantage. We recall that the outer unit normal
to 0 is denoted by v. We also denote by v the outer unit normal to 9Y; (i.e. the
unit normal exterior to the solid structure).
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PROPOSITION 6.1. The limit functions u®,ut,p®, and 9, defined in Theorem

5.8, and Theorem 5.4, satisfy for all (t,z) € (0,T) x Q the following equations

—Div, {A(F(&)(t,2)) (Do (u) + D, (u")} = 0 in ¥,

A(F(E)(t,2)) (D () + Dy (uh)) - v+ p°(t, z,y) - v = 0 0ndY \ OY

Vyp'=0inYs, and p°=0inYs,

ul, p® are Y — periodic
Furthermore, there exists ps € L*((0,T) x Q) such that

po(ta €L, y) = pf(tv x)XYf (y)

PROPOSITION 6.2. We have

~Div, { / AFE) D) + Dy<u1>>dy} YVt 2) = 0

in (0,T) x

( || AFE@ND.() + Dyt dy - Vil e x)f) o

_ 0, on (0,T)xTy
B (P07|FS|C§7|FS|C§)7 on (O,T) X 1—‘2

u’(t,2) =0 on(0,T) x Ts.

—~ =~ =~
S o o o
N R
=222

(6.8)

COROLLARY 6.3. For all (t,x) € (0,T) x Q, let w (t,z,y) and vP(t,z,y) be the

solutions to the following problems

eiej + ejel-

—Div, {A(f(c?)) <f + Dy(wiﬂ')) } =0 inY;

eiej + ejei

A (225

w* is'Y — periodic,

—I—Dy(wij)) cv=0 ondY;\0Y

and

—Divy (A(F())Dy(7*)) =0 in Yy
AF(E)Dy(y?) -v+v =0 ondY,\ Y
P is Y — periodic.

Then, we have

3

u'(ta,y) = Y (Du(u(t,2))), w (t,2,y) +ps(t,2)7P (¢, 2, y).

i,j=1
Furthermore, the effective elastic moduli coefficient A, given by

3
Al (t2) =D | Awtif (F(D) Gimim + (Dy (W™ (&, 2, 9)))ij )y,

4,j=1

(6.12)
(6.13)
(6.14)

(6.15)

(6.16)
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is a symmetric and positive definite 4th order tensor.

PROPOSITION 6.4. We have the following two-scale variant of Darcy’s law. There
exists 70 € L2((0,T) x Q x Yy) such that the limit function w° from Theorem 5.8,
and py given by (6.5) satisfy

—Ay (W) +V,7° = —V.p; in (0,T) x Qx Yy (6.17)
divy(9;w?) =0 in (0,T) x Q x Yy (6.18)
W' =0 on (0,T)x Qx (3Y;\ 9Y) (6.19)
w0, 70 are Y — periodic (6.20)

Furthermore, Vps € L*((0,T)x ), and ps satisfies the following boundary conditions
on the boundaries I'y, and I's.

pr=0 on(0,T)xI4 (6.21)
pr=P° on(0,T)x Ts. (6.22)

Proof. We start from the weak formulation (2.28), and by standard arguments, see
e.g. the seminal paper [3], we obtain equations (6.17) - (6.20). We remark that (6.17)
implies Vpy € L%((0,T) x Q). To obtain the boundary conditions for py, we insert in
(2.28) the test-function @(t, z) = £2((x, 2)h(t) with ¢ € C=(Q; Cp2,.(Y))?, ((z,y) =0
on (2 xY,)U([Ts xYy), and divy¢ =01in Q x Yy. Let h € C§°(0,T). We have

T T
e’ /0 . e (1)C (@, Z)h(t)dwdt (6.23)
T - )
+2/0 /QEXQch(atuS(t)) : (EDI(C)(I, E) + Dy (¢) (=, 2)) h(t) dxdt +
T
+/0 /Q Xas P dive((2, g)h(t)d:cdt

T T
- [ [ Pr.sssicte Do s
0 Iy

We pass to the limit € — 0 using the two-scale compactness from Theorem 5.3, and
the properties of the boundary data. It yields

T

5 /0 /Q [ Dy (t.2.9) : Dy (O )h) dydds (6.24)
T

+/0 /Q/y pr(t, x)diva((z, y)h(t)dydzdt

_/T/ / (PO(t, 2),0,0)C (, y)h(t) dydSdt.
0 Iy JFy

Let now ((z,y) = ¥(x)n(y), with ¢p € C*®(Q),» =0 on 'y, and n € C5.(Y)3, =0

per

on Yy, divyn = 0 in Y}. Integrating by parts in (6.24), and using equations (6.17) -
(6.20), we obtain

T
/ / pr(t, 2 (@)h(?) / n(y)dy - vdSdt (6.25)
0 Jryur, Yy

T
- / / (PO(t, 2),0, 0)(x)h(t) / n(y) dydSt.
o Jr, Fy
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From here (6.21) follows immediately. To get (6.22), we use the Y-periodicity of n,
and the fact that divyn = 0 in Y. This implies that for all [ € [0, 1], we have

