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Phase-field modeling of proppant-filled fractures
in a poroelastic medium

Sanghyun Lee ∗ Andro Mikelić † Mary F. Wheeler ‡ Thomas Wick §

In this paper we present a phase field model for proppant-filled fractures in a poroelastic medium.
The formulation of the coupled system involves four unknowns; displacements, phase field, pres-
sure, and proppant concentration. The two-field displacement phase-field system is solved fully-
coupled and accounts for crack irreversibility. This solution is than coupled to the pressure equa-
tion via a fixed-stress iteration. The pressure is obtained by using a diffraction equation where the
phase-field variable serves as an indicator function that distinguishes between the fracture and the
reservoir. The transport of the proppant in the fracture is modeled by using a power-law fluid sys-
tem. The numerical discretization in space is based on Galerkin finite elements for displacements
and phase-field, and an enriched Galerkin method is applied for the pressure equation in order
to obtain local mass conservation. The concentration is solved with cell-centered finite elements.
Nonlinear equations are treated with Newton’s method. Our developments are substantiated with
several numerical examples in two and three dimensions.

Keywords: Phase field fracture; Hydraulic fracturing; Proppant transport; Quasi-Newtonian flow model

1 Introduction

Murray Roth, a VP at Global Consulting, has called proppant the greatest oilfield innovation of the 21st century.
A proppant is a solid material, typically sand, treated sand or man-made ceramic materials, designed to keep
an induced hydraulic fracture open, during or following a fracturing treatment. The objective of a hydraulic
fracturing treatment in the oil industry is to increase the flow area exposed to the formation and then to connect
the flow area to the wellbore along a high permeability path. Proppant is added to a fracking fluid which
may vary in composition depending on the type of fracturing used, and can be gel, foam or slickwater-based.
Although hydraulic fracturing was first performed in 1947 (in Kansas, using sand from the Arkansas river),
wide-spread experimentation did not occur until the Barnett Shale play in the 80s, and usage has exploded in
the first decade of this century. Expansion was aided by a landmark study conducted by the EPA (environmental
protection agency) in 2004 which found that hydraulic fracturing posed no threat to underground drinking water
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†Université de Lyon, CNRS UMR 5208, Université Lyon 1, Institut Camille Jordan, 43, blvd. du 11 novembre 1918, 69622 Villeur-

banne Cedex, France
‡Center for Subsurface Modeling, The Institute for Computational Engineering and Sciences, The University of Texas at Austin,

Austin, Texas 78712, USA
§RICAM, Austrian Academy of Sciences Altenberger Str. 69 4040 Linz, Austria

1



Lee, Mikelić, Wheeler, Wick

supplies. Shortly afterwards, hydraulic fracturing was exempted from the Safe Drinking Water Act by the Bush
administration in the Energy Policy Act of 2005.

Hydraulic fracturing has become a key element of natural gas development worldwide, and countries such as
the Unites States, Canada, India, England and China are actively pursuing implementation of this technology
to tap into this new source of energy. However, like any advanced technology, it has also raised questions about
its long-term impact on the environment. Thus debate and research will continue well into the future and the
role of more advanced models will be required for new and upcoming regulations.

Figure 1: Illustration of proppant usage (yellow coated grains) preventing the fracture from closing (left). At
right, real proppant grains used in hydraulic fracturing are shown.

The quality of proppant is designed to maintain lasting, high permeability under conditions of in situ stress
and temperature. Since the goal in field operations is to distribute proppant optimally, accurate and efficient
numerical models are essential in representing proppant transport in fractures. Here simulation is challenging
because of the complex interactions between the fluid, particles and fracture walls. As described by Adachi
et al. [2007] in the modeling of hydraulic fracturing, a variety of physical processes such as fluid flow, stress in-
duced by fracture deformation, complex fluid rheology, and fracture propagation are occurring simultaneously.
Slurry flow, gravitational settling, and proppant transport modeling for hydraulic fractures are currently poorly
understood and modeling capability limited.

