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A phase-field method for propagating fluid-filled
fractures coupled to a surrounding porous

medium

Andro Mikelić ∗ Mary F. Wheeler † Thomas Wick ‡

The recently introduced phase-field approach for pressurized fractures in a porous medium of-
fers various attractive computational features for numerical simulations of cracks such as joining,
branching, and non-planar propagation in possibly heterogeneous media. In this study, the pressur-
ized phase-field framework is extended to fluid-filled fractures in which the pressure is computed
from a generalized parabolic diffraction problem. Here, the phase-field variable is used as indicator
function to combine reservoir and fracture pressure. The resulting three-field framework (elastic-
ity, phase-field, pressure) is a multiscale problem that is based on the Biot equations. The proposed
numerical solution algorithm iteratively decouples the equations using a fixed-stress splitting. The
framework is substantiated with several numerical benchmark tests in two- and three dimensions.
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1 Introduction

Presently, crack propagation in elastic and porous media is one of the major research topics in mechanical, en-
ergy and environmental engineering. Of particular interest is induced hydraulic fracturing or hydrofracturing
in subsurface modeling. This is a technique used to release petroleum and natural gas that includes shale gas,
tight gas, and coal seam gas for extraction. Fracking creates fractures from a wellbore drilled into reservoir
rock formations. There are economic benefits of extracting vast amounts of formerly inaccessible hydrocar-
bons. In addition, there are environmental benefits of producing natural gas, much of which is produced in
the United States from fracking making the country nearly energy-independent. Opponents to fracking point
to environmental impacts such as contamination of ground water, risks to air quality, migration of fracturing
chemical and surface contamination from spills, to name a few. For this reason, hydraulic fracturing is being
heavily scrutinized. This results in the need for accurate and robust mathematical and computational models
for treating fluid field fractures surrounded by a poroelastic medium.
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In principle, we deal with equations describing the porous medium which are based on Biot’s system [2–4] and
on the other hand, we need a framework for the description of pressurized and natural fractures. The combi-
nation of both settings leads to a challenging multiscale problem where only few results have been published
to date. For fracture descriptions and crack propagation, we use a fixed-topology phase-field approach that re-
models Griffith’s [25] criterium for brittle fracture [5, 7–10, 20]. Here, the lower-dimensional crack surface is
approximated by a phase-field function. This introduces a diffusive transition zone (brittle zone or mushy-zone
are also common expressions depending upon the discipline) between the broken and the unbroken material;
see Figure 1.

In this paper, we are specifically interested in fluid-filled fractures and their propagation in which two pressure
equations are coupled to a single model. Moreover, the reservoir zone is modeled as a linear elastic material
[17, 40]. Particular interest of such a modeling is in dam constructions, damage in blood arteries where blood
enters into the tissue, or processes in subsurface modeling. In the last years, several methods for pressurized
fracture and crack propagation have been proposed. Worthy to mention are the studies in [33] using an implicit
moving mesh algorithm; [41], employing a moving-mesh approach with local grid refinement; a special zero-
thickness finite element approach [11]; treating pressurized fractures with a boundary element method in a
reservoir [17, 23]; and the partition of unity and extended finite element approaches [26, 29] handling fluid
flow in a fracture. Another method of recent research is peridynamics that is employed to study pressurized and
fluid-filled fractures [30]. To the best of our knowledge, the previously mentioned phase-field approach was first
applied to pressurized cracks in [6], and a rigorous model investigation was first undertaken in [35, 36]. In these
models, the irreversibility condition for crack growth is of crucial importance. An efficient implementation and
verification of this constraint based on the augmented Lagrangian method is investigated in [46].

Figure 1: Explication of the fixed-topology finite element phase-field approach: Lower-dimensional cracks are
approximated with the help of a phase-field function. The phase-field is an indicator function with
values 0 in the crack (red) and 1 in the unbroken zone (blue). The mushy-zone provides a smooth
interpolation between 0 and 1 indicated in green color. The middle figure shows the evolution of these
two cracks at the final time. Here, we observe the major advantages of this approach such as joining,
branching and nonplanar crack growth in heterogeneous media. The right subfigure focuses on the
branching in the green square. Moreover, the fixed grid is shown illustrating that no grid adaptation
is applied in the phase-field method. The figures are extensions of our numerical results shown in
Section 4 using heterogenous geomechanical parameters.

The major advantages of using phase-field modeling for crack propagation are four-fold. First, it is a fixed-
topology approach in which remeshing is avoided. Second, the model is purely based on energy minimization
and crack nucleation, propagation and the path are automatically determined (avoiding postprocessing of certain
quantities such as stress intensity factors). Third, joining and branching of (multiple) cracks do not require any
additional techniques. Consequently, it allows simple handling of large and complex fracture networks in

2



Fluid-filled fractures in heterogeneous porous media

heterogeneous media as illustrated in Figure 1. It is important to notice that quantities of interest such as the
crack opening displacement (the aperture) can be recovered with the help of the phase-field function or (as
shown in this work) it can be used as indicator variable to distinguish different time-dependent domains.

In the following, we briefly describe the underlying equations and their coupling. Our model consists of the
fixed stress split of the Biot equations, with the phase field regularization in the mechanics part, which has been
introduced in [35, 36]. In this splitting, we first solve the ”fixed stress” [38, 42] for the pressure. The equations
are posed in the poroelastic reservoir ΩR(t) and in the fracture ΩF (t). On Γ(t) = ΩR(t) ∩ ΩF (t) we impose
interface conditions. T hen, we have

ϑj∂tpj + div
(Kj

ηj
(ρ0
jg −∇pj)

)
=
qj
ρ0
j

in Ωj(t), j = R,F, (1)

KR

ηR
(ρ0
Rg −∇pR) · n =

KF

ηF
(ρ0
F g −∇pF ) · n and pR = pF on Γ(t). (2)

Next, the calculated pressures are used to solve the mechanics part of the ”fixed stress” system. This system is
modified (as described in [35, 37]) and includes the phase field characterization of the fluid-filled pressurized
fracture.

− div
{(

(1− κ)ϕ2
+ + κ

)
Ge(u)

}
+ ϕ2

+∇p+ (α− 1)∇(ϕ2
+p) = 0

in Ω = ΩR(t) ∪ Γ(t) ∪ ΩF (t), (3)

We finally introduce the phase-field equation:

L(u, ϕ) = −Gcε∆ϕ−
Gc
ε

(1− ϕ) + (1− κ)ϕ2
+Ge(u) : e(u)+

2(1− α)ϕ+p div u+ 2ϕ+∇p · u ≤ 0 in Ω, (4)

∂tϕ ≤ 0 in Ω, ∂tϕ · L(u, ϕ) = 0 in Ω. (5)

We recall that G is Gassmann’s elasticity tensor, characterized by Lamé’s constants λ and µ, α(≈ 1) is Biot’s
parameter, Gc is the fracture toughness and ε and κ, κ� ε are small positive parameters. The calculated phase
field ϕ is used to update the fracture domain ΩF (t) and the globally defined displacement field u is employed
to update qR.

In our proposed solution algorithm, we then go back to equations (1)-(2); solving again for the pressures and
continuing with the iterative process. Equations (1)-(2) for the pressures are introduced and discussed in detail
in Sec 2. A special attention is brought to the explanation of the model (of the coefficients and of the interface
conditions). The fracture domain is considered as a 3D domain and in Remark 2.2 we give details on the
permeability interpolation. Equations (3)-(5) are stated in subsection 2.5 in their time discretized (incremental)
form. The constraint ∂tϕ ≤ 0 is handled using penalization. Detailed explanation of the equations are provided
in [35–37].

As we see from the previous equations, geomechanics and reservoir flow are coupled through volume terms
through the fixed-stress iteration. Reservoir pressure and fracture pressure are coupled through an interface law
and in addition, an interface law is employed to couple fracture pressure to geomechanics and phase-field (a
detailed derivation can be found in [35, 37]).

