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Abstract. We present modeling of an incompressible viscous flow through a

fracture adjacent to a porous medium. A fast stationary flow, predominantly
tangential to the porous medium is considered. Slow flow in such setting can
be described by the Beavers-Joseph-Saffman slip. For fast flows, a nonlinear

filtration law in the porous medium and a non- linear interface law are ex-
pected. In this paper we rigorously derive a quadratic effective slip interface
law which holds for a range of Reynolds numbers and fracture widths. The
porous medium flow is described by the Darcy law. The result shows that

the interface slip law can be nonlinear, independently of the regime for the
bulk flow. Since most of the interface and boundary slip laws are obtained via
upscaling of complex systems, the result indicates that studying the inviscid
limits for the Navier-Stokes equations with linear slip law at the boundary

should be rethought.

1. Introduction. Coupling between a fast viscous incompressible fracture flow and
an adjacent filtration through porous medium occurs in a wide range of industrial
processes and natural phenomena. The classical approach is to model the fracture
flow using the lubrication approximation and to include it as an interface condition.
Subsequently, it is coupled with a porous medium flow, described for small Reynolds
numbers by the Darcy’s law and by the Forchheimer’s law in the case of large
Reynolds’ number.
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Study of the coupling between a slow viscous incompressible fracture flow and a
porous medium was undertaken in [3] and [4]. For the critical fracture width, the
interface condition linked to the Reynolds’ equation from lubrication was found.

To describe a contact between a porous medium and a large fracture with the
width significantly larger than the pore size, the following effective slip interface
law was established in the seminal work by Beavers and Joseph [2],

√
K
∂vτ
∂n

= αBJvτ +O(K), (1)

where αBJ is a dimensionless parameter depending on the geometrical structure of
the porous medium and K is the scalar permeability. vτ is the tangential velocity
and n is the unit normal exterior to the fluid region. Note that in the original version
of the law (1), vτ was replaced by the difference between vτ and the tangential
Darcy velocity at the interface. In [18], Saffman remarked that the tangential
Darcy velocity at the interface is of order O(K), hence of a lower order. Then, the
slip law without the tangential Darcy velocity at the interface (1) became generally
accepted.

The rigorous derivation of the law by Beavers and Joseph through the homoge-
nization limit and by constructing the interface boundary layer was done by Jäger
and colleagues in [10], [11] and [12]. The pressure jump at the interface was studied
analytically in [16] and using numerical simulations in [6]. For the review of the
results we refer to [13], [17] and [7].

Sahraoui and Kaviany investigated in [19] a flow at the interface between a frac-
ture and a porous medium by direct numerical simulations. One of the questions
they studied was about the interface laws in presence of large Reynolds’ numbers.
The interface slip behavior in that case turned out to be complex. It was concluded
that the flow inertia effects appear independently from the bulk nonlinear filtra-
tion in the porous medium. If ε is a characteristic nondimensional pore size, then
for longitudinal Reynolds’ numbers of order O(1/ε), numerical simulations indicate
that the slip law ceases to be linear. The inertia forces at the interface become
significant for Reynolds’ numbers of order O(0.1/ε). Then, the slip coefficient αBJ

increases. For the bulk porous medium flow, the nonlinear effects become visible
only for Reynolds’ numbers greater than O(3/ε). Those observations led to a con-
clusion that αBJ depends on the Reynolds’ number, [14] and [9]. Similar conclusion
is in [15].

However, it seems that a linear slip law, even with the slip coefficient depending
on Reynolds’ number, is not enough to get an accurate description of the observed
phenomena and a nonlinear slip law has to be derived. We will justify it by con-
structing rigorously an accurate approximation to the velocity field and showing
that it leads to a quadratic slip law.

In the present paper we aim to identify a setting corresponding to a nonlinear
slip law. We show that for a range of values of Reynolds’ number and fracture
width, the homogenization leads to a nonlinear interface law, even though the bulk
filtration remains of the Darcy type. To streamline the presentation, we focus
on a mathematical model in a simple setting. We consider a constant driving
force, present only in the fracture and, for simplicity, impose periodic longitudinal
boundary conditions for the velocity and for the pressure. Such simplification
allows to avoid handling the pressure field and the outer boundary layers. The
general case of nonstationary flows with physical boundary conditions and forcing
terms will be considered in forthcoming papers.
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The paper is organized as follows: In section 2, we define the problem as a
stationary incompressible Navier-Stokes flow with Reynolds’ number of the order
ε−γ and the fracture width of the order εδ. Assuming a relation between γ and δ,
allows us to obtain an approximation which satisfies a nonlinear slip law (11), while
keeping a linear filtration equation in a porous medium. In section 3 we construct
the approximation and prove that it provides a higher order approximation to the
original problem.