/y iy = /F )y (6.26)

Recall that Fs was defined in (2.1). Thus taking ) = 0 on I'y, we obtain form (6.25)

T
/ / py(t, 2)b()h(t) / m(y)dydSat (6.27)
0 T Yy

T
_ / PO(t, )b (2)h (1) / m(y) dydSt,
0 T Fy

and using (6.26), we get the boundary condition (6.22).
d

COROLLARY 6.5. Let {x?, 77} be the solution to

Ay + V!l =e; inY; (
divyx’ =0 in Yy (6.29
w’=0 ondY;\dY (

(

x?,m are Y — periodic

Then, we have

oWl (t, x,y) Z Bpg; x), (6.32)
= j
8]9 (t,x

Ot, z,y) Z ng ), (6.33)

and the permeability tensor K given by
Kij = / X (y)dy (6.34)
Yy

is a positive definite symmetric tensor.

PROPOSITION 6.6. The limit functions u®, w®, and u' from Theorem 5.8 are
linked by the continuity equation

Y

divy <|Yf|8tu0(t,ac)—|— 8two(t,:v,y)dy> :/ div,0pa (t, z,y)dy  (6.35)
Yy

owldy-v =0 on (0,T)x T3 (6.36)
Yy
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PROPOSITION 6.7. The limit functions ¢{, and ci from Theorem 5.4 satisfy the

following equations

—divy {d1(c3) (Vo) (t,2) + Vyei(t,z,y)} =0 in (0,T) x 2 x Y,

di()(Vaec) +Vyer) - v=0 on (0,T) x Q x (0Ys \ Y)

¢y is Y — periodic

Y1042 — div, ( / (D) (Vacl(t,2) + Vel (t, 7, y))dy)

= Walg(el. ) on(0,7) x

/ dy () (Vo (t,x) + Vyei(t,z,y))dy -v =0 on (0,T) x 9Q

s

A(0,2) =1 inQ,

where the limit function 3 is given in Proposition 5.4.
COROLLARY 6.8. Let {w’} be the solution to

—Aywj =0 inY;
(Vyw! +ej) - v=0 ondY,\dY
W’ is Y — periodic

Then, we have

3
801153:)
ta:yzz oz, .

Furthermore, the matriz 3 given by

Owl
Bij = /Y (ac; (y) +6ij> dy

is symmetric and positive definite.

(6.43)
(6.44)
(6.45)

(6.46)

(6.47)

PROPOSITION 6.9. Let k(y) := xv, (y) + % xv. (y). The limit functions ¢3, and c}

from Theorem 5.4 satisfy the following equations

—divy {k(y)(Vwcg(t, x) + Vycé(t, r,Y)) = Xy; (y)@tuocg} =0
n(0,T)xQxY

C% is Y — periodic

( /Y k(y)dy)uc — dydiv, < /Y k<y><vzc8<t,x>+vyc5<t,x,y>>dy)

+dZ’Uz <(|Yf|8tu0 +/ 8tWO)Cg>
Yy

= |Yslg2(c?, &) + | Yylga(cs) in(0,T) x Q
<d2/ k(y)(Vach + Vyeh)dy — (|Yy]|0u® / w") c2> v=0
Y
on (0,T) x '3

&S =cop on(0,T)x (T1UTy)
A3(0,z) = cog  in Q.

(6.48)

(6.49)
(6.50)
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COROLLARY 6.10. Let {n?, M}, j = 1,2,3, be the solutions to the following
problems

—divy {k(y)(e; + Vyn')} =0 inY (6.54)
0 is Y — periodic (6.55)
and
—divy {k(y)VyN — xv,(y)e;} =0 inY (6.56)
N is Y — periodic (6.57)

Then, we have

3

80
5t z,) Z 8xj )+ Z)\J )0’ (t, x)ejcy(t, ). (6.58)

Furthermore, the matriz dy [, k(y)Y (y)dy, where

on?
yi

Tij(y) = 5 —(y) + 6ijs

is symmetric and positive definite.

6.1. Variational formulation of the homogenized system. The variational
formulation for the effective fluid-structure problem is the following:

Find u® € C*([0,7], H'())?,0,4u° € L*(Qr),0u' € L*(Qr, H}.,(Ys)/R)3, 9w’ €
L*(Qr, Hye, (Y5))? 0 L2(Qr, L¥(Yy, div))?,py € L*(Qr), such that

/Q /Y A(F())(Da(u®) + Dy(u)) Do () dydr (6.59)

—// pf(t,x)divmcpdydxz/ (P, | Fs|C5, | Fs|CS)pdsS,
Q Yf FQ

o e H'Y(Q)?, ¢ =0o0nTsj,

ol iv = .
[ A0+ DDy - [ [ gy =0, (660
v e 1O, Hjy (V)

2/Q D, (0yw°) : D,,(¢)dxdy — /Q/Yf prdivyCdydx (6.61)

Yy
:/ / (P°,0,0)¢ dy dS,
Iy JF;

CeL*(QHL .(Y))?, divy¢ =0, inY; x Q, ¢ =0, ondY} \ dY,

per
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divz<|Yf|8tu0(t,x) + 8two(t,x,y)dy> :/ div,0put(t, z,y)dy, (6.62)
Yy

Ys
n (0,7) x Q,
u’(t,2) =0, on (0,T) x I's, (6.63)
pr=0 on (0,T)xTIy, (6.64)
pr="P° on (0,T) x I'y, (6.65)
owldy-v =0, on (0,T)x T3, (6.66)

Yy

where the tensor A is given by

A(F(9)) (2, 1) ( / Kt — 7)F((r, x))dT) .