Summarizing and with regard to the existing studies presented in [36, 46], the present paper presents two
novelties:

• Combining the full Biot system with phase-field modeling; namely the fixed (synthetic) pressure used in
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[36, 46] is replaced by the Biot pressure. This is a major extension resulting in a multiscale formulation;

• We introduce a weighted pressure diffraction formulation in which the phase-field variable is used as
indicator function determining the location of the fracture;

The numerical discretization is based on an incremental version [36, 46]. In particular, a Galerkin finite element
scheme is used for spatial discretization. Our solution algorithm is based on the fixed-stress split [38] in which
the equations are solved in a decoupled fashion. That is, we have an additional outer loop arising from the
augmented Lagrangian penalization, we solve in the following way:

• On the inner level, the fixed-stress iteration is employed to solve the pressure-elasticity problem. In
particular the fixed-stress splitting allows for the possibility of sophisticated solvers for the linear system;

• In the outer augmented Lagrangian loop, we solve iteratively to satisfy the irreversibility constraint of
crack growth;

• Then we continue the next time step;

• The nonlinear phase-field equation is solved with Newton’s method whereas the two other problems are
linear.

Of particular interest is the interaction and discretization of the pressure equations. In most studies the fracture
flow is computed with a lower-dimensional lubrication equation) [11, 29, 41]. However, [44, 45] and [27]
introduced a coupling of reservoir and fracture pressure formulated in the same dimension. They define a
fracture porosity to compute pressure in those cells (i.e., grid blocks) which are (partially) occupied by the
fracture. In our work, we apply the phase-field variable as an indicator function to differentiate between the
equations. It is established in [36] that the phase-field variable is a smooth function, which avoids well-known
difficulties in numerical quadrature. In [27] a direction-dependent permeability tensor is introduced to account
for a permeability much higher along the fracture compared to the cross section. However, this method is
restricted to fracture growth only in x- and y coordinate directions. Our phase-field approach allows us to treat
general full permeability tensors. We emphasize in particular on an derivation of a 3d lubrication equation
for computing the fracture pressure based on mathematically consistent interface conditions. Moreover, it is
well known that the lubrication equation degenerates at the crack tip [18]. Since we extend to a 3d lubrication
approximation, the degeneration applies to the whole fracture-reservoir interface. Our proposed treatment is
akin to a cake-region [31], where we interpolate between the fracture and reservoir permeabilities.

The paper is organized as follows: In Section 2, we provide the notation and model formulation. Next, in
Section 3, the discretization and the solution algorithm are defined and existence of a generalized fracture
diffraction problem is established. The final Section 4 presents numerical tests. Specifically in two dimensions,
we consider crack growth and multiple joining cracks. In three dimensions, we compute a propagating penny-
shape crack in homogeneous media.

2 The equations for pressure, elasticity, and phase-field

In this section, we first derive reservoir and fracture equations based on mass continuity equations. We then
discuss a 3d lubrication equation for computing the fracture permeability and show the solvability of the coupled
pressure problem. In the final subsection, the variational three-field problem (pressure, elasticity, phase-field)
is formulated.

In the following, let Ω ∈ Rd, d = 2, 3 be a smooth open and bounded set. We assume that the crack C ∈
Rd−1 is contained compactly in Ω, i.e., it does not reach the boundary. In the approximation, the fracture is
approximated by a volume term and C becomes ΩF and ∂C = Γ(t). (see left Figure 2). We assume Dirichlet
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boundaries conditions ∂ΩD := ∂Ω and notice that Ω := ΩR(t) ∪ ΩF (t)∪Γ(t), where the two subdomains are
time-dependent and ΩR = Ω\(ΩF (t) ∪ Γ(t)) is the reservoir domain. Let I := (0, T ) denote the time interval.

ΩF (t1)

ΩF (t0)

x

t

y

Figure 2: Illustration of the domain, boundary conditions and crack approximation at left. Space-time cylinder
of the growing-in-time crack domain ΩF (t) at right.

We first consider the mass continuity equations for fluid flow following [12–15, 21] and describe the two
equations for the fracture and the reservoir, respectively:

∂tρF +∇ · (ρF vF ) = qF − qL in ΩF (t)× I,
∂t(ρRφR) +∇ · (ρRvR) = qR in ΩR(t)× I,

where qL describes a leak-off term and φR is the reservoir fluid fraction. It should be noted that the porosity
of the fracture is one. Here, the velocities are defined by Darcy’s law (for the fracture and the reservoir,
respectively):

vj = −Kj

ηj
(∇pj − ρjg), (6)

with j = F,R (denoting the fracture or the reservoir). In the previous equations, Kj is the permeability tensor,
ηj and ρj are fluid’s dynamic viscosity and its density, g is the gravity and qj is a mass flow rate (usually qj is
a point source modeling wells for fluid injection and production). A specific definition of Darcy’s law in the
fracture is derived in the next section.

The definition of the reservoir fluid fraction φR incorporates the volumetric strain εv = ∇ · u where u denotes
the vector-valued reservoir displacements and the gradient of the pressure:

−div
(
σ(u)

)
+ α∇p = 0 in Ω(t)× I.

Here α is Biot’s coefficient, which is discussed in the next section, and the stress tensor of linear elasticity is
defined by

σ(u) = 2µe(u) + λtre(u)I,

where the Lamé coefficients are denoted by λ > 0 and µ > 0, e(u) = 1
2(∇u +∇uT ), and I is the identity in

d-dimensions.
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2.1 Reservoir pressure equation

For the reservoir, we assume that the fluid is slightly compressible

ρR = ρ0
R exp(cR(pR − p0

R)) ≈ ρ0
R[1 + cR(pR − p0

R)],

where ρ0
R denotes the (constant) reference density and cR is the reservoir fluid compressibility. Following

[12, 14, 15], the reservoir fluid fraction can be expressed as

φR = φ0
R +

1

M
(pR − p0

R) + α(∇ · u− ε0
v), (7)

with the initial porosity 0 ≤ φ0
R, the initial volumetric strain ε0

v, the initial pressure p0
R, the Biot-Willis constant

(or Biot’s coefficient) 0 ≤ α ≤ 1 with α ∈ [0, 1]. The Biot modulus is M > 0.

As standard approximation in reservoir engineering, since cR is small, one uses ρR = ρ0
R in the mass and

momentum (Darcy law) equations:

∂t(ρ
0
RφR) +∇ · (ρ0

RvR) = qR,

vR = −KR

ηR
(∇pR − ρ0

Rg).

Taking in both equations ρR = ρ0
R and redefining M due to the expansion (7), we write the mass conservation

equation as:

ρ0
R∂t(

1

M
pR + α∇ · u)−∇ ·

KRρ
0
R

ηR
(∇pR − ρ0

Rg) = qR in ΩR(t)× I.

For later purposes and numerical stability (see for instance [21], p.57, or [34]), we further rewrite the fluid
fraction as

φR = φ0
R +

( 3α2

3λ+ 2µ
+

1

M

)
(pR − p0

R) +
3α

3λ+ 2µ
(σ̄ − σ̄0), (8)

where the mean stress is given by σ̄ = 3λ+2µ
3 εv − αpR. Here, cR =

(
3α2

3λ+2µ + 1
M

)
. Thus, we obtain

ρ0
R∂t

(( 3α2

3λ+ 2µ
+

1

M

)
pR +

3α

3λ+ 2µ
σ̄
)

+∇ · (ρ0
RvR) = qR in ΩR(t)× I. (9)

Equation (9) is well balanced (between fluid and solid effects) if the time scale is chosen as Terzaghi’s time TR.
The argument is based on a dimensionless form of Equation (9), i.e.,

ρ0
R

TR

P

Λ
=
ρ0
R

L

KR

ηR

P

L
,

from which we obtain

TR =
L2ηR
ΛKR

.

Here, P is the characteristic pressure, L is the characteristic length (here the reservoir length), and Λ is the
characteristic size of M and of the Lamé parameters µ and λ. We notice that µ, λ and M are usually of similar
order.
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2.2 Fracture pressure equation

For the fracture, we assume as before:

ρF = ρ0
F exp(cF (pF − p0

F )) ≈ ρ0
F [1 + cF (pF − p0

F )],

where ρ0
F denotes the (constant) reference density. Again,

ρF = ρ0
F ,

if the fracture fluid compressibility cF is assumed to be small.

In the following, we work with ρF := ρ0
F in the term∇· (ρF vF ) to avoid nonlinear effects (for the same reason

as before). The mass conservation in the fracture is then given by:

ρ0
F cF∂tpF +∇ · (ρ0

F vF ) = qF in ΩF (t)× I, (10)

i.e. (substituting the standard Darcy law),

ρ0
F cF∂tpF +∇ ·

KFρ
0
F

ηF
(∇pF − ρ0

F g) = qF − qL in ΩF (t)× I. (11)

The unknown sink (often referred to as the leak-off) term qL in the near-tip and at the crack boundary contains
the effects of their interaction with the surrounding poroelastic medium. In the Appendix, we provide a rela-
tionship of qL = ∇ · (ρF vF ) based on the mass loss at the moving boundary Equation (11) is well balanced if
Terzaghi’s time in the fracture is chosen as

TF =
L2ηF cF
KF

.