2. Main result.

2.1. Geometry. We consider a two dimensional periodic porous medium Ω2 =
(0, 1) × (−1, 0) with a periodic arrangement of the pores. The formal description
goes along the following lines:

First, we define the geometrical structure inside the unit cell Y = (0, 1)2. Let
Ys (the solid part) be a closed strictly included subset of Ȳ , and YF = Y \Ys (the
fluid part). Then, we introduce a periodic repetition of Ys all over R2 and set
Y k
s = Ys + k, k ∈ Z2. Obviously, the resulting set Es =

∪
k∈Z2 Y k

s is a closed

subset of R2 and EF = R2\Es in an open set in R2. We suppose that Ys has a
smooth boundary. Consequently, EF is connected and Es is not. Finally, we notice
that Ω2 is covered with a regular mesh of size ε, each cell being a cube Y ε

i , with
1 ≤ i ≤ N(ε) = |Ω2|ε−2[1 + o(1)]. Each cube Y ε

i is homeomorphic to Y , by linear
homeomorphism Πε

i , being composed of translation and a homothety of ratio 1/ε.
We define Y ε

Si
= (Πε

i )
−1(Ys) and Y

ε
Fi

= (Πε
i )

−1(YF ). For sufficiently small ε > 0,

we consider a set Tε = {k ∈ Z2|Y ε
Sk

⊂ Ω2} and define

Oε =
∪

k∈Tε

Y ε
Sk
, Sε = ∂Oε, Ωε

2 = Ω2\Oε = Ω2 ∩ εEF .

Obviously, ∂Ωε
2 = ∂Ω2 ∪ Sε. The domains Oε and Ωε

2 represent the solid and the
fluid part of the porous medium Ω, respectively. For simplicity, we assume 1/ε ∈ N.

Let 0 < δ < 1. We set Σ = (0, 1) × {0}, Ωε,δ
1 = (0, 1) × (0, εδ) and Ω =

(0, 1)× (−1, εδ). Furthermore, let Ωε = Ωε
2 ∪ Σ ∪ Ωε,δ

1 .
In such geometry, homogenization of the Stokes equation with no-slip boundary

conditions on Sε leads to Darcy law (see [1], [8], [20] and [21]). In the presence of
inertia, nonlinear corrections to Darcy law arise, as studied in [5].

2.2. Position of the problem and the nonlinear slip law. Let 0 < γ < 3/2
and let F be a constant. In Ωε we study the following stationary Navier-Stokes
equation

−εγ∆vε + (vε∇)vε +∇pε = Fe11{x2>0} in Ωε (2)

divvε = 0 in Ωε,

∫
Ωε,δ

1

pε dx = 0, (3)

vε = 0 on ∂Ωε \
(
{x1 = 0} ∪ {x1 = 1}

)
, {vε, pε} is 1− periodic in x1. (4)

Remark 1. We skip here a discussion of modeling aspects. We only mention that
εγ stands for the inverse of Reynolds’ number and that the small fracture width εδ

prevents creation of the Prandtl’s boundary layer.
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In order to simplify calculations we take a constant F . It corresponds to an affine

pressure drop. Additionally, we assume its presence only in the fracture Ωε,δ
1 . Let

W ε = {z ∈ H1(Ωε)2, z = 0 on ∂Ωε \
(
{x1 = 0} ∪ {x1 = 1}

)
and z is 1− periodic in x1}. (5)

The variational form of problem (2)-(4) reads:

Find vε ∈W ε, div vε = 0 in Ωε and pε ∈ L2(Ωε) such that∫
Ωε

εγ∇vε∇φdx+
∫
Ωε

(vε·∇)vεφdx−
∫
Ωε

pε div φdx =

∫
Ωε,δ

1

Fφ1 dx, ∀φ ∈W ε. (6)

Theory of the stationary Navier-Stokes equations with homogeneous boundary
conditions results in existence of the least one smooth velocity field vε ∈ W ε , div
vε = 0 in Ωε, which solves (6) for every φ ∈W ε, div φ = 0 in Ωε. The construction
of the pressure field goes through De Rham’s theorem. For more details we refer to
the classical Temam’s book [22].

Now we make assumptions on the parameters δ and γ.