These equations are valid a.e. on (0,7"). At ¢ = 0 all unknowns are equal to zero.
The homogenized concentrations ¢, and ¢, satisfy the variational formulation:

Find ¢, ¢ € L?(0,T; H'(2)), with 9, 8:c3 € L*((0,T) x Q), such that
Yl [ oo+ [ apveea) o=Vl [ o e (6.67)
Q Q Q
¢ H'(Q),

( /Y k(y)dy) i Ducoth + /Q ds ( /Y k(y)T(y)dy) Va3Vt da (6.68)

3
—/ |Yf|—Z/ dok(y)V N (y)eldy | ou® + [ oywldy| x
@ j=1"Ys

Yy

xemwm:/uymem»+mmmmwm

e HY(Q), Y =0o0onT; UTy,

Cg =cCop On (O,T) X (Fl U 1—‘2) (669)
A0,2) =cpo inQ (6.70)
3(0,7) = cop in Q. (6.71)

7. Convergence of energies. Let us now prove the convergence of the energies
stated in Theorem 3.1.

Proof. We start from the variational formulation of the fluid-structure interaction:

€ / Opu® <pda:d7'—|—2/ / e?2D(0yu®) : D(p) dadr + (7.1)
Q Qs

t
/ A(F(c7))D(u®) : D(y) dIdT—/ / pdivy dxdr
QE 0 j‘

= / (P1,S5,85)pdSdr,
0 Jry
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for all p € L?(0,T; H*(Q)), ¢ = 0 on I's. Let us first insert ¢ = u® as test function
n (7.1), and obtain

t
e / / Bt udzdr + / leD(u)(¢)|? dx (7.2)
0 JQ 2
t t
+ [ ] acepe): Dy = [ [ (prLss i asar
3 0 JTy

Our aim is to pass to the limit in the above equation for ¢ — 0. To this end, we use
the localization (dilation, unfolding) operator 7°¢, and its properties, see e.g. in [4],
and [5]. Taking into account the lower-semicontinuity of the norm with respect to the
weak convergence, we have for all ¢t € (0,T)

e—0 e—0

lim inf / le2D(u®)|?(t) dz = lim inf / |e2T5(D(u)*(t) dydz  (7.3)
< QJY;
> [ [ 1D, P(0) dyd.
QJy;

Due to the strong convergence of ¢§ in L2((0,T) x ), the convergence in two-scales
of xq:D(u®), see Theorem 5.3, and Theorem 5.4, as well as the properties of A(F),
we have the following convergence in two-scale sense

A(F(e0)2D(uf) — A(F())/* (Do (u) + Dy (ut)). (7.4)

This implies for all ¢ € (0,T)
hmmf/ AF(E) (1t 2))| D) (t, )2 dadr (7.5)
QE

 lim inf / / / T (AGF ()t 2, )| T (D))t 2, ) dydadr

0 0 1 9
2/0 /Q/Y A(F(E)|(Da(u°) + Dy (uh))|? dydadr.

Passing in (7.2) to the limit for ¢ — 0, we obtain

/Q 1D, (WO (t) dyd (7.6)

Y,
t
+/// A(‘F(C?)N(Dz(uo)+Dy(u1))|2dydzd7
o Jaly,
t
<o / / (Pf, 55, 85)u® dSdr
e—0 0 s
t

t
+/ |F5|(C2u2 +C3U.3)(t ./L')dfl'd”r
0 JI'2
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Now, we derive an expression for the right hand side in (7.6) by using the homogenized
equations. First, we test equation (6.59) with ¢ = u® and obtain

/ / / A(F(eD))(Dz(u°) + Dy(u')) D, (u°)dydzdr (7.7)
0 QJY,

t
—/ // py(t, x)div,u’dydzdr
0o Jaly;

t t
= / PO dedr + / |Fy|(Caul + C5ud) (L, x)dxdr.
0 JTs

0 JI'2

Next, we test (6.60) with ¢ = u', and get

/ /Q / A(F(1))(Da(u®) + Dy(u')) Dy (u')dydzdr (7.8)

—/// pfdivyuldydsz:O.
0 JoJy;