Since we have two Terzaghi time scales TR and TF , the coupled reservoir-fracture model (9) and (11), is
balanced if TR ≈ TF . In this case, the only ‘free’ parameter would be the fracture compressibility cF . However,
if this parameter is known (which is frequently the case), then it yields TF < TR because of the much higher
permeability in the fracture than in the reservoir. Thus, the time step should be chosen according to TF in
order to model the fracture dynamics. In fact, a realistic parameter choice (as taken in the numerical examples)
indicates that TF � TR. Then, it yields φR = φ0

R + O(TFTR ) and pR = −Mαdivu + Mφ0
R + O(TFTR ). At the

leading order, the displacement u ∈ ΩR is given by the Lamé-Navier-elasticity system with λ being replaced
by λ+Mα2, i.e., σ(u) = 2µe(u) + (λ+Mα2)tr(e)I , with a given ∇pR as right hand side force.

To account accurately for higher permeability along the fracture than to its cross section, we describe in the
following a tensor-valued permeability. Moreover, this definition allows for arbitrary directions that is not
restricted to one of the axis and is a generalization motivated by [27, 44]. The effective velocity for a given
crack used in Equation (10) is computed as

vF = −KF

ηF
(∇pF − ρF g) + vleak,

where the leak-off velocity vleak is defined below. Here, the fracture permeability is a tensor that is defined
in the following and derived in the Appendix. Its derivation is based on a 3d extension of the standard 2d
lubrication equation, where we assume that the fracture is a piece-wise linear nonplanar fracture.
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h(2)

h(1)

H

tip

flow v

x1

x3

Figure 3: Sketch of the near-tip fracture region for the two-dimensional setting. Its boundary x3 ± h(x1, x2, t)
moves in time. We assume that the characteristic width H of the fracture is much bigger than the
pore size of the porous medium. We recall that for H = c0l

2/3 where l is the pore size, a coupled
model must be taken into account. In three dimensions, the x2 coordinate goes into the plane and the
one-dimensional curve h(x1, x2, t) becomes a two-dimensional surface.

In three dimensions, we have

KF =

 K 0 −Ke∂x1 log Kabs

Ke

0 K −Ke∂x2 log Kabs

Ke

−Ke∂x1 log Kabs

Ke
−Ke∂x2 log Kabs

Ke
K


and

vleak =

 0
0

(1− Ke

Kabs )(∂th
(2) + v

(2)
out) + Ke

Kabs (∂th
(1) + v

(1)
out)

 ,
where K and Ke are functions of (x, t) given by (12) and (14). Kabs depends on (x1, x2, t) and is given by
(13). Specifically,

K(x3) =
1

2
(h(2)(x1, x2, t)− x3)(x3 − h(1)(x1, x2, t)); (12)

Kabs =
(h(2)(x1, x2, t)− h(1)(x1, x2, t))

3

12
; (13)

Ke(x3) =
(h(2)(x1, x2, t)− x3)2

12
(h(2)(x1, x2, t) + 2x3 − 3h(1)(x1, x2, t)). (14)

Here, h(1) and h(2) are given functions that can be considered as negative and positive displacements of the
crack, respectively. An illustration is provided in Figure 3. This means, h(1) + h(2) = 2w where w denotes
the half-width of the fracture. The characteristic width H of the fracture is chosen as H := max{−h(1), h(2)}.
Finally, the leak-off term is given by Dh(j)/Dt = −v(j)

out.

In two dimensions, the previous expressions reduce to

KF =

[
K −Ke∂x1 log Kabs

Ke

−Ke∂x1 log Kabs

Ke
K

]
,
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and

vleak =

[
0

(1− Ke

Kabs )(∂th
(2) + v

(2)
out) + Ke

Kabs (∂th
(1) + v

(1)
out)

]
.

Specifically, the leak-off can be obtained from

qL = div (ρF vleak),

where the leak-off velocity is (here in terms of the two-dimensional law)

vleak =

[
0

(1− Ke

Kabs )(∂th
(2) + v

(2)
out) + Ke

Kabs (∂th
(1) + v

(1)
out)

]
. (15)

Thus,

qL = ∂x3

(
ρF
(
(1− Ke

Kabs
)(∂th

(2) + v
(2)
out) +

Ke

Kabs
(∂th

(1) + v
(1)
out)
))
. (16)

Remark 2.1 The fracture width 2w := 2w(u) = h(1) + h(2) = −[u · n] is the jump of the normal reservoir
displacements and can be computed via its general definition

2w = −[u · n] = −[uxnx + uyny + uznz],

where n is the unit normal on the crack surface.

Remark 2.2 Both two and three-dimensional laws are valid except at the interface between the fracture and
the reservoir because of the degeneration of the terms Kabs. To avoid the singular behavior in modeling,
computations and loss of regularity, we determine a new permeability-viscosity ratio Keff by interpolation
between KR/ηR and KF /ηF in a so-called cake region [31] that is determined by the phase-field variable.
Our definition of the cake region is 0 < ϕlow ≤ ϕ ≤ ϕhigh < 1. Specifically, outside the cake region, we use
Keff = KR/ηR with ϕ > ϕhigh and Keff = KF /ηF with ϕ < ϕlow. The resulting interpolated permeability
Keff is Lipschitz-continuous in time and space (see Proposition 2.2).

2.3 A weighted pressure equation formulated as a diffraction problem

In the following, we shall derive a single pressure equation in Ω := ΩF (t) ∪ ΩR(t) with the time-dependent
interface Γ(t) := ΩF (t) ∩ ΩR(t) in which both sub-domain equations are described in the same dimension.
This is in contrast to many other studies where a lower-dimensional fracture pressure equation is coupled to the
reservoir pressure problem. In this work, the concept of phase-field modeling and therefore having an indicator
function χ provides a uniform way to couple the two pressure equations in the same dimension.

To begin, we notice that the crack domain ΩF (t) penetrates the poroelastic medium ΩR(t) with the interface
(i.e., the crack boundary) velocity vI . In addition, crack-fluid and reservoir velocities are given by vF and vR.
An illustration is provided in Figure 4. In general, it appears reasonable to assume vI · n ≥ vF · n ≥ vR · n.
In the next lines, we provide a mathematical compatible argument to cope with the interface velocity. The fluid
mass conservation equations require consequently the interface-corrected continuity of fluxes (first principle
Rankine-Hugoniot conditions):

ρ0
R(vR − vI) · n = ρ0

F (vF − vI) · n. (17)
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flow vF

vR

vI

Figure 4: Illustration of the three velocities vF , vI , vR.

The averaging property of the fluid mass conservation equations yields that any information of the tangential
velocity is missing. For our proposed approximation for crack propagation, we assume vIn 6= 0, and the
continuity law

vR · n = vI · n.

Combining these assumptions with (17) implies

vF · n = vI · n = vR · n.

Remark 2.3 This interface expression is compatible with vI ≡ 0, which arises when the crack is fixed; that is
ΩF and ΩR are time-independent and fixed. Then, (17) reduces to

ρ0
RvR · n = ρ0

F vF · n.

Remark 2.4 For detailed tip asymptotics of fluid-driven fracture, we refer the reader to [18, 19, 24, 39] and
the many references cited therein.

We now turn our consideration to a single pressure formulation in Ω. To this end, we introduce an indicator
function χ to distinguish between the both sub-domains. We extend the previous equations on the whole domain
Ω by defining χΩR

:= χΩR
(t) = 1 in ΩR(t) and χΩF

:= χΩF
(t) = 1 in ΩF (t), i.e., χΩF

= 1 − χΩR
. Thus,

we have

χΩR

(
(

3α2

3λ+ 2µ
+

1

M
)
)
∂tpR + χΩR

∇ · vR

= χΩR

qR
ρ0
R

− χΩR
∂t

( 3α

3λ+ 2µ
σ̄
)

in Ω× I,

χΩF
cF∂tpF + χΩF

∇ · (vF )

= χΩF

qF
ρ0
F

in Ω× I.

The resulting coupled equation is of generalized parabolic type with discontinuous coefficients and is a diffrac-
tion problem (see [32]). Specifically, the domain is divided into subdomains where two interface conditions
must be satisfied. Namely, these are continuity of the solution variable p and second, balance of forces.