(H1): 2γ < 3δ,
(H2): 0 < δ < 1 and 0 < γ < 3/2,
(H3): 4δ < 2γ + 1.

and formulate the main result

Theorem 2.1. Let us suppose the hypothesis (H1)-(H3) and let U2,ε be defined by

U2,ε = vε + ε2δ−γ F

2

x+2
εδ

(
x2
εδ

− 1)e1 +
F

2
εδ+1−γβbl(

x

ε
)− F

2
εδ+1−γCbl

1

x+2
εδ

e1

−F
2
Cbl

1 ε
2−γβbl(

x

ε
) +

F

2
ε2−γ(Cbl

1 )2
x+2
εδ

e1 + (
F

2
)2ε2δ+3−3γβ1,bl(

x

ε
)−

(
F

2
)2ε2δ+3−3γCbl

11

x+2
εδ

e1, (7)

where the boundary layer functions βbl and β1,bl are defined, respectively, by (41)-
(44) and (63)-(66). The constant Cbl

1 < 0 is the stabilization constant for βbl
1 when

y2 → +∞. Similarly Cbl
11 is the stabilization constant for β1,bl

1 when y2 → +∞.

Then, the following estimate holds

ε∥∇U2,ε∥L2(Ωε)4 + ∥U2,ε∥L2(Ωε
2)

2 + ε1/2∥U2,ε∥L2(Σ)2+

ε1−δ∥U2,ε∥L2(Ωε,δ
1 )2 ≤ Cε7/2−δ−γ . (8)

Remark 2. The rigorous result from Theorem 2.1, showing that U2,ε is of order
O(ε3−δ−γ) on Σ, allows justifying a nonlinear interface law. Contrary to the clas-
sical situation, when Saffman’s modification of the linear slip law by Beavers and
Joseph (see [2] and [18]) is used, the nonlinear interface laws are rarely derived in
the literature. However, they are supposed to be appropriate for fast flows.
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Setting δ = 1 − 7η/12 and γ = 3/2 − η, where 0 < η < 3/2, which fulfills
hypotheses (H1)-(H3), we obtain on the interface Σ

v1(ε)|Σ = −F
2
εδ+1−γ(1− Cbl

1 ε
1−δ)βbl(

x

ε
)|Σ − (

F

2
)2ε2δ+3−3γβ1,bl

1 (
x

ε
)|Σ

= −F
2

√
εε5η/12(1− Cbl

1 ε
7η/12)βbl

1 (
x

ε
)|Σ − (

F

2
)2
√
εε11η/6β1,bl

1 (
x

ε
)|Σ

and for the average over the pore face on Σ

⟨v1(ε)|Σ⟩ = veff1 = −F
2

√
εε5η/12(1− Cbl

1 ε
7η/12)Cbl

1 − (
F

2
)2
√
εε11η/6⟨β1,bl

1 (
x

ε
)|Σ⟩. (9)

Next, for the shear stress we have

∂v1(ε)

∂x2
|Σ = εδ−γ F

2
− εδ−γ F

2

∂βbl
1

∂y2
|Σ,y=x/ε + ε1−γ F

2
Cbl

1 +
F

2
Cbl

1 ε
1−γ ∂β

bl
1

∂y2
|Σ,y=x/ε

−ε2−δ−γ F

2
(Cbl

1 )2 − (
F

2
)2ε2δ+2−3γ ∂β

1,bl
1 (xε )

∂y2
|Σ+(

F

2
)2εδ+3−3γCbl

11.

After averaging over Σ with respect to y1, we obtain

⟨∂v1(ε)
∂x2

|Σ⟩ =
∂veff1

∂x2
|Σ =

F

2
ε−1/2+5η/12(1 + ε7η/12Cbl

1 − ε7η/6(Cbl
1 )2)−

(
F

2
)2ε−1/2+11η/6(⟨

∂β1,bl
1 (xε )

∂y2
|Σ⟩−ε7η/12Cbl

11). (10)

Next, elimination of F/2 yields

veff1 = −Cbl
1 ε

∂veff1

∂x2

1− Cbl
1 ε

7η/12

1 + Cbl
1 ε

7η/12(1− Cbl
1 ε

7η/12)

−ε3/2+η⟨β1,bl(
x

ε
)|Σ⟩(

∂veff1

∂x2
)2 + O(ε3/2+29η/12(

∂veff1

∂x2
)2). (11)

The above formula results in Saffman’ version of the law by Beavers and Joseph,
if only the first term at the right hand-side is taken into consideration. For small
η, we obtain a significant deviation of the law by Beavers and Joseph from [18] and
[2]. We are not aware of any rigorous derivation of a nonlinear interface law for
the unconfined fluid flow coupled to the porous media flow.