Finally, we test (6.61) with ¢ = w?, and obtain

D, 2dgcdy prdivewdydzdr 7.9
!
Q Yy

:// PO(r, )W (7, 2, y)dydSdr
r, JFy
Adding equations (7.7), (7.8), and (7.9), and using (6.62) gives
/ // A(F (D)) (Dz(0°) + Dy(u')) : (Dg(u’) + Dy(u')dydadr (7.10)
4 [ [ 1Dy o) Pdady
QJy;
t
:// PO(ul + xr, wi)(7, 2, y) dydadr
I's JFy
t
0 Jrs

Comparing (7.6), and (7.10), and using lower-semicontinuity of the norms, gives

lim inf le2D(u®) | (t) da :/ |D, (w®)|%(t) dydx (7.11)
=0 Jas aJy;

e—0

zlimsup/ |e2D(u®)|*(t) da,
7
and

hmlnf/ o A(F(5)(r,2))|D(uf) (T, x)* dedr (7.12)

:/0// A(F(EN (D2 (u®) 4+ Dy (ur)? dydzdr

:limsup/ /g F(&) (7, 2))|D(us) (7, 2)[? dwdr,

e—0
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proving (3.19), and (3.20).

To show the last two statements of the theorem, we again start from the vari-
ational formulation of the fluid-structure system (7.1), and insert ¢ = d;u® as test
function. We obtain

t t
52/ /87-7-87-115 uEdIdT—I—/ / £2|D(0puf) (1) dedr (7.13)
0o Jo 0 Jas

1 e € . us T
= / A(F((6)D(w (1)) : D(we (1)) d

1 [t dA CWAF N .
_5/0 /gg ﬁ(}-(cl))ﬂ(cl)D(u ) : D(u®) dadr

t
:/ / (P1,85,85)0u® dSdr.
0 Ty

Let us set

C*(1,0) = T2 (Ui 1,0)) (5 1, 2)
Then, we have
¢~ = LFEE () (7.14)

strongly in L2((0,T) x ), and a.e. on (0,T) x Q. Now, we restate (3.19) as

e—0

lim / [ AFE)DOE) - D) dede (7.15)
o Ja:
T
— fim / T2 (A(F(E) T (D(uF)) : T(D(w)) dadt
o Jas

e—0

T
— [ ][ AFEND6) + D) (D2fu) + D, () dydode
0 QJY,

Using (7.15), we show that

e—0

T
hm/o /ﬂ /Y IT¢(D(uf)) — D, (u®) — D, (u")[? dydzdt = 0. (7.16)
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Indeed, we have
/T/ |7¢(D(u®)) — D, (u®) — D, (u")|? dydadt (7.17)
Y
< Ao/ // T AT (D)) = Da(u®) = Dy ("))
Dy (u®) = Dy(u')) dydadt

Y / / / T#(A(F())TH(D(w)) : T*(D(u?)) dydadt
o / / / AGF(E))(Da(0®) + Dy(uh)) : (D (u®) + Dy (u)) dydedt
20 / / || TEAFECD) - AFED) (Do) + Dy (ut):

: (Dy ( ))dyd:cdt
—on/ // T (A(F(5) (T (D)) — Do(u®) — Dy (uh))
: (Dy(u®) — Dy (u')) dydxdt.

The right hand side in (7.17) tends to zero for e — 0, since the sum of the first
two terms converges to zero by (7.15), the third term converges to zero due to the
strong convergence of ¢§ to ¢ in L2((0,T) x ), and the properties of the localization
operator 7 ¢, and finally, the forth term tends to zero due to the weak convergence of
T¢(D(u%)) to its two-scale limit. Thus, (7.16) is proved.

Next, we have that

/Ot/gicsD(uE):D(us)d:ch (7.18)
_/t /ﬂ/ TE(CEYT=(D(wF)) : T(D(uF)) dydadr
/ / / T*(C*)(T* (D(u)) - D, (u®) - D, (u")) :

— D, (u°) — D, (u")) dydzdr
+2/ // TE(CH)T(D(u?)) : (Dy(u®) + D, (u")) dydzdr
[ @) 4 D) (D) + Dy (1) g
0 JQJY,

Passing to the limit in (7.18), and using (7.14), (7.16), as well as generalized Lebesgue’s
theorem, we obtain

lim C*D(u®) : D(u®) dzdr (7.19)

e—0

QE
- / / / CO(Dy (1) + Dy(ub)) : (Dy(u®) + Dy(u)) dydardr
0 QJY,
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Now, passing to the limit ¢ — 0 in (7.13), we obtain

e—0

t
lim inf / / &2 D(0u) (7) 2 ddr (7.20)
0 (‘jc

+ liminf - [ AFE0)D (D) : Dl (1) de

e—0
t
5 | ] a4 Dy (Du(w) + D, ) dydndr
o Jaly.
t
:// / PO(Opu} + Xr, 0w (7, 2, y) dydadr
0 JI2 JF

t
+ / |Fy|(C50pul + C50,ul) (7, x)dwdr
0 T's

As in the first part of the proof, we now test the homogenized equations (6.59), (6.60),
and (6.61) with ¢ = 9;u°, 1 = 9;u', and ¢ = 9w respectively. Adding the obtained
equations gives