The (generalized) pressure diffraction equation using Darcy’s law (6) reads:

θ∂tp−∇ ·Keff (∇p− ρ0g̃) = q̃ in Ω(t)× I, (18)
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where

θ = θ(x, t) := χΩR
θR + χΩF

θF = χΩR

(
(

3α2

3λ+ 2µ
+

1

M
)
)

+ χΩF
cF ,

q̃ = q̃(x, t) := χΩR

qR
ρ0
R

− χΩR
∂t

( 3α

3λ+ 2µ
σ̄
)

+ χΩF

qF
ρ0
F

; ρ0 = χΩR
ρ0
R + χΩF

ρ0
F ,

g̃ = χΩR
g + χΩF

(g +K−1
eff

vleak
ρ0
F

).

The interface conditions on Γ(t) := ΩF (t) ∩ ΩR(t) are given by

[p] = 0, (19)[
Keff (∇p− ρ0g̃)

]
· n = 0, (20)

where [·] denotes the jump.

The existence and uniqueness of the pressure diffraction problem using the above interface and the initial
conditions

pF |t=0 = p0
F in ΩF (0) and pR|t=0 = p0

R in ΩR(0). (21)

is established in the next section. We finish this section with the following remarks:

Remark 2.5 (Computation of the indicator function) The indicator function χ is computed via a phase-field
function which is defined in Section 2.5.

Remark 2.6 (Lower-dimensional fracture pressure equations) Many research publications concentrate on
the accurate description of the fluid equation in the fracture. Often, the fracture is identified as a lower di-
mensional manifold (a line in 2d or a plane in 3d) on which the lubrication equation is used, for instance in
[22, 33, 41]. Our strategy is different because the phase-field already requires a volume approximation and
can be used as indicator function as previously described. Consequently, we avoid a four-field problem (reser-
voir pressure, crack lubrication pressure, elasticity, and phase-field) and corresponding development of specific
approximations in lower-dimensional spaces.

2.4 Solvability of the pressure diffraction interface problem

In the present section, we discuss solvability and regularity of the pressure diffraction problem. The weak
(variational or virtual work) formulation reads:

Problem 2.1 (Pressure diffraction problem on time-dependent domains) Find p ∈ L∞(I;H1(Ω)), ∂tp ∈
L2(Ω× I) such that∫

I

∫
Ω
θ∂tpψ dxdt+

∫
I

∫
Ω
Keff (∇p− ρ0g̃)∇ψ dxdt =

∫
I

∫
Ω
q̃ψ dxdt, (22)

for all ψ ∈ L2(I;H1(Ω)); and

p|t=0 = p0. (23)
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Problems of type (22)-(23) have been treated in [32], page 232, for the case g = 0. In this section, we extend
these results because [32] relies on higher regularity of the coefficients.

In order to overcome this challenge, we use a standard approach from moving boundary problems and transform
the current configuration at time t back to its initial configuration at time t = 0. This transformation can be
realized by using the corresponding displacement field u in ΩR(t). Here, we suppose

x = u(y, t) + y, t ∈ I, Dy
Dx
∈W 1,∞(I × Ω)9, J(t) = det

Dy

Dx
> 0 andu ∈ C1(Ī × Ω)3. (24)

With these assumptions, the interface Γ(t) is C1. Moreover, the normal vector n and the velocity v = ∂tu are
continuous. Then we have the following result

Proposition 2.2 Let p0 ∈ H1(Ω), q̃ ∈ L2(Ω×I), vleak ∈ C1(Ī;L∞(Ω)) and letKeff be Lipschitz-continuous
in time and space. We furthermore assume (24). Then the problem (22)-(23) has a unique solution p ∈
L∞(I;H1(Ω))∩H1(I×Ω) . Regularity in each of the two subdomains ΩF and ΩR depend on the smoothness
of the interfaces and the initial datum.

Proof. We use the diffeomorphism x = u(y, t) + y. Its inverse transforms Γ(t) to Γ(0) and the part of Ω far
from the interface is unchanged. The weak formulation (22) transforms to∫

I

∫
Ω
θ0∂tp̃ψJ(t) dydt+

∫
I

∫
Ω
K0
eff (

Dy

Dx
∇yp̃− ρ0g̃)

Dy

Dx
∇yψJ(t) dydt =∫

I

∫
Ω
q0ψJ(t) dxdt, ψ ∈ L2(I;H1(Ω)). (25)

Here p̃(y, t) = p(x(y, t), t), and θ0 (respectively K0
eff and q0) is θ with χa(t), a = R,F , replaced by χa(0).

Letting ψ = ∂tp̃, we have∫
Ω
θ0(∂tp̃)

2J(t) dy +

∫
Ω
K0
eff

Dy

Dx
∇yp̃ ·

Dy

Dx
∂t∇yp̃J(t) dy =∫

Ω
q0J(t)∂tp̃ dxdt+

∫
Ω
K0
effρ

0g̃ · Dy
Dx

∂t∇yp̃J(t) dy. (26)

Next we use that ρ0 does not depend on time and obtain∫
Ω
K0
effρ

0g̃ · Dy
Dx

∂t∇yp̃J(t) dy = ∂t

∫
Ω
K0
effρ

0g̃ · Dy
Dx
∇yp̃J(t) dy−∫

Ω
K0
effρ

0g̃ · ∂t(
Dy

Dx
)
Dy

Dx

−1

)
Dy

Dx
∇yp̃J(t) dy −

∫
Ω
∂t(K

0
effρ

0g̃) · (Dy
Dx

∂t∇yp̃J(t) dy. (27)

For the second term on the left hand side of (26) we have∫
Ω
K0
eff

Dy

Dx
∇yp̃ ·

Dy

Dx
∂t∇yp̃J(t) dy =

1

2

d

dt

∫
Ω
K0
eff

Dy

Dx
∇yp̃ ·

Dy

Dx
∇yp̃J(t) dy−∫

Ω
∂t(JK

0
eff ) · Dy

Dx
∇yp̃J(t) dy−

∫
Ω
K0
eff

Dy

Dx
∇yp̃ · (∂t(

Dy

Dx
)
Dy

Dx

−1

)
Dy

Dx
∇yp̃J(t) dy. (28)

12
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Inserting (27)-(28) into (26) and using the hypothesis on the coefficients, we obtain∫ t

0

∫
Ω

(∂τ p̃)
2J(t) dydτ +

∫
Ω
|Dy
Dx
∇yp̃(t)|2J(t) dy ≤ C

(∫
Ω
|Dy
Dx
∇yp̃(0)|2J(0) dy

+

∫ t

0

∫
Ω

(q0)2J dydτ +

∫ t

0

∫
Ω
|Dy
Dx
∇yp̃(τ)|2J(τ) dydτ + 1

)
. (29)

Gronwall’s inequality implies the a priori estimate

||∇p||L∞(I;H1(Ω)) + ||∂tp||L2(Ω×I) ≤ C. (30)

Proving existence and uniqueness is now straightforward. �

Remark 2.7 We finally emphasize that these theoretical considerations only hold for smooth cracks without
branching and joining. Nevertheless, the associated computational method is still applicable to such settings,
which is demonstrated in the numerical tests section. We finally recall that our crack permeability law is based
on the assumption that the crack is piece-wise linear in the case of nonplanar cracks.

2.5 The variational system of pressures, elasticity, and phase-field

In this section, we recall the pressurized-crack phase-field modeling and discuss its coupling with the pressure
diffraction equations. The concept of phase-field modeling in elasticity is based on energy minimization, which
is described in detail in [8, 20]. The extension and rigorous analysis including a fixed pressure is considered in
[35, 36] and a corresponding numerical solution algorithm formulated in [46]. The mathematical classification
of the three-field pressure-elasticity-phase-field problem is nonstandard. The Biot pressure equation is of gen-
eralized parabolic type that explicitly includes the time derivative on the pressure variable and the volumetric
strain. The elasticity equation and the phase-field equation are both quasi-stationary. However, the latter one
assumes a nonnegativity constraint on the time derivative. Consequently, analysis and implementation of this
formulation are challenging and require careful design. Our approach is based on an extension of the Biot
system, which is frequently used in subsurface modeling in a deformable porous medium. In fact, this system
is a multiscale problem which can be identified on the micro-scale as fluid-solid interaction and details on the
interface law are found in [38].