3. Rigorous justification of the nonlinear slip law, generalizing the law
by Beavers and Joseph. In this section we extend the justification of the law of
Beavers and Joseph from [11] to the case of nonlinear laminar flows. In the proofs
we apply the following variant of Poincaré’s inequality:

Lemma 3.1. (see e.g. [20]) Let φ ∈ V (Ωε
2) = {φ ∈ H1(Ωε

2) |φ = 0 on Sε} and

ψ ∈ H1(Ωε,δ
1 ) such that ψ|{x2=εδ} = 0. Then, it holds

∥φ∥L2(Σ) ≤ Cε1/2∥∇xφ∥L2(Ωε
2)

2 , (12)

∥φ∥L2(Ωε
2)

≤ Cε∥∇xφ∥L2(Ωε
2)

2 , (13)

∥ψ∥L2(Σ) ≤ Cεδ/2∥∇xψ∥L2(Ωε,δ
1 )2 , (14)

∥ψ∥L2(Ωε,δ
1 ) ≤ Cεδ∥∇xψ∥L2(Ωε,δ

1 )2 . (15)
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3.1. The impermeable interface approximation. Intuitively, the main flow is

in the fracture Ωε,δ
1 . Following the approach from [11] we study the problem

−εγ△v0 + (v0∇)v0 +∇p0 = Fe1 in Ωε,δ
1 , (16)

div v0 = 0 in Ωε,δ
1 , (17)

v0 = 0 on ∂Ωε,δ
1 \

(
{x1 = 0} ∪ {x1 = 1}

)
, (18)

{v0, p0} is 1− periodic in x1,

∫
Ωε,δ

1

p0 dx = 0. (19)

Therefore, as in [11] and [13], for the lowest order approximation {v0, p0} we impose
on the interface the no-slip condition

v0 = 0 on Σ. (20)

Such choice leads to a cut-off of the shear and it introduces an error.
A unique solution of problem (16)-(19) is the classic Poiseuille flow in Ωε,δ

1 , sat-
isfying the no-slip condition at Σ. It is given by

v0 = −ε2δ−γ F

2

x2
εδ

(
x2
εδ

− 1)e1 for 0 ≤ x2 ≤ εδ; p0 = 0 for 0 ≤ x1 ≤ 1. (21)

Concerning the normal derivative of the tangential velocity on Σ, we obtain

∂v01
∂x2

= −εδ−γ F

2
(
2x2
εδ

− 1);
∂v01
∂x2

|Σ = εδ−γ F

2
. (22)

We extend v0 to Ω2 by setting v0 = 0 for −1 ≤ x2 < 0. p0 is extended by 0 to Ω2.
The question is in which sense this solution approximates the solution {vε, pε} of
the original problem (2)-(4).

A direct consequence of the weak formulation (6) is that the difference vε − v0

satisfies the following variational equation∫
Ωε

εγ∇(vε − v0)∇φ dx+

∫
Ωε

(
v01
∂(vε − v0)

∂x1
+ (vε2 − v02)

∂v0

∂x2
+

((vε − v0)∇)(vε − v0)

)
φdx−

∫
Ωε

pε div φ =

∫
Σ

εγ
∂v01
∂x2

φ1 dS, ∀φ ∈W ε. (23)

It leads to the following result, which is a generalization of the result proved in [11]:

Proposition 1. Let us assume that (H1)-(H2) are satisfied. Let {vε, pε} be a
solution of (2)-(4) and {v0, p0} defined by (21). Then, it holds for ε ≤ ε0

√
ε∥∇(vε − v0)∥L2(Ωε)4 +

1√
ε
∥vε∥L2(Ωε

2)
2 + ∥vε∥L2(Σ)+

ε1/2−δ∥vε − v0∥L2(Ωε,δ
1 )2 ≤ Cεδ−γ+1 (24)

Proof. We test (23) with φ = vε − v0 and obtain∫
Ωε

εγ |∇(vε − v0)|2 dx =

∫
Ωε

(v01 − vε1)(v
ε
2 − v02)

∂v01
∂x2

dx+

∫
Σ

εγ
∂v01
∂x2

(vε1 − v01) dS. (25)
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Applying Lemma 3.1 and formula (22) yield

|
∫
Ωε

(vε1 − v01)(v
ε
2 − v02)

∂v01
∂x2

dx| ≤ Cε3δ−γ∥∇(vε − v0)∥2
L2(Ωε,δ

1 )4
,

|
∫
Σ

εγ
∂v01
∂x2

(vε1 − v01) dS| ≤ Cεδ+1/2∥∇(vε − v0)∥L2(Ωε
2)

4 .