Mixing proppant with a Newtonian fluid has been investigated in Adachi et al. [2007], Dontsov and Peirce
[2014], McClure and Horne [2013], Shokir and A.A.Al-Quraishi [2007], and with polymers in Ouyang et al.
[1997], Dean and Schmidt [2009], Smith et al. [2001], Malhotra et al. [2013] to name a few. These numerical
studies have been performed using boundary element methods, discrete fracture networks or extended/generalized
finite elements and have mainly treated 2D planar fractures. A survey of different models for fracture propa-
gation can be found in Wick et al. [2014] and our focus in this paper will be on phase-field fracture models.
Presently, the latter approach is subject of active research in both mathematical theory and applications. Based
on variational principles, the phase-field technique provides an elegant way to approximate lower-dimensional
surfaces and discontinuities.

Rewriting Griffith’s model Griffith [1921] for brittle fracture in terms of a variational formulation was first
accomplished by Francfort and Marigo [1998]. Later, in Miehe et al. [2010b,a], the authors refined modeling
and material law assumptions to formulate an incremental thermodynamically consistent phase-field model for
fracture propagation. Computational techniques, finite element analysis, and multiple examples and bench-
marks from mechanical engineering have been proposed and studied in Bourdin et al. [2000, 2008], Miehe
et al. [2010b,a], Burke et al. [2010], Borden et al. [2012, 2014], Heister et al. [2015], Schlüter et al. [2014],
Mesgarnejad et al. [2014], Ambati et al. [2015], Gerasimov and Lorenzis [2015]. Recent advances and numer-
ical studies towards hydraulic fracturing and other multiphysics applications including thermo-elastic-plastic
solids and coupling with a reservoir simulator have been considered in Mikelić et al. [2015c,b], Wheeler et al.
[2014], Miehe et al. [2015b,a], Wick et al. [2014], Miehe and Mauthe [2015], Lee et al. [2015]. Clearly, these
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cited works demonstrate that phase-field fracture modeling has tremendous potential tackling practical field
problems.

More specifically, phase-field fracture modeling offers many advantages such as a fixed-grid topology that
avoids expensive remeshing for resolving the exact fracture location. Thus, the model can be implemented
easily to simulate both 2D and 3D crack propagation Borden et al. [2014], Heister et al. [2015], Wick et al.
[2015], Miehe et al. [2015b,a]. Therein, fracture nucleation, propagation, kinking, curvilinear path, branching,
joining and handling large fracture networks are intrinsically determined. Moreover, the phase-field variable
can be used to compute the crack opening displacement (e.g., Verhoosel and de Borst [2013]) as well as serving
as an indicator function to formulate a pressure diffraction model in order to couple with phase-field fracture
with other multiphysics phenomena Mikelić et al. [2015b]. On the other hand, the diffusive transition zone
tends to smear out the sharp crack surface and the characteristic length-scale parameter ε must be chosen
accordingly, which is a particular modeling challenge in porous media Mikelić et al. [2015a]. For numerical
treatment, an adaptive local grid refinement technique can be used to increase crack surface resolution while
keeping the computational costs low Heister et al. [2015]. Additionally, some of the challenges associated with
a non-convex functional inherent in the phase field formulation have also been addressed in Bourdin [2007],
Bourdin et al. [2008], Miehe et al. [2010b], Allaire et al. [2011], Heister et al. [2015], Gerasimov and Lorenzis
[2015].

Since phase-field modeling has attractive features as previously discussed, we further develop this methodology
in the present paper in order to establish phase-field for quasi-Newtonian fluid and proppant transport combined
with fracture propagation. Since correct proppant transport modeling is a major research topic as previously
described, we consider a prototype transport equation that can later be extended to more complicated and
realistic material parameter relationships such as slip velocity vectors, gravitational settling, and interaction
of proppant with fracture walls. From an engineering point of view of view, an important ingredient for the
transport equation is appropriate velocities that are obtained from the fracture pressure equation and which are
locally mass conservative Sun and Wheeler [2006], Hughes et al. [2000]. An elegant way to satisfy local mass
conservation in numerical simulations is based on an enriched Galerkin (EG) formulation Sun and Liu [2009]
that we employ in this work.