Let us denote by (·, ·)A, ‖ · ‖A the usual L2-inner product and norm on A. If A = Ω we drop the subscript
for convenience. Let us denote U := L2(0, T ;H1(Ω)), V := H1

0 (Ω) and W := L2(0, T ;H1(Ω)) and let the
previous time step solution (pn−1, un−1, ϕn−1) ∈ U × V ×W be given. As derived in the previous sections,
we work with the generalized pressure equation:

(θ∂tp, φ) + (Keff (∇p− ρ0g̃),∇φ)− (q̃, φ) = 0 ∀φ ∈ U,

and the elasticity equation with a pressure-force term in which we use b = 1 and ϕ+ := max{0, ϕ} (see [35]):((
(1− κ)ϕ2

+ + κ
)
Ge(u), e(w)

)
− (α− 1)(ϕ2

+p, div w) + (ϕ2
+∇p, w) = 0 ∀w ∈ V,

(31)

where κ > 0 and ε > 0 are the phase-field regularization parameters with their relationship κ � ε [7] with
κ ≈ 0. The rank-4 Gassmann tensor G for an isotropic poroelastic medium is given by

Ge(u) = σ(u) = 2µe(u) + λtre(u)I.
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Finally, we have the phase-field equation

(1− κ)(ϕ+ Ge(u) : e(u), ψ)− 2(α− 1)(ϕ+ p div u, ψ) + 2 (ϕ+∇p u, ψ)

+Gc

(
−1

ε
(1− ϕ,ψ) + ε(∇ϕ,∇ψ)

)
= 0 ∀ ψ ∈W,

(32)

subject to the irreversibility constraint
∂tϕ ≤ 0.

Here, Gc stands for the critical energy release rate that is related to the fracture toughness.

In the previous derivation of the phase-field model, we follow [35, 36], and use the interface condition between
the Biot system defined in Ω and a pressurized fracture on C, namely

σn = (Ge(u)− αpI)n = −pfn, (33)

and we obtain a phase-field formulation for crack modeling in a porous medium. The new variable denoted by
ϕ is the so-called phase-field function, which interpolates between the unbroken and the broken states of the
material. In our previous studies [36, 46], the emphasis was on the verification of a phase-field approach for
pressurized cracks with a given (fixed) pressure. Now, this framework is extended to propagating fluid-filled
cracks in which Biot’s pressure equation is coupled with the two-field elasticity phase-field framework, leading
to a three-field problem.

In the following, we use the fact that we work in a quasi-static regime and use an incremental formulation.
Thus, the time derivatives in the 1st and the 3rd equation are replaced by the backward difference quotient

∂tp ≈ ∂∆tp =
p− pn−1

∆t
,

∂tu ≈ ∂∆tu =
u− un−1

∆t
,

∂tϕ ≈ ∂∆tϕ =
ϕ− ϕn−1

∆t
,

where ∆t > 0 denotes the time step parameter and p := pn, u := un, ϕ := ϕn the present solution and
pn−1, un−1, ϕn−1 the solution to the previous time step.

To solve the three-field problem, we employ the incremental formulation from now on and formulate bi-linear
forms for the pressure and linear elasticity, and a semi-linear form for the nonlinear phase-field as follows:

A0(p, φ) = ∆t−1
(
θ(p− pn−1), φ

)
+ (Keff (∇p− ρ0g̃),∇φ)− (q̃, φ) = 0 ∀φ ∈ U,

(34)

and
A1(u,w) =

((
(1− κ)ϕ2

+ + κ
)
Ge(u), e(w)

)
− (α− 1)(ϕ2

+p, div w) + (ϕ2
+∇p, w) = 0 ∀w ∈ V,

(35)

14



Fluid-filled fractures in heterogeneous porous media

and

A2(ϕ)(ψ) = (1− κ)(ϕ+ Ge(u) : e(u), ψ)

− 2(α− 1)(ϕ+ p div u, ψ) + 2 (ϕ+∇p u, ψ)

+Gc

(
−1

ε
(1− ϕ,ψ) + ε(∇ϕ,∇ψ)

)
+ ∆t−1

(
(Ξ + γ(ϕ− ϕn−1))+, ψ

)
= 0 ∀ ψ ∈W. (36)

Here, γ > 0 denotes the augmented Lagrangian penalization parameter and Ξ ∈ L2(Ω) to treat the irreversibil-
ity constraint of crack growth [46]. The update routine for Ξ is explained in Algorithm 1.

pl

ul

ϕl

pl+1

ΩF

Given ul−1, ϕl−1

Pressure force in elasticity

Pressure force in phase-field

α and w

Bulk energy coefficient

ul+1

Previous step Next stepPresent step 0 Present step 1 Present step 2

Compute pl Compute ϕlCompute ul

Bulk energy term

Figure 5: Explication how the three equations couple together. In each iteration step (within each time step),
we compute first pl, then ul, and finally ϕl, where each variable influences the other two. Specifically,
ϕl alters the fracture domain ΩF, which influences the computation of the new pressure pl+1.

Coming back to the coupling of the single pressure p with u and ϕ, we deal with the situation as displayed in
Figure 5. In each iteration step (within each time step), we compute first pl, then ul, and finally ϕl, where each
variable influences the other two.
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3 Discretization and Solution Algorithm

3.1 Galerkin finite element discretization

The computational domain Ω is subdivided into quadrilateral or hexahedral element domains. The subproblems
are discretized using H1-conforming bilinear elements. Consequently, the discrete spaces have the property
Uh ⊂ U , Vh ⊂ V and Wh ⊂ W . In the following, we have five different indices h, n denotes spatial
and temporal steps, m denoting the Newton steps, l the inner loop coupling the equations, and k used for
the augmented Lagrangian loop. We use them where appropriate to avoid any confusion. Specifically, the
Biot pressure problem and the elasticity problem are linear. The nonlinear phase-field problem is solved with
Newton’s method. For the iteration steps m = 0, 1, 2, . . ., it holds:

A′2(ϕh,m)(δϕh, ψ) = −A2(ϕh,m)(ψ), ϕh,m+1 = ϕh,m + ωδϕh, (37)

with a line search parameter ω ∈ (0, 1]. Here, we need the Jacobian of A2(ϕ)(ψ) applied to a direction δϕ:

A′2(ϕh)(δϕh, ψ) = (1− κ)
(
δϕhGe(uh) : e(uh), ψ

)
− 2 (α− 1)(δϕh ph div uh, ψ) + 2 (δϕh∇ph w,ψ)

+Gc

(
−1

ε
(δϕh, ψ) + ε(∇δϕh,∇ψ)

)
+ γ (δϕh, ψ)B(ϕ),

(38)

where
B(ϕh) = {x ∈ (0, L)3 |Ξh + γ(ϕh − ϕh,n−1) > 0}.

Summarizing, we deal with:

Problem 3.1 (Variational FE formulation for the pressure diffraction problem) Find ph ∈ Uh such that

A0(ph, φ) = 0, ∀φ ∈ Uh,

and

Problem 3.2 (Variational FE formulation for linear elasticity) Find uh ∈ Vh such that

A1(uh, w) = 0, ∀w ∈ Vh,

and

Problem 3.3 (Variational FE formulation for phase-field) Find ϕh ∈Wh such that

A′2(ϕh,m)(δϕh, ψ) = −A2(ϕh,m)(ψ), ϕh,m+1 = ϕh,m + ωδϕh, (39)

for all δϕh ∈Wh and where A2 and A′2 are given by (36) and (38).

In order to solve the linear subproblems, we use direct solvers (UMFPACK [16]) for the solution of Problem
3.1 and 3.3. The vector-valued displacement problem is solved with a PCG (preconditioned conjugate gradient)
solver with SSOR (symmetric successive overrelaxation) preconditioning.
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3.2 The fixed-stress algorithm

In the fixed-stress splitting, we iterate the equations (34) and (35).

Problem 3.4 (Fixed-stress split) With the help of the given and fixed ϕ from (36), i.e., the previous augmented
Lagrangian step, let χR := {ϕ > ϕtreas} and χF := {ϕ ≤ ϕtreas} be determined, respectively. For l =
1, 2, 3, . . ., find pl such that

χR
( 1

M
+

α2

3λ+ 2µ

)(pl − pn−1

∆t
, φ
)

+ χR
(
Keff (∇p− ρ0g),∇φ

)
− χR(q̃, φ) + χRα

(∇ · ul−1 −∇ · un−1

∆t
, φ
)
− χR

α2

3λ+ 2µ

(pl−1 − pn−1

∆t
, φ
)
,

+ χF cF
(pl − pn−1

∆t
, φ
)

+ χF
(
Keff (∇p− ρ0g̃),∇φ

)
− χF (q̃, φ)

= 0 ∀φ ∈ U.