Using hypothesis (H1) and above estimates lead to∫
Ωε

εγ |∇(vε − v0)|2 dx ≤ Cεδ+1/2∥∇(vε − v0)∥L2(Ωε
2)

4 .

We apply once more Lemma 3.1 and (24) follows.

This provides the uniform a priori estimates for {vε, pε}. Moreover, we have

found that the viscous flow in Ωε,δ
1 corresponding to an impermeable wall is an

O(ε2δ−γ+1/2) L2-approximation for vε. The slip law, generalizing Beavers and
Joseph’s law, should correspond to the next order velocity correction. Since the
Darcy velocity is of order O(εδ−γ+3/2), we justify Saffman’s observation that the
bulk filtration effects are negligible at this stage.

3.2. Justification of the nonlinear slip law. We denote the jump on Σ by
[·]. At the interface Σ the approximation from Subsection 3.1 leads to the shear

stress jump equal to εγ
∂v01
∂x2

|Σ =
F

2
εδ. We correct the jump by constructing the

corresponding boundary layer.

The natural stretching variable is given by the geometry and reads y =
x

ε
. Then

the correction {w, pw} of the shear stress jump is given by

−εγ−2△yw + ε−1(w∇y)w + ε−1∇ypw = 0 in Ωε,δ
1 /ε ∪ Ωε

2/ε, (26)

divyw = 0 in Ω1/ε ∪ Σ/ε ∪ Ωε
2/ε, (27)[

w
]
(·, 0) = 0;

[
pw
]
(·, 0) = 0 and[

− εγ−1 ∂w1

∂y2

]
(·, 0) = εγ

∂v01
∂x2

|Σ =
F

2
εδ on

Σ

ε
, (28)

∇yw ∈ L2(Ωε/ε)4 and {w, pw} is 1/ε− periodic in y1. (29)

It is natural to rescale w and pw by setting

w = −εδ+1−γ F

2
β(y) and pw = −εδπ(y)F

2
.

Using periodicity of the geometry and independence of
∂v01
∂x2

|Σ of y, we obtain

−△yβ +∇yπ =
F

2
εδ−2γ+2(β∇y)β in Ωε,δ

1 /ε ∪ Ωε
2/ε, (30)

divyβ = 0 in Ω1/ε ∪ Σ/ε ∪ Ωε
2/ε, (31)[

β
]
(·, 0) = 0;

[
π
]
(·, 0) = 0 and

[∂β1
∂y2

]
(·, 0) = 1 on Σ/ε, (32)

∇yβ ∈ L2(Ωε/ε)4 and {β, π} is 1/ε− periodic in y1. (33)

We do not use directly the nonlinear boundary layer problem (30)-(33). Since by

(H2) we have δ− 2γ+2 > 0, we approximate {β, π} with {β0 +
F

2
εδ−2γ+2β1, π0 +
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F

2
εδ−2γ+2π1}, where the new functions are given through the following problems

−△yβ
0 +∇yπ

0 = 0 in Ωε,δ
1 /ε ∪ Ωε

2/ε, (34)

divyβ
0 = 0 in Ω1/ε ∪ Σ/ε ∪ Ωε

2/ε, (35)[
β0
]
(·, 0) = 0;

[
π0
]
(·, 0) = 0 and

[∂β0
1

∂y2

]
(·, 0) = 1 on Σ/ε, (36)

∇yβ
0 ∈ L2(Ωε/ε)4 and {β0, π0} is 1/ε− periodic in y1 (37)

and

−△yβ
1 +∇yπ

1 = (β0∇y)β
0 in Ωε,δ

1 /ε ∪ Σ/ε ∪ Ωε
2/ε, (38)

divyβ
1 = 0 in Ω1/ε ∪ Σ/ε ∪ Ωε

2/ε, (39)

∇yβ
1 ∈ L2(Ωε/ε)4 and {β1, π1} is 1/ε− periodic in y1. (40)

Because of the 1-periodicity of the geometry with respect to y1, we search for
{β0, π0} and {β1, π1} which are 1−periodic in y1. Then problems (34)-(37) and
(38)-(40) reduce to boundary layer problems introduced in [10].

The boundary value problem for β0 = βbl and π0 = πbl reads as follows: We
introduce the interface S = (0, 1)×{0}, the semi-infinite slab Z+ = (0, 1)×(0,+∞)
and the semi-infinite porous slab Z− = ∪∞

k=1(YF − {0, k}). The flow region is then
ZBL = Z+ ∪ S ∪ Z−.