2A /Q v |Dy(atW0)(T)|2dﬁCdT (7.21)
+3 / AF( D) (D () + Dy(uh)) : (Da(u’) + Dy (u)) (¢) dyda
QJy;
_l ¢ 0 U.O u1 . uo U_l dr
2/0 /Q/YC (Dz(0”) 4+ Dy(u')) : (Dg(u®) + Dy(u')) dydad
:// Po(atu(l)+XFfatW(1))(T,x,y)dyd;pdT
0 JI's JFy

t
+/ |F5|(C50pa9 + C50,u8) (7, x)dwdr
0 Jr,

Inserting (7.21) into (7.20) and using again the lower-semicontinuity of the norms, as
well as the properties of the elasticity coefficients, we get

K 0 2
2/0 /Q ., |Dy (0w (T)|* dadr (7.22)
1 1 . 1
+5 / /Y AGEEOND: ) + D) (D) + Dy ))0)
SliIEIE(I)lf/O /5;52|D(8tu5)(7')|2 dzdr
+ lim inf % /Q A(F(E () DE (1)) : Dl (1)) d
= t W0 T 2 TaT
—/02/Q [ 100 da
by [ ] AT )+ D) s (D2 + D, (a)(0) dydo
aJy;

From (7.22), the convergences of the energies (3.21), and (3.22) follow, and the theo-
rem is proved. O
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8. Improved regularity for the homogenized problem. In the following,
we suppose d; independent of ¢J, i.e. d; is a strictly positive constant. Furthermore,
let c19 € C§°(Q2). Let us denote by Qr = [0,T] x Q.

THEOREM 8.1. The solutions of the homogenized system have the following ad-
ditional regularity properties:

he W120}3(QT)’ (8.1)
W120}3(QT) (8'2)
pr € H?(0,T; HY(Q) N HY (0, T; H*(2)), (8.3)
u’ € H%(0,T; H*(Q)), (8.4)
ul € H%(0,T; C (Y,; HY(Q))). (8.5)
Moreover, the effective transport velocity
3 . .
)= (W= 30 [ k)N )y | o) + [ e iy
j=1"Ys Yy
(8.6)
satisfies
H e 1°(Qr). (8.7)

Proof. For constant diffusion coefficient d;, we have that ¢ satisfies the following
problem with constant coefficients

Y,]0,c) — divy (d18V4c)) = |Yilg(cl, ) on(0,T) x © (8.8)
d18V ) -v =0 on (0,T) x 9N .
A(0,2) =c1p in Q, (8.10)

where the matrix 3 is given by (6.47). The estimates (4.59), and (4.48), imply that
¢y, ¢ are bounded in L2(0,T; H*(Q)) N L*(0,T; L?(£2)). Then, by interpolation, see
inequality (3.2), page 74 in [13], we obtain that

91(c}. ) € LY3(Qr), ga(c), 3) € L3(Qr), gs(c9) € L'3(Qr). (8.11)

Finally, using the parabolic regularity theory, see Theorem 9.1, page 341 from [13],
we obtain ¢ € Wfd}g(QT). This proves (8.1). To obtain improved regularity for ¢,
we first have to get improved regularity for displacements and pressure.

From the representation formula (6.32), we have

WOtz 8pf t :17)
owO (t,z,y)d Z/Y 7‘ (8.12)

Yy .7

Thus, since w° € C3(0,T; L*(2 x Yy)), and the permeability tensor K from (6.34) is
symmetric and positive definite, we have that

pr € H*(0,T; H*()). (8.13)
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Due to the regularity of the concentration ¢{, i.e.

& € Wiy )5(Qr), with 10/3>3 =n,
we have that ¢ € L'%/3(0,T;C*()). Due to the definition (2.7), it follows that the
components of the tensor A(F(c})) belong to C3([0,T], C*(Q)), and for the solutions
w® and 4” to the problems (6.9) - (6.11), respectively (6.12) - (6.14), we have

w’ e CH(Y,;C3([0,T],C*(Q))3, P € C'(Ys; C3([0,T],CH(Q)), (8.14)

see e.g. Theorem 9.1, page 341 in [13].
To obtain additional regularity for u°, let us write the homogenized problem in
the equivalent form:

—Div, { A" (t,2)Dy(u’)} = Div, {B" (t,2)ps(t,z)} (8.15)
Y IVapsltia) i (0,T) x ©
A (1, 2) Do (0) -1 = —pp(t,) (B — Y1) - (5.16)
n { 0, on (0,T)xTy
(g, POdy, [FL|C5, |F:|C5),  on (0,T) x T
u’(t,2) =0 on (0,T) x I's, (8.17)

where the tensor A¥ is given by (6.16), and
B (1) = | AGF(E (2D, (07 (b2, (8.18)

Extending the right hand side in (8.16) to €2, and including it in the right hand side
in (8.15), we obtain homogeneous boundary conditions on I';y UT'3. Then, extending
the solution by uneven reflection with respect to I's, and using elliptic regularity, see
e.g. [2], we obtain

u’ € H%(0,T; H*()), (8.19)

which proves (8.4). Moreover, using the representation formula (6.15), together with
(8.4), (8.3), and (8.14), we obtain (8.5).