Then, we solve for the displacements ul such that:((
(1− κ)ϕ2 + κ

)
Ge(ul), e(w)

)
= (α− 1)(ϕ2pl, div w)− (ϕ2∇pl, w) ∀w ∈ V.

The iteration is completed if

max{‖ul − ul−1‖, ‖pl − pl−1‖} < TOLFS .

3.3 The solution algorithm

Following [36], we use a quasi-static splitting approach for the fixed-stress-phase-field problem. Our strategy
is described in Figure 5: at time step tn, for the given iteration step pl−1, ul−1, ϕl−1, we solve first for pl, then
for ul and finally for the new ϕl. Thus,

Problem 3.5 (Augmented Lagrangian iteration in a time step tn[46]) Let ϕh,l−1 be given from the previous
iteration step. Find ph,l ∈ Uh and uh,l ∈ Vh with the fixed-stress iteration. Take ph,l and uh,l and solve finally
for ϕh,l:

A′2(ϕh,m,l)(δϕh, ψ) = −A2(ϕh,m,l)(ψ), ϕh,m+1,l = ϕh,m,l + ωδϕh, (40)

for all δϕh ∈Wh and where A2(·)(·) and A′2(·)(·, ·) are given by (36) and (38).

The solution process is outlined in Algorithm 1.
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Algorithm 1 Augmented Lagrangian fixed-stress solution algorithm
At time tn; let pn−1, un−1, ϕn−1 be given.
repeat

Solve augmented Lagrangian loop, the outer loop, for m = 1, 2, 3, . . .
repeat

Solve two-field fixed-stress, the inner loop, for l = 1, 2, 3, . . .:
Solve the pressure diffraction Problem 3.1 to compute pl (with p0 := pn−1)
Solve linear elasticity in Problem 3.2 to compute ul (with u0 := un−1)

until Stopping criterion

max{‖ul − ul−1‖, ‖pl − pl−1‖} ≤ TOLFS, TOLFS > 0

for fixed-stress split is satisfied (end of inner loop)
Solve the nonlinear phase-field in Problem 3.3 to compute ϕm (with ϕ0 := ϕn−1) and using the already

computed pl and ul

Update [46]
Ξm = (Ξm−1 + γ(ϕm − ϕn−1))+,

until Stopping criterion for augmented Lagrangian

‖Ξm − Ξm−1‖ ≤ TOLAL, TOLAL > 0

is satisfied
Set: (pn, un, ϕn) := (pl, ul, ϕm).
Increment tn → tn+1.
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4 Numerical Tests

Several tests exploring the capabilities and attractive features of our method are presented in this final section.
The goals of all tests are the observation of pressure development versus time (here we expect a pressure drop
when the crack is growing); second, the fracture length as a function of time; and third, demonstration of
nonaligned, nonplanar crack growth with joining of multiple fractures. Our proposed method applies to two-
and three dimensional problems, and both are discussed in this section. In all examples, we compute the tests
with α = 0 and α = 1 and each on three different grid levels to test the numerical stability of our approach.
All examples are computed with the multiphysics template [47] in combination with deal.II’s [1] step-31 for
the usage of two different degree-of-freedom-handlers to build an iterative solution algorithm as needed for
the fixed-stress splitting. In order to facilitate reading, we provide general information on all examples in the
following.

Geometry, grid and timestep parameters

The geometry for all 2d tests is displayed in Figure 6 and is Ω = (0, 4)2. As boundary conditions we set the
displacements zero on ∂Ω. In 3d, in the cube Ω = (0, 10)3, we prescribe a penny-shape crack with radius
r = 1.0 in the y = 5.0-plane with mid-point (5.0, 5.0, 5.0). The crack is approximated as a volume by
extending it with the spatial discretization parameter h in up- and downward y-direction, respectively. We
compute 20 (2d) and 30 (3d) time steps with time step size ∆t = 0.01 (2d) and ∆t = 0.005 (3d), respectively.
We note that the characteristic fracture time scale is

TF =
L2ηF cF

K̃F

=
1× 10−3 × 10−8

10−8
= 10−3,

in which we assumed a characteristic fracture length 1 and characteristic fracture permeability K̃F = 10−4.

The initial mesh for the homogeneous 2d tests is three times globally (see e.g. Figure 11 at left) and 4, 5, 6-times
locally refined (see Figures 6 and 11). For the heterogeneous example in the introduction (see Figure 1), we
refine the mesh seven times globally. In 3d, we use two times global and three and four times local refinement.
In all cases, we already know the final crack pattern and refine locally a priori the crack region. A sophisticated
method in which the mesh grows with the crack path is suggested in [28].

Model parameters

The augmented Lagrangian penalization parameter is γ = 104 (2d) and γ = 103 (3d). Several parameters and
geometry-related issues depend on the spatial mesh size parameter h. Namely, for the regularization parameters
we choose the relations κ = 10−6 × h, ε = 2hcoarse = 0.088 (2d) and κ = 10−6 × h, ε = 2hcoarse = 1.09 (3d).
In addition, the initial (lower-dimensional) crack-line is extended by hcoarse in normal direction to approximate
it as a volume as discussed in [46].

Pressure parameters

In all examples, the gravity g is set to zero and the fluid is only driven by the point source injection q. We inject
fluid at a constant rate into the center of the domain,

q :=


1 at (2, 2), (Example 4.1),
1 at (2, 2), (1.45, 1.55), (2.6, 2.0), (Example 4.2),
1 at (5, 5, 5), (Example 4.3).

Furthermore, the permeability in the reservoir is KR = 10−12. Next, M = 2.5 × 10−8, cF = 10−8, νR =
νF = 1.0 × 10−3, ρ0

R = ρ0
F = 1. Regarding the Biot coefficient, we perform computations with α = 0 and
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α = 1.

Elasticity and phase-field parameters

The fracture toughness is chosen asGc = 1.0. The mechanical parameters are µ = 4.2×107 and λ = 2.8×107.
The illustrative example in the introduction (see Figure 1) is computed with randomly varying Lamé parameters
µ = 4.2× 106 − 9.4× 107 and λ = 2.6× 106 − 9.3× 107.

4.1 One crack in a homogeneous material (2d case)

The first set of tests is an extension to previous studies performed in [6, 46] in which the crack growth is due
to a given pressure. Instead, we consider a well at position (2, 2) in which a fluid at a constant rate is injected.
The initial crack has (total) length l0 = 0.4 on ΩF = (1.8, 2.2)× (2− h, 2− h) ⊂ Ω.

The first goal of this is to verify our algorithms for growing cracks due to an injected fluid into the crack. This
is accomplished by studying the length of the fracture. Second, we observe the highest pressure versus time.

In Figure 8, the crack evolution at three different times is shown. In the Figures 9 and 10, the corresponding
pressure field for both tests are provided. Our findings demonstrate the numerical stability since the pressure
curve variation become smaller on finer meshes as monitored in Figure 7. Regarding the convergence of the
length, we observe converging, but oscillating behavior in the α = 1 test case. We notice that the half-length
evaluation is much more difficult than the pressure evaluation but it is also less important. As described in the
previous sections, the pressure is characterized by different couplings to the other equations and in particular
in the α = 1 case. Consequently, it is much more important to obtain numerical stability here. Furthermore,
the pressure evolution curves represent physical behavior. As long as the crack does not move and we continue
injecting a fluid, the pressure inside the fracture definitely increases. Once the fracture starts growing, the
volume drastically increases and a pressure drop can be observed as displayed in Figure 7. A similar behavior
is shown in Example 4.2 in Figure 13.

Finally, a higher fracture pressure is obtained with α = 0. For α = 1, divu and p are harmonic at the order
O(TF /TR) and p = −Mdiv u+O(TF /TR), Figure 10 shows that p achieves its minimum at the edges of the
outer boundary (in blue) and its maximum around the crack surface.

Figure 6: Example 1: Geometry using a locally prerefined mesh and initial crack.
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Figure 7: Example 1: Evolution of the half width (top) and of the fracture pressure (bottom) for the cases α = 0
(left) and α = 1 (right).

Figure 8: Example 1: Crack pattern in red color for T = 0, 0.1, 0.2 for α = 0. The resulting crack pattern for
α = 1 is similar.