Then the following problem is considered: Find {βbl, ωbl} with square-integrable
gradients satisfying

−△yβ
bl +∇yω

bl = 0 in Z+ ∪ Z− (41)

divyβ
bl = 0 in Z+ ∪ Z− (42)[

βbl
]
S
(·, 0) = 0 and

[
{∇yβ

bl − ωblI}e2
]
S
(·, 0) = e1 on S (43)

βbl = 0 on ∪∞
k=1 (∂Ys − {0, k}), {βbl, ωbl} is 1− periodic in y1. (44)

By Lax-Milgram’s lemma, there is a unique βbl ∈ L2
loc(ZBL)

2, ∇yβ
bl ∈ L2(ZBL)

4

satisfying (41)-(44) and ωbl ∈ L2
loc(Z

+∪Z−), unique up to a constant and satisfying
(41).

After [10], [11] and [12], we know that system (41)-(44) describes a boundary
layer, i.e. that βbl and ωbl stabilize exponentially towards constants, when |y2| → ∞.

Since we are studying an incompressible flow, it is useful to recall properties of
the conserved averages.

Proposition 2. ([10]). Let

Cbl
1 =

∫ 1

0

βbl
1 (y1, 0)dy1= −

∫
ZBL

|∇βbl(y)|2 dy. (45)

Then for every y2 ≥ 0 and y1 ∈ (0, 1), we have

|βbl(y1, y2)− (Cbl
1 , 0)| ≤ Ce−δy2 , for all δ < 2π. (46)

Corollary 1. ([10]). Let

Cbl
ω =

∫ 1

0

ωbl(y1, 0) dy1. (47)
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Then for every y2 ≥ 0 and y1 ∈ (0, 1), we have

| ωbl(y1, y2)− Cbl
ω |≤ e−2πy2 . (48)

Proposition 3. ([10]). Let βbl and ωbl be defined by (41)-(44). Then there exist
positive constants C and γ0, such that

|∇βbl(y1, y2)|+ |∇ωbl(y1, y2)| ≤ Ce−γ0|y2|, for every (y1, y2) ∈ Z−. (49)

βbl,ε(x) = βbl(
x

ε
) is extended by zero to Ω2 \Ωε. Let H be Heaviside’s function.

Then for every q ≥ 1 we have

∥βbl,ε − ε(Cbl
1 , 0)H(x2)∥Lq(Ω2∪Ωε,δ

1 )2 + ∥ωbl,ε − Cbl
ωH(x2)∥Lq(Ωε)+

ε∥∇βbl,ε∥Lq(Ω2∪Ωε,δ
1 )4 = Cε1/q. (50)

Hence, our correction is not concentrated around the interface and there are some
nonzero stabilization constants. We will see that these constants are closely linked
with our effective interface law.

As in [10] stabilization of β0,ε towards a nonzero constant velocity Cbl
1 e1, at

the upper boundary, generates a counterflow. It is given by the two dimensional

Couette flow d = Cbl
1

x+2
εδ

e1.

Now, after [10], we expected that the approximation for the velocity reads

v(ε) = v0 − F

2
εδ+1−γβbl(

x

ε
) +

F

2
εδ+1−γd =

−ε2δ−γ F

2

x+2
εδ

(
x2
εδ

− 1)e1 − F

2
εδ+1−γβbl(

x

ε
) +

F

2
εδ+1−γCbl

1

x+2
εδ

e1. (51)

Concerning the pressure, there are additional complications due to the stabilization
of the boundary layer pressure to Cbl

ω , when y2 → +∞. Consequently, ωbl,ε −
H(x2)C

bl
ω is small in Ωε,δ

1 and we should take into account the pressure stabilization
effect.

At the flat interface Σ, the normal component of the normal stress reduces to
the pressure field. Subtraction of the stabilization pressure constant at infinity
leads to the pressure jump on Σ and the correct pressure approximation would be

p(ε) = −F
2
εδ
(
ωbl(

x

ε
) − Cbl

ωH(x2)
)
. For the rigorous justification of the pressure

approximation, involving the Darcy flow generated by the pressure jump, we refer
to [16] . Numerical experiments, justifying independently the pressure jump are in
[6]. In this article we concentrate on the slip law and do not derive a pressure error
estimate. Consequently, for simplicity we take

p(ε) = −F
2
εδ
(
ωbl(

x

ε
)− Cbl

ω

)
. (52)