In summary, the novelties of the present paper are:

• Derivation of a power-law lubrication equation for fracture flow;

• Spatial discretization of the pressure diffraction system with the enriched Galerkin (EG) method;

• Formulation of a fixed-stress algorithm for robust numerical treatment of a four-field system for coupling
displacements, phase-field, pressure and proppant concentration.

The outline of this paper is as follows: In Section 2 we present notation, geometry and the basic equations. Next,
in Section 3 numerical discretization is discussed. Then in Section 4, our solution algorithm is formulated. In
Section 5, several numerical examples substantiate our modeling and numerical developments. The Appendix
provides a detailed derivation of nonlinear Darcy’s law for a power-law model for fracture flow.

2 Modeling

In order to fix ideas we start with the notation, geometry and a description of the Biot equations. The key idea is
to split the original Biot system into flow and geomechanics using a fixed-stress scheme. For phase-field fracture
modeling in porous media, the geomechanics equations are coupled with a phase-field equation including a
crack irreversibility condition. The reservoir flow equation is combined with fracture flow by employing a
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pressure diffraction approach. In this work we extend fracture Newtonian flow to a quasi-Newtonian power-
law model. An analysis of this system is provided in subsection 2.5. In the final subsection 2.7, a prototype
model for proppant transport is suggested.

2.1 Geometry and fracture surface description

Let C := C(t) be a given open set diffeomorphic to an ellipsoid in R3 (a crack set), for every time t ∈ [0, T ].
The fracture boundary is a closed surface ∂C := ∂C(t), changing in time and separating it from the surrounding
poroelastic medium as illustrated in Figure 2.

Ω

Λ = Ω ∪ C̄

C

Figure 2: A crack C is compactly contained in a porous medium Λ := Ω ∪C. We assume the dimensions of the
crack are much larger than the pore scale size (black dots) of the porous medium.

In most applications C is a curved 3D domain, with one dimension significantly smaller than the other dominant
two. Furthermore we suppose a flat middle surface of the fracture. An example is a penny shape crack as
displayed in Figure 3. The surrounding poroelastic domain is Ω := Ω(t) = Λ \ C, where Λ = (0, L)3 ⊃ C,
i.e. the crack C is contained compactly in Ω and does not reach the boundary. The boundary of Λ = (0, L)3

is denoted by ∂Λ, which is divided into open 2D surfaces ∂DΛ and ∂NΛ, with smooth boundaries. We assume
that meas(∂DΛ) > 0 and ∂Λ = ∂DΛ ∪ ∂NΛ. Boundary conditions on ∂DΛ for the Biot system involve
displacements and the normal fluxes and on ∂NΩ traction as well as pressure.

2.2 Biot equations (without fractures)

The quasi-static Biot equations in Ω × (0, T ] (see e.g. Tolstoy [1992]) read as follows:

σpor − σ0 = Ge(u)− αpRI; − div (σpor) = ρbg; (1)

∂t
( 1

M
pR + div (αu)

)
+ div

(KR

ηR
(ρRg −∇pR)

)
=
qR
ρR
, (2)

where σpor is the total poroelasticity tensor (Pa), σ0 is the reference state total stress, u : Ω× [0, T ]→ R3 is the
solid’s displacement (m), pR : Ω × [0, T ] → R is the fluid reservoir pressure (Pa), and q = qR/ρR represents
source terms. G is a constant symmetric positive definite rank-4 tensor. In most applications we model the
stress Ge(u) using a linear stress-strain relationship:

Ge(u) = 2µe(u) + λtr(e(u))I,

where e(u) := (∇u +∇Tu)/2 is the linearized strain tensor, I is the identity matrix, tr(·) the trace operator,
and µ and λ are material parameters. Other parameters and unknowns are listed in Table 1.
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Symbol Quantity Unity
KR permeability of the poroelastic domain Darcy
KF fracture permeability Darcy
ρb bulk density kg/m3

ρF reference state fracture fluid density kg/m3

ρR reference state pore fluid density kg/m3

ηF fracture fluid viscosity kg/m sec
ηR pore fluid viscosity kg/m sec
α Biot’s coefficient dimensionless
M Biot’s modulus Pa
cF fracture fluid compressibility 1/Pa
g gravity m/sec2

Table 1: Unknowns and effective coefficients with units.