Figure 9: Example 1: Pressure distribution with α = 0 for T = 0, 0.1, 0.2.
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Figure 10: Example 1: Pressure distribution with α = 1 for T = 0, 0.1, 0.2.
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4.2 Three joining cracks in a homogeneous material (2d case)

In this example, we consider joining of three fractures. Apart from extending to multiple fractures, the config-
uration and all material parameters remain the same as in the previous numerical test. Two additional cracks
are added. Here, crack 2, is located at (2.6− h, 2.6 + h)× (1.5, 2.5) ∈ Ω. Finally, we add a third fracture that
is not aligned with the axis and shows that our approach can deal with initial fractures of arbitrary orientation
and location. The position of crack 3 is: 1.2 ≤ x ≤ 1.7, x+ 3−h ≤ y ≤ x+ 3 +h. The goal of this second
example is to study the pressure development versus time and the interaction between the three fractures.

As illustrated in Figure 11, we note that a sufficiently large region with a finer mesh is chosen a priori. All
cracks never leave this fine mesh. Such a priori local mesh refinement already reduces the computational cost
but is still not satisfactory. A promising approach that drastically reduces the computational cost has been
recently applied to pressurized fractures with dynamics-in-time predictor-corrector mesh adaptivity [28]. In
future studies, we intend to employ that approach for fluid-filled fractures.

Figure 11: Example 2: Initial meshes: The domain (0, 4)2 is three times globally refined (left) and then 4, 5, 6
a priori locally refined. At right the finest mesh with 3 + 6-times refinement is shown.

We observe in the Figures 12 the crack pattern for α = 0. We note that the crack profile for α = 1 is similar.
In the Figures 14 and 15, the pressure profiles for α = 0 and α = 1 are displayed. In Figure 13, the pressure
evolution for both test cases is shown. Here, we observe a higher fracture pressure for the decoupled case
α = 0. As in the previous example, our findings demonstrate the numerical stability since the pressure curve
variation becomes smaller on finer meshes.

As in the previous example, we analyze in more detail the pressure evolution. Here, we compare situations
with α = 0 and α = 1 that show some similarities but also important differences; and both can be explained
from physical observations. Using α = 0, geomechanics and fluid pressure are decoupled and consequently,
displacement changes can not account to absorb fluid pressure, which leads to a higher overall pressure (see
Figure 13 at left) than in the α = 1 test case. Both test cases show a pressure drop when the cracks are joining
and suddenly fluid is allowed to move in a huge volume. However using α = 0, due to the three injection points
the pressure still increases even under crack evolution. This is different in the α = 1 test case since here, the
pressure equations recognize the displacement changes (due to the coupling) and the overall pressure does not
increase under crack propagation.
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Figure 12: Example 2: Crack patterns are presented in red color for T = 0, 0.7, 0.15, 0.2 for α = 0. The crack
pattern for α = 1 is similar.
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Figure 13: Example 2: Evolution of the fracture pressure with respect to time on different mesh levels. We
observe a pressure drop when crack 1 joins the other two fractures. The fracture pressure is higher
for the case α = 0 than for α = 1.
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Figure 14: Example 2: We present the pressure distribution for α = 0 at T = 0, 0.7, 0.15, 0.2.
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Figure 15: Example 2: We present the pressure distribution for α = 1 at T = 0, 0.7, 0.15, 0.2.

4.3 A propagating penny-shape crack in 3d

In this final example, we consider a propagating penny-shape crack in three dimensions. The locally-refined
grid in Ω = (0, 10)3 with hanging nodes is shown in Figure 16. The goals are to observe the pressure and the
radius with respect to time. An extension of this setting to heterogeneous materials is discussed in [48].

Our findings show similar pressure behavior on two subsequent grid levels (see Figure 17). In addition, the
fracture pressures for α = 0 and α = 1 are of similar order. The radius evolution with respect to time is
displayed in the Figures 17. The crack and pressure patterns are provided in the Figures 18 and 19.
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Figure 16: Example 3: Locally refined grid in the cube Ω = (0, 10)3.
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Figure 17: Example 3: radius of the penny-shape crack (top) and pressure (bottom) evolution for the cases
α = 0 (left) and α = 1 (right).
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Figure 18: Example 3 (α = 0): Penny-shape crack pattern in red color at T = 0 and final time T = 0.15. The
case α = 1 results in a similar crack pattern.

Figure 19: Example 3: case α = 0 (top) and case α = 1 (bottom): Pressure distribution at initial time T = 0
(left) and final time T = 0.15 (right).
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5 Conclusions

In this paper, we considered a phase-field formulation for fluid-filled crack propagation in porous media. The
novelty is a coupling of Darcy pressure equations in a reservoir zone with fracture flow using an indicator
variable. This function is obtained by solving a phase-field problem for the crack location. Due to the crack
propagation, both the reservoir and fracture domains change in time and are treated as a moving boundary
problem for which we proved existence and uniqueness. Specifically, based on a three-dimensional lubrication
equation approximation, we derived a general expression for the fracture permeability. In addition to these
theoretical results, we provided algorithmic details based on the fixed-stress splitting for solving the coupled
fluid-solid interaction problem. Our theoretical developments are substantiated with numerical tests in two- and
three dimensions and our findings show that our algorithms are robust and numerically stable.

Appendix: Darcy’s law for a flat 3D penny shape fracture

In this section we give a short derivation of the relation between the velocity and the pressure gradient for the
flow in a fracture. A flat 3D fracture ΩF is characterized by the ratio ε between its characteristic width H in the
direction x3 and its characteristic horizontal length L in directions x1 and x2; a sketch is provided in Figure 3.

Here we assume the crack boundary propagates in a deformable porous medium and is given by

x3 = h(2)(x1, x2, t) for x3 ≥ 0 and x3 = h(1)(x1, x2, t) for x3 < 0. (41)

Here h(2) and h(1) meet at x3 = 0, the tip region. The fluid flow in the fracture is given by the incompressible
Navier-Stokes equations

∂v

∂t
+ (v · ∇)v +

1

ρF
∇p− νF∆v = 0 in ΩF ; (42)

div v = 0 in ΩF , (43)

where ρF is the fluid density and νF = ηF /ρF is the kinematic viscosity. Next, we derive a dimensionless
form of the lubrication equation following the classical lubrication theory references (see e.g. [43]). Let U be

the characteristic velocity in directions x1 and x2 and Re=
UL

νF
the Reynolds number. Then we set

t̄ =
U

L
t; x =

x1

L
, y =

x2

L
, z =

x3

H
, vx =

v1

U
, vy =

v2

U
, vz =

v3L

UH
,

p̄ =
H2

ηFLU
p, w(j)(x, y, t̄) =

1

H
h(j)(x1, x2, t) and ε =

H

L
.

For simplicity, we skip the bars and denote the rescaled ΩF with the same symbol. The system (42)-(43)
becomes

Re ε2(∂tv
ε
x + ((vεx, v

ε
y, v

ε
z) · ∇x,y,z)vεx) = −∂xpε + ε2∆x,yv

ε
x + ∂zzv

ε
x in ΩF , (44)

Re ε2(∂tv
ε
y + ((vεx, v

ε
y, v

ε
z) · ∇x,y,z)vεy) = −∂ypε + ε2∆x,yv

ε
y + ∂zzv

ε
y in ΩF , (45)

Re ε4(∂tv
ε
z + ((vεx, v

ε
y, v

ε
z) · ∇x,y,z)vεz) = −∂zpε + ε4∆x,yv

ε
z + ε2∂zzv

ε
z in ΩF , (46)

∂xv
ε
x + ∂yv

ε
y + ∂zv

ε
z = 0 in ΩF . (47)

We suppose Re ε2 � 1 and neglect the inertia term at the main order. We recall that the unit normal n and
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tangential vectors τ (j), j = 1, 2 can be expressed in the form

n =
−ε∂xwe1 − ε∂ywe2 + e3√

1 + ε2|∇x,yw|2
; τ (1) =

e1 + ε∂xwe
3√

1 + ε2|∂xw|2
; τ (2) =

e2 + ε∂ywe
3√

1 + ε2|∂yw|2
.