We now make the velocity calculations rigorous. Let us define the errors in
velocity and in the pressure:

Uε(x) = vε − v(ε), Pε(x) = pε − p(ε). (53)

Remark 3. Rigorous argument, showing that Uε is of order O(ε2−γ), allows justi-
fying Saffman’s modification of the Beavers and Joseph law (see [2] and [18]): On
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the interface Σ we obtain

∂v1(ε)

∂x2
|Σ = −εδ−γ F

2
(
2x2
εδ

− 1)|Σ − εδ−γ F

2

∂βbl
1

∂y2
|Σ,y=x/ε + ε1−γ F

2
Cbl

1

and
v1(ε)

ε
= −βbl

1 (x1/ε, 0)ε
δ−γ F

2
.

After averaging over Σ with respect to y1, we obtain the Saffman version of the law
by Beavers and Joseph

ueff1 = −εCbl
1

∂ueff1

∂x2
+O(ε2−γ) on Σ, (54)

where ueff1 is the average of v1(ε) over the characteristic pore opening at the nat-
urally permeable wall. The higher order terms are neglected. Nevertheless, for γ
close to 1 the Beavers and Joseph slip law isn’t satisfactory any more.

Next, the variational equation for {Uε,Pε} reads∫
Ωε

εγ∇Uε : ∇φ dx+

∫
Ωε

(
(Uε∇)Uε + (Uε∇)v(ε) + (v(ε)∇)Uε

)
φ dx

−
∫
Ωε

Uε div φ dx = −
∫
Ωε

(v(ε)∇)v(ε)φ dx−
∫
Σ

εφ1
F

2
Cbl

1 dS, ∀φ ∈W ε. (55)

Note that Uε is divergence free and the approximation satisfies the outer boundary
conditions. In analogy with Proposition 4, pages 1120-1121, from [11] we have

Theorem 3.2. Let us suppose the hypotheses (H1)-(H2) and let Uε and Pε be
defined by (53). Then, the following estimates hold

ε∥∇Uε∥L2(Ωε)4 + ∥Uε∥L2(Ωε
2)

2 + ε1/2∥Uε∥L2(Σ)2+

ε1−δ∥Uε∥L2(Ωε,δ
1 )2 ≤ Cε5/2−γ . (56)

Proof. We test (55) by Uε. Since div Uε = 0, Pε is eliminated from the equality.
Next, arguing as in the proof of Proposition 1, we see that under assumptions (H1)-
(H2) the viscous terms controls the inertia terms. Therefore, it remains to estimate
the forcing term and the interface term, coming from the counterflow. We have

(v(ε)∇)v(ε) = −F
2
εδ+1−γ

((
− ε2δ−γ F

2

x+2
εδ

(
x2
εδ

− 1) +
F

2
εδ+1−γCbl

1

x+2
εδ

−F
2
εδ+1−γβbl

1 (
x

ε
)

)
∂βbl(xε )

∂x1
− F

2
εδ+1−γβbl

2 (
x

ε
)
∂βbl(xε )

∂x2
+

βbl
2 (
x

ε
)e1

∂

∂x2

(
− ε2δ−γ F

2

x+2
εδ

(
x2
εδ

− 1) +
F

2
εδ+1−γCbl

1

x+2
εδ
))
.

Since ∇yβ
bl decays exponentially in y2 and the functions of x2 behave as x2ε

−δ for
small x2, we obtain

|
∫
Ωε

ε3δ+1−2γ x
+
2

εδ
(
x2
εδ

− 1)
∂βbl(xε )

∂x1
Uε dx| =

|
∫
Ω1,δ

ε3δ+1−2γ x
+
2

εδ
(
x2
εδ

− 1)
∂Uε

∂x1
(βbl(

x

ε
)− (Cbl

1 , 0)) dx| ≤ Cε2δ−2γ+5/2||∇Uε||L2(Ωε)4

(57)
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Next in the term

εδ+1−γ

∫
Ωε

βbl
2 (
x

ε
)e1

∂

∂x2

(
− ε2δ−γ F

2

x2
εδ

(
x2
εδ

− 1) +
F

2
εδ+1−γCbl

1

x2
εδ
)
φ dx

we perform first the integration by parts with respect to x2 and then use the in-
compressibility and the integration by parts with respect to x1 to get the bound
(57) also for it.

The leading order terms in (v(ε)∇)v(ε) turns to be

F 2

4
ε2δ+2−2γ(βbl(

x

ε
)∇x)β

bl(
x

ε
),

which is estimated as

|F
2

4
ε2δ+2−2γ

∫
Ωε

(βbl(
x

ε
)∇x)β

bl(
x

ε
) dx| ≤ Cε3δ−2γ+3/2||∇Uε||L2(Ωε)4 .