2.3 Specific remarks to fracture descriptions in porous media

In classic fracture propagation references, e.g., Adachi et al. [2007], Ganis et al. [2014], Sneddon and Lowen-
grub [1969], the crack C is considered to be a lower dimensional manifold. This point of view is justified in
solid mechanics. In case of a fluid-filled fracture, lubrication theory is applied to describe the fluid flow (see
e.g. Adachi et al. [2007], Ganis et al. [2014], Lecampion and Detournay [2007], Schrefler et al. [2006]); namely
one replaces moving boundary Stokes flow by a Reynolds equation.

However in our work fractures propagate in a poroelastic medium. Therefore, their description is obtained by
upscaling the fluid-structure pore scale first principle equations. In this new setting the meaning of a Griffith’s
type surface energy is not clear and we choose to deal with a physical 3D fracture, to which we can attribute an
energy term leading to propagation Mikelić et al. [2015a,c].

In the crack we consider incompressible viscous flow. Since this takes place in a thin domain, we replace the
Navier-Stokes equations by the appropriate 3D Darcy law. Its derivation, and in particular the permeability cal-
culation, is based on the lubrication approximation (see Szeri [2011]). In the case of Newtonian incompressible
viscous flow in the crack C, the 3D Darcy law using lower dimensional lubrication approximation is derived in
Mikelić et al. [2015b]. The extension to quasi-Newtonian fracture flow is undertaken below.

2.4 Power-law flow equations in the fracture

We now turn to the description of the fracture pressure equation where we assume the fracturing fluid as quasi-
Newtonian. The motivation is that polymers change the fluid rheology; see EPA [2004] and references cited
therein. We use the following density-pressure relationship

ρF = ρ0F exp(cF (pF − p0F )) ≈ ρ0F [1 + cF (pF − p0F )],

where ρ0F denotes the (constant) reference density, pF : Ω × [0, T ]→ R is the fluid fracture pressure (Pa), and
p0F is a given initial fluid fracture pressure. The fluid compressibility cF is assumed to be small and ρF ≈ ρ0F .
Nevertheless, even after linearization, compressibility effects are important in the pressure equation. Using the

5
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smallness of cF , the fracture mass conservation equation is then given by:

cF∂tpF + div (vF ) =
qF
ρ0F

in C × (0, T ], (3)

where qF is a source term and vF is nonlinear Darcy’s law defined below. To describe the quasi-Newtonian
fluid, we introduce the following notation. Let the Frobenius matrix norm | · | be given by∣∣ξ∣∣2 = tr(ξξt) = ξ : ξ =

∑
i,j

ξ2ij , ξ ∈ R9.

The fracture viscosity ηeffF is assumed to be a power of the second invariant eII(v) = tr(e(v)2) of the rate of
strain tensor e(v):

ηeffF = ηF γ̇
m−1 = ηF

∣∣√2e(v)
∣∣m−1, (4)

where ηF is the shear consistency of the proppant and m > 0 is the power-law exponent, characterizing the
strain rate sensitivity of the proppant; see Bird et al. [1987] for more details. A prototype fracture model is a
3D penny-shape crack as shown in Figure 3.