Then for v = U(vεx, v
ε
y, v

ε
z) we have

v · n =
−Uε∂xwvεx − Uε∂ywvεy + Uεvεz√

1 + ε2|∇x,yw|2
= Uε(vεz −∇x,yw · (vεx, vεy)) +O(ε3);

v · τ (1) =
Uvεx + Uε2∂xwv

ε
z√

1 + ε2|∂xw|2
= Uvεx + Uε2(∂xwv

ε
z −

vεx
2

(∂xw)2) +O(ε4),

and analogously for v · τ (2). The velocity in the fracture is larger than in the surrounding porous medium.
Hence we have at z = w(x, y, t):

0 = v · τ (1) = Uvεx + Uε2(∂xwv
ε
z −

vεx
2

(∂xw)2) +O(ε4) (48)

and an analogous expression for v · τ (2). In the normal direction we have to impose the kinematic boundary

condition:
Dh

Dt
= −vout. The term vout is used to calculate the previously introduced leak-off qL. It yields

∂th+ (v1, v2) · ∇x1,x2h− v3 = −vout on x3 = h(x1, x2, t),

and in the dimensionless form we have

∂tw + (vεx, v
ε
y) · ∇x,yw − vεz = −vLO on z = w(x, y, t), (49)

where vout = UεvLO. As in lubrication theory, we expand the velocities and the pressure as follows

vεx = v0
x + ε2v1

x +O(ε4); vεy = v0
y + ε2v1

y +O(ε4); vεz = v0
z + ε2v1

z +O(ε4); (50)

pε = p0 + ε2p1 +O(ε4); (51)

w =

{
w(2)(x, y, t) for z ≥ 0,

w(1)(x, y, t) for z < 0.
(52)

Inserting (50)-(52) into (44)-(47) yields at the order O(1) in ΩF :

−∂xp0 + ∂zzv
0
x = 0; −∂yp0 + ∂zzv

0
y = 0; −∂zp0 = 0; (53)

∂xv
0
x + ∂yv

0
y + ∂zv

0
z = 0; v0

x(x, y, w, t) = 0 = v0
y(x, y, w, t). (54)
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Following [43], we use (53)-(54) to calculate v0
x, v

0
y and obtain PDE for p0:

K(z) =
1

2
(w(2) − z)(z − w(1)), v0

x = −K∂xp0, v0
y = −K∂yp0, (55)

∂tw = v0
z(x, y, w)− vLO, (56)

Ke(z) =

∫ w(2)

z
K(s) ds =

(w(2) − z)2

12
(w(2) + 2z − 3w(1)), (57)

Kabs = Ke(w
(1)) =

(w(2) − w(1))3

12
, (58)

∂t(w
(2) − w(1)) + v

(2)
LO − v

(1)
LO = div x,y

(
Kabs∇x,yp0

)
=

Kabs∆x,yp
0 +∇x,yKabs∇x,yp0. (59)

The equation (59) is the Reynolds lubrication equation (see [43]). We note that this expansion is not valid in
the fracture tip region and that the Navier-Stokes equation do not simplify there.

In order to have a Darcy-type law for the effective flow, we still miss the equation for v0
z . After integrating the

incompressibility relation (54) we obtain

v0
z(x, y, t) = −Ke(z)∆x,yp

0 −∇x,yKe(z)∇x,yp0 + ∂tw
(2) + v

(2)
LO. (60)

Next we use equation (59) to eliminate ∆x,yp
0 . Insertion of the expression for it into (60) yields

v0
z(x, y, t) = Ke(z)∇x,y log

Kabs

Ke(z)
· ∇x,yp0 + (1− Ke(z)

Kabs
)(∂tw

(2) + v
(2)
LO)+

Ke(z)

Kabs
(∂tw

(1) + v
(1)
LO). (61)

Hence we got the following Darcy’s lawv0
x

v0
y

v0
z

 =


−K(z) 0 Ke(z)∂x log Kabs

Ke(z)

0 −K(z) Ke(z)∂y log Kabs

Ke(z)

Ke(z)∂x log Kabs

Ke(z) Ke(z)∂y log Kabs

Ke(z) 0

∇x,y,zp0

+

 0
0

(1− Ke(z)
Kabs )(∂tw

(2) + v
(2)
LO) + Ke(z)

Kabs (∂tw
(1) + v

(1)
LO)

 . (62)

Darcy’s law (62) is supplemented by the equation ∂zp0 = 0. In fact the dependence on z for the effective
pressure comes only at order O(ε2). Hence, since Darcy’s law (62) is valid at order O(ε2), we can include the
equation ∂zp0 = 0 into it by putting anO(ε−2) coefficient at the place (3, 3) in the permeability. This approach
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yields v0
x

v0
y

v0
z

 =


−K(z) 0 Ke(z)∂x log Kabs

Ke(z)

0 −K(z) Ke(z)∂y log Kabs

Ke(z)

Ke(z)∂x log Kabs

Ke(z) Ke(z)∂y log Kabs

Ke(z) −K(z)
ε2

∇x,y,zp0

+

 0
0

(1− Ke(z)
Kabs )(∂tw

(2) + v
(2)
LO) + Ke(z)

Kabs (∂tw
(1) + v

(1)
LO)

 . (63)

In order to go back to the dimensional form, we set

K(x3) = K(x, t) =
1

2
(h(2)(x1, x2, t)− x3)(x3 − h(1)(x1, x2, t)); (64)

Kabs = Kabs(x1, x2, t) = Ke(h
(1)) =

(h(2)(x1, x2, t)− h(1)(x1, x2, t))
3

12
; (65)

Ke(x3) = Ke(x, t)) =
(h(2)(x1, x2, t)− x3)2

12
(h(2)(x1, x2, t) + 2x3 − 3h(1)(x1, x2, t)). (66)

Then (63) becomesvF1vF2
vF3

 =


−K(x3) 0 Ke(x3)∂x1 log Kabs

Ke(x3)

0 −K(x3) Ke(x3)∂x2 log Kabs

Ke(x3)

Ke(x3)∂x1 log Kabs

Ke(x3) Ke(x3)∂x2 log Kabs

Ke(x3) −K(x3)

 ∇xpFηF

+

 0
0

(1− Ke(x3)
Kabs )(∂th

(2) + v
(2)
out) + Ke(x3)

Kabs (∂th
(1) + v

(1)
out)

 . (67)

Therefore, the fracture permeability is

KF =


−K(x3) 0 Ke(x3)∂x1 log Kabs

Ke(x3)

0 −K(x3) Ke(x3)∂x2 log Kabs

Ke(x3)

Ke(x3)∂x1 log Kabs

Ke(x3) Ke(x3)∂x2 log Kabs

Ke(x3) −K(x3)

 . (68)

In the tip zone the permeability degenerates and Darcy’s law (67) should not be used; we refer to Remark 2.2.
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[38] A. MIKELIĆ AND M. F. WHEELER, Convergence of iterative coupling for coupled flow and geomechan-
ics, Comput Geosci, 17 (2012), pp. 455–462.

[39] S.L. MITCHELL, R. KUSKE, AND A.P. PEIRCE, An asymptotic framework for finite hydraulic fractures
including leak-off, SIAM J. Appl. Math., 67 (2007), pp. 364–386.

[40] B. A. SCHREFLER, ST. SECCHI, AND L. SIMONI, On adaptive refinement techniques in multi-field
problems including cohesive fracture, Comput. Methods Appl. Mech. Engrg., 195 (2006), pp. 444–461.

[41] , On adaptive refinement techniques in multi-field problems including cohesive fracture, Comput.
Meth. Appl. Mech. Engrg., 195 (2006), pp. 444–461.

[42] A SETTARI AND D A WALTERS, Advances in coupled geomechanical and reservoir modeling with ap-
plications to reservoir compaction, SPE Journal, 6 (2001), pp. 334–342.

[43] A. Z. SZERI, Fluid film lubrication, vol. 2nd edition, Cambridge University Press, 2011.

[44] M. WANGEN, Finite element modeling of hydraulic fracturing on a reservoir scale in 2d, Journal of
Petroleum Science and Engineering, 77 (2011), pp. 274–285.

[45] , Finite element modeling of hydraulic fracturing in 3d, Comput. Geosci., (2013).

[46] M.F. WHEELER, T. WICK, AND W. WOLLNER, An augmented-Lagangrian method for the phase-field
approach for pressurized fractures, Comp. Meth. Appl. Mech. Engrg., 271 (2014), pp. 69–85.

[47] T. WICK, Solving monolithic fluid-structure interaction problems in arbitrary Lagrangian Eulerian coor-
dinates with the deal.ii library, Archive of Numerical Software, 1 (2013), pp. 1–19.

[48] T. WICK, G. SINGH, AND M.F. WHEELER, Pressurized fracture propagation using a phase-field ap-
proach coupled to a reservoir simulator. SPE 168597-MS, SPE Proc., 2013.

35