To obtain the second part of (8.3), we remark that the representation formula
(6.32) together with the continuity equation (6.35) yield

—div, (KVpy) = —div,(|Y]|0;u®) + / div,0u'dy (8.20)

s

— —div, (|Yf[d”)

—|—8tpf/ divyyPdy —|—pf/ divyOyPdy

s

3 3 3 g
+ 3 (Da(0u%)); /Y div(w)dy + 3 (D, (u)); / div(@yw'?)dy

ij=1 s ij=1 Ys
pf=0 on (0,T)xT, (8.21)
pr=P° on (0,T)x Ty (8.22)
owldy-v=0 on (0,T) x I3 (8.23)

Yy
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Now, extending the solution py by reflection on I's, and taking into account the
regularity of the right hand side in (8.20), elliptic regularity theory, see e.g. [2], yields

py € H'(0,T; H*(Q)),

and (8.3) is proved. As a consequence, using the representation formula (8.12), we
obtain

ow'dy € H'(0,T; H*(Q)) C L>=(Q7). (8.24)
Yy

Now, we remark that, due to (8.4), and (8.24), the effective transport velocity
3 . .
vH (t,x) = (1] - Z/ dak(y)Vy N (y)e? dy) opu’ + orw'dy (8.25)
j=1"Ys

lies in L°°(Qr), which proves (8.7).
We now still have to get the regularity (8.2) for ¢9. For this, we write the effective
problem for ¢} in the equivalent form:

< / k(y)dy) aucl — div, (d2 ( / k(y)T(y)dy> vzc8>

3
+div, [Yy| — Z/ dok(y)Vy N (y)eldy | ou® + orwldy | 5
=Y Yy
= |Yalga(cl, &5) + [Yrlgs(c3) in (0,7) x €2

&y / k()Y (y)dy Vo) - v
Y

3
<|Yf| - Z/ dak(y) VN (y)e’ dy) dul +
1YY Yy
on (0,7) x T'3

8tw0dy1 A v=0

Cg =Ccop On (O,T) X (Fl U Fg)

3(0,7) = cag in Q.

Due to (8.11), and the Lipschitz property of the reaction terms, we have |Y|ga(c, ¢9)+
[Yrlgs(c3) € L13(Qr). Since v € L>®(Qr), we can again use the parabolic regu-
larity theory, see Theorem 9.1, page 341 from [13], to obtain

A€ W126}3(QT) C L>=(Qr)- (8.26)

For the last inclusion we used again Lemma 3.3, page 80 in [13]. O

9. Uniqueness for the homogenized problem. In this section, we prove
uniqueness for weak solutions of the homogenized system given in (6.59)-(6.71).

THEOREM 9.1. The system (6.59)-(6.71) has a unique solution satisfying the
reqularity properties from Theorem 8.1.

Proof. We start our uniqueness proof by studying the stability of the variables
describing the fluid-structure interaction, with respect to perturbations in the con-

centration ¢{. Thus, let u?,u},w?,pjc,c{’o, and c;’o, j = 1,2, be two variational
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solutions of the homogenized system (6.59)-(6.71). We denote their differences by

0 _— 40 0 41 — 41 1 0 — w0 0 — 1 2 0 _ .10 2,0
Ul =ul Uy u =up - Uy, W= W, — Wy, pf = py—py ¢ = ¢ —cp, and

§ = cy® — Y. Then, with A; = A(F(c}°)), the equations (6.59)-(6.61) imply the
following equations:

// A1 (D, (u%) —l—Dy(ul)) : Dy (p)dydax —// pr(t, x)divyedydx
alv. oy,
= [ | 4 = 4a)(D1 () + Dy 3 : D),
/Q/YS A1 (D, (u) + Dy(ul))Dy(1/))dyd:c - /Q /Yf ps(t, z)divyypdydx

— [ [ (4~ A)(Du () + Dy () D, (0)dyde

oy,
0y . _ ; =

2/Q . D, (0,w") : Dy({)dxdy /Q /Yf prdivyCdydx = 0,
forallp € H'(Q)?, ¢ =0 onT3, ¢ € L*(Q, H),,.(Y))?, and { € L*(Q, H,,,.(Yy))?, divy¢ =
0inYy x Q, ¢ =0 ondYy \ Y.