The above estimates yield

|
∫
Ωε

(v(ε)∇)v(ε)Uε dx| ≤ Cε3δ−2γ+3/2||∇Uε||L2(Ωε)4 (58)

|
∫
Σ

εUε
1

F

2
Cbl

1 dS| ≤ Cε3/2||∇Uε||L2(Ωε)4 . (59)

Applying Lemma 3.1 yields the estimate (56).

Before getting to the inertia term, it remains to correct the shear jump term

−
∫
Σ

εφ1
F

2
Cbl

1 dS. Only difference with correcting the jump term from equation

(23) is that that it is now of order ε, instead of being of order εδ. Furthermore,
F/2 is replaced by −FCbl

1 /2. We eliminate it by modifying slightly the velocity and
pressure corrections:

Corollary 2. Let assumptions (H1)-(H3) hold, and Uε, Pε be defined by (53).
Let

U1,ε = Uε − F

2
Cbl

1 ε
2−γβbl(

x

ε
) +

F

2
ε2−γ(Cbl

1 )2
x+2
εδ

e1, (60)

Then, the following estimate holds

ε∥∇U1,ε∥L2(Ωε)4 + ∥U1,ε∥L2(Ωε
2)

2 + ε1/2∥U1,ε∥L2(Σ)2+

ε1−δ∥U1,ε∥L2(Ωε,δ
1 )2 ≤ Cε5/2+3δ−3γ . (61)

The new shear stress jump term generated by correction (60) is given by

−
∫
Σ

ε2−δφ1
F

2
(Cbl

1 )2 dS.

Then, the corresponding estimate (59) in the proof of Theorem 3.2 takes the form

|
∫
Σ

ε2−δUε
1

F

2
(Cbl

1 )2 dS| ≤ Cε5/2−δ||∇Uε||L2(Ωε)4 . (62)

Due to hypothesis (H3), we have 5/2− δ > 3δ − 2γ + 3/2 and the new error terms
are less important than the leading inertia terms.

Finally, we correct the inertia term effects. We note that it is multiplied by
a small parameter εδ−2γ+2. We follow the idea from [5] and expand the solutions
to the nonlinear boundary layer problem (30)-(33) in powers of that parameter.
As already explained in the beginning of the section, the solutions of 30)-(33) take
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the form {β0 +
F

2
εδ−2γ+2β1 + . . . , π0 +

F

2
εδ−2γ+2π1 + . . . }. Furthermore, the 1-

periodicity of the geometry in y1-direction allows to replace β0 by βbl. It is similar
with β1. We recall that the leading error term for U1,ε results from (βbl∇)βbl. We
introduce the boundary layer problem for β1,bl:

−△yβ
1,bl +∇yπ

1,bl = (βbl∇y)β
bl in ZBL, (63)

divyβ
1,bl = 0 in ZBL, (64)

∇yβ
1,bl ∈ L2(ZBL)

4 and β1,bl ∈ L2
loc(ZBL)

2, (65)

β1,bl = 0 on ∪∞
k=1 (∂Ys − {0, k}) and {β1,bl, π1,bl} is 1− periodic in y1. (66)

The forcing term decays exponentially. Following [10], we know that the system
(63)-(66) describes a boundary layer, i.e. β1,bl and ω1,bl stabilize exponentially
towards Cbl

11e
1 and Cπ1 , when |y2| → ∞. Then, the correction reads

U2,ε = Uε − F

2
Cbl

1 ε
2−γβbl(

x

ε
) +

F

2
ε2−γ(Cbl

1 )2
x+2
εδ

e1+ (67)

+(
F

2
)2ε2δ+3−3γβ1,bl(

x

ε
)−(

F

2
)2ε2δ+3−3γCbl

11

x+2
εδ

e1, (68)

In complete analogy with Theorem 3.2 we prove Theorem 2.1.
To obtain estimate (8) from Theorem 2.1, it is enough to note that after (57),

the leading remaining inertia terms give a contribution bounded by

Cε2δ+5/2−2γ ||∇U2,ε||L2(Ωε)4

Next, using hypothesis (H1), we obtain that 5/2−δ < 2δ−2γ+5/2. Furthermore,
the leading order term is the shear stress jump term∫

Σ

ε2−δφ1
F

2
(Cbl

1 )2 dS.

It is estimated by (62), which yields (8).
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