Now, we take ¢ = d;u’, ¢ = dyu', and ¢ = 9;w’. After summing up, we arrive
at

/Q/Y Al(Dm(U.O) + Dy(ul)) : ('“)t(Dm(uO) +Dy(u1)) (9.1)
w92
w2 [ Do)
—// pr(t, )0 (div,u’ + divyu' + div,w?) =
Jy;

/Q /Y (A1 — Ao)(Dy(ul) + Dy (ub)) : 0,(D,(u°) + Dy (ul)

Using now (6.62), which is valid also for the difference of solutions, and the periodicity
property of u!, we obtain

/ div, (9,u® 4 9;w°) + div, (Ou')dy =
Yy

O /divyuldy—i—/ divyu'dy | =0
Y, Yy

Hence
—/ / py(t, )9 (div,u’ + divyut + div,w?) = 0. (9.2)
o Jy;

Furthermore, let B = D, (u) + D, (u'). Then, we have

1 1
// AlB:atB:—at(//AlB:B>——// O(ANB:B  (9.3)
QJYs 2 QJYs 2 QJYs
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Finally, for the last term on the right hand side in (9.1), we have:
/Q / (A — As)(Ds (ul) + D, (ub) : 9B dyda 9.4)
0 [ | (A = 4D + Dy (u}) : Blyda
~ [ ] A = A (Do) + Dy (1) : Bedyda
— [ ] (A= AD. (@) + D, @) : B,

and the following estimate holds:

t
/ / / (A1 — A2)(Dy(ul) + Dy(u})) : 0B dydxdr (9.5)
0 QJYs
<AL~ A2||L§°L2 {||Dw(ug)||L§°Lg + ||Dy(u%)||L$°L2L§} ||B(t)||L§L§
t
10 (Ar = A2) | g / {1ID2 (@)l () + 1Dy (01513 (7) } x
% ||B((7)) |2 2dr
t
(A = A2l zgery / {11D2(0rud)l e (7) + 11Dy (Orud)l o3 (7) } %
<|IB((T)l|z2 2 d,
where we denoted by || - ||Lng =||- ||LP(O,t;Lq(Q))a I - ||L§Lg =||- ||LP(Q;L‘1(YS))7 and
Il - ||LngLg =1 ||LP(O,t;Lq(Q,LT(YS)))- After inserting (9.2), (9.3), (9.5) in (9.1), we
obtain:
1
5 [ AL + Dy @) (Duu) + D)) (9.6)
QJYs
t
+2/ / |Dy(8tw0)|2
o JaJy;
1 t
<310 llizss [ [ [ 1D) 4 Dy )P dydndr
0 QJY,
+C AL = Asl e 13 [| (D (0°) + Dy () (1) 32 .
t
+C10:(Ar — Azl s / 1(Da(u?) + Dy (uh)(7)l| 2 12 dr
0
t
+C|l AL — Al 1 / (D4 () + Dy (u))(7)] |2 2 dr
0
Let Y(t) = f(f Jo Jy [(D2(0®) + Dy (u'))(7)|? dydaxdr. Then (9.12) implies
d t
o+ [ [ [ e 0.7
dt o Jaltv;

S CY(t) + C{|l A1 — Azl e s + 1101 (A1 — A2)|| Lo s }
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Using Gronwall’s inequality, we obtain for all ¢t € (0,T)

/ / (D (u®) + Dy (uh))(1)]2 dyd (9.8)
QJY,

< C {111 = Aol o iz + 110 (AL = A2)] B o220 |

where

(A - ) = () - EFED) A (el (0.9)

HREE) [ G- -

Using analogous techniques, in the following we obtain similar stability estimates
for the time derivatives. We derive equations (6.59)-(6.61) with respect to time
and consider the equations satisfied by the differences 9;u® = 9;(u§ — u9), dut =
O (uf —ul), Ow" = 9(w) — w)), and dpy = (?t(p} —p?c):

/2/ A1 (D (0pu”) + Dy (9pu')) : m(w)—/ﬂ Oips(t, x)divap

¢ Y

/Q/ (A1 — A2) (D, (0pud) + Dy (0pud)) : Dy()
_/z/Y (0r A1 — 0 A2) (D4 (05u?) + Dy(atu})) . Dy ()

€

‘/ / O1As(Dy () + Dy(uh)) : Do),
QJY,

// Al(Dz((?tuo)+Dy(8tu1))Dy(1/))dydz—/ Opy(t, x)divyy
21y, Q

¢ '

- / / (A1 = A2) (Do () + Dy (Bub)) Dy (1)
QJY,

- /Q / (O Ar — 0,A5)(Dy(ud) + Dy (ub)) Dy (1)

- / Oy A (D (1) + Dy (') Dy (1),
QJYs

2/Q v, Dy(attwo) : Dy (€) —/ dipsdiva¢ = 0.

QJy;

Now, we take ¢ = 9yu® € L%(0,T; H'(2))3,¢ = dpu' € L*(Qr; HL,, (Ys)), and

per
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¢ = 0uw" € L*(Qr; H),,(Yy)). After summing up, we arrive at

/ / A1 (D (9;u°) + Dy (9;u')) : 9;(D,(0;u’) + D, (0pu')) (9.10)
QJYs

+2/ | Dy (0w ) ?
QJy;
- / Opy(t, x)@tt(divzuo + divyu1 + divmwo)
QJy;
= / (A1 — A2)(Dy(0pul) + Dy (0pu3)) : 04(D(9,u’) + Dy (9ut))
QJY,
~ [ ] @~ 02) (D) + Dy () - (Du@i) + D, (B
QJY,
- / / O As (D (1) + Dy () : (Do (0 + Dy (Beru)),
QJY,
Once more, we can use (6.62), to conclude that
/ lem (8ttu0 + 8ttW0) + ley (8ttu1)dy = 0,
Yy
and thus
—/ Opy(t, ©)Op (divyu® + divyut + div,w?) = 0. (9.11)
QJy;

We estimate now the terms on the right hand side of (9.10) analogously to the right
hand side in (9.1), and obtain

/ / A1 (D, (0u°) + Dy (0put)) : (D4(9;u”) + D, (9;ut)) (9.12)
QJYs

t
+// Dy (0rw?)[?
o Jaly;

<o t [ [ 10200+ D, 00t ()
e / t L[ (D(u) + Dy ) (7) dydads

4 [ [ 1Da(w) + D, ()P dyd
Jy,
+C {||A1 — Ao Foc s 4 1106 (A1 — A2)[[ o0 3 + [0 (A1 — ~A2)||%§°L§}
Using now (9.8), and Gronwall’s inequality, we obtain for all ¢ € (0,7")
1Dz (u) + Dy (") ()] 202 (9.13)
+ [|D2(81u°) + Dy (9pu)) (1)]| 22 (2xv2)

< C{|lAL = Asl| 0,052 + 1106 (A1 — A2)|| Lo (0,623(02)) }
+ C |01 (A1 — A2)|| Lo~ (0,603 (22))

< Ol AN L 0,525 (9)-
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Estimates (9.12), and (9.13) now imply

10:0°[ 22, + | /Y Bew’ dyl|12(q,) < Clletl| L0605 ())-
f

(9.14)

The next step in the proof is to study the stability of the concentration ¢y with
respect to the concentration ¢{. Let us denote by ko = fy y) dy. Then the difference

1 2 .
§ = ¢y° — ¢3° satisfies the following equation

/ /Qkoatc2¢+/ /QdQ/ y)dy Vo3Vt dz
//v102v¢dx—// —v2 OV@/Jdac

-] |Y|(gz<cl ) a0, ) it

//w 95(ch®) — gs(&9)) .

where the effective transport velocities v/, i = 1,2, are given by

3
vﬁ(t,x):(w_z/ dok(y)V N (9)eddy) o + [ Brwidy

Yy

see also (8.6). Now, we insert in (9.15) as test function ¢ = ¢3, and obtain

/k0|c2 |2d:c+/ /dg/ (y)dy |V ico|? dedr
/ /vl AV .3 d:ch—l—/ / — i) VmCQ dxdr
Q Q

w1l (e, ) - gg<c§0,c§*°>) Sdrdr
w1 () - gu(B))
0

Let us now estimate the terms on the right hand side of (9.16).

< il @olldllL2@n IVl L200)

<6|Vachl|F20 + CO]720,

vl HOV ) dedr

2,0
(Ufl — v ey "'V Y dadr

< ||U1 — 3 |2 13 L (i) I VBl L2,
< 68|[VaddlF20, + CO)of —vd! 1720,

el (satet®.e4) - u(2°, 3)) e
Q

< C (8132, + lIc8l132(0,))

t
[ [ 1951 (sateh®) = ga(3)) f dnar
0 JQ

< Clleb]1 720

(9.15)

(9.16)

(9.17)

(9.18)

(9.19)

(9.20)
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To estimate the difference |[vff —v8||12(q,), use the stability estimate (9.14) to obtain

ot — 8 Lo (0,6:02(0)) < ClIS L1025 @) (9.21)

Inserting now (9.17)-(9.20), and (9.21) in (9.16) leads to the following estimate

t
/ ol (1) 2dx +/ / dg/ k()Y (y)dy |Vacd|? dadr (9.22)
Q 0o Ja Ty
< C (18120 + 11813200 + 81131 05222
Now applying Gronwall’s inequality yields the following stability estimate
[le9l] e 0,652 < C (Hc(l)“%?(@t) + ||C(1)||2Ll(0,t;L3(Q))) (9.23)
< CN AL 0,025

Finally, we consider the equation for the difference ¢ = ¢;% — ¢2°. Using (6.67),
we obtain

t t
|YS|/ /8tc(1)g0d:cd7'+/ /d16Vc(1)Vgpd:ch: (9.24)
0o Jo 0 Jo

t
Yl [ [ (e = an(@.3)) pdadr

Testing with the ¢ = ¢} leads to

t
[idor st [ [ asvepasr = (e + 1) ©29)

Inserting (9.23) in (9.25), and using interpolation, we obtain

t
/Q |Y(t))? dx +/0 /Q d1 BV dedr < C||c(1)||%2(Qt), (9.26)

which then, by Gronwall’s inequality, leads to
& =0a.e. on (0,T) x Q. (9.27)

The result (9.27), together with the stability estimates (9.12), (9.13), and (9.23) prove
the uniqueness of the variational solution to the homogenized system (6.59)-(6.71). O
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