Figure 3: Sketch of the fracture region for a three-dimensional setting. The boundary x3 = h(j)(x1, x2, t),
j = 1, 2, moves in time

The fracture boundary is given by

x3 = h(2)(x1, x2, t) for x3 ≥ 0, t ∈ [0, T ],

x3 = h(1)(x1, x2, t) for x3 < 0, t ∈ [0, T ],
(5)

and
C(t) = {(x1, x2, x3) | h(1)(x1, x2, t) < x3 < h(2)(x1, x2, t), (x1, x2) ∈ ω}, t ∈ [0, T ], (6)

where ω is a smooth bounded domain in R2. Note that h(j), j = 1, 2 describes a moving boundary.

The fracture C is characterized by the ratio ε between its characteristic width H in the direction x3 and its
characteristic horizontal length L in directions x1 and x2; a sketch is provided in Figure 3. We assume that
width H of the fracture is much larger than the pore size of the porous medium and recall that a coupled model
must be taken into account. Here H := c0l

2/3, where l is the pore size.

Due to the small ratio ε = H/L the results from the Appendix apply and the relative velocity satisfies nonlinear
Darcy’s law

vF =
KF

η
1/m
F

|f −∇pF |
1
m
−1(f −∇pF ) + (0, 0, vL), (7)
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where |x| =
√
x21 + x22 + x23 and f includes boundary conditions from the derivation and the gravity in f3. The

leak off term vL and the fracture absolute permeability KF are given by (102) and (101), respectively in the
Appendix. In addition, KF depends on the shape of the crack and on ηF and m.

The functions h(1) and h(2) can be considered as negative and positive displacements of the crack, respectively.
An illustration is provided in Figure 3, i.e., h(1) + h(2) = 2uwidth where uwidth denotes the half-width of the
fracture. The characteristic widthH of the fracture is chosen asH := max{−h(1), h(2)}. Note that for a penny
shaped fracture C the dominant components of the velocity are two dimensional.

Remark 2.1 The surfaces h(2) and h(1) meet at x3 = 0, which is the tip region. The nonlinear filtration law
(7) is valid everywhere except at the tip zone, where degeneration takes place. Thus, excluding the tip zone and
avoiding singular behavior at the interface between the fracture and the reservoir arising from the permeability
jump, we determine a new permeability-viscosity ratio at the interface by interpolation. We finally recall that
our crack permeability law is based on the assumption that cracks curvature does not change too rapidly.

Modeling the moving interface ∂C is challenging. To begin, we notice that the crack domain C(t) penetrates
the poroelastic mediumΩ(t) with the interface velocity vI . As discussed in Mikelić et al. [2015b], Sec 2.3., the
interface-corrected continuity of fluxes (the first principle Rankine-Hugoniot conditions) lead to the following
interface conditions

pR = pF and σporn = −pFn on the moving interface ∂C, (8)

vF · n = vR · n =
KR

ηR
(ρRg −∇pR) · n on the moving interface ∂C, (9)

where vF and vR are fracture and reservoir velocities, respectively. Furthermore, n denotes the normal exterior
to the fracture.

Condition (8) is a simplification of the pressure interface conditions and more careful modeling by upscaling
indicates presence of an additional term; the interested reader is referred to Marciniak-Czochra and Mikelić
[2012].

2.5 A pressure diffraction problem

We have seen that under the assumption of the weak compressibility of the fluid, the mass conservation equation
is given by (2) in the poroelastic part Ω and by (3) in the fracture C. The pressure diffraction problem that
combines reservoir and fracture flow reads:

θ(x, t)∂tp+ div
(
−Keff (∇p,x, t)(∇p− G̃)

)
= q − χC(t)

∂vL
∂x3

in Λ, (10)

where

θ(x, t) := χΩ(t)
1

M
+ χC(t)cF , q := q(x, t) := χΩ(t)

qR
ρR
− χΩ(t)α∂t(div u) + χC(t)

qF
ρF

;

G̃ := χΩ(t)ρRge3 + χC(t)f , Keff (∇p,x, t) = χΩ(t)
KR

ηR
+ χC(t)

KF

η
1/m
F

|f −∇pF |1/m−1,

and the flow velocity is defined as

v := −Keff (∇p,x, t)(∇p− G̃). (11)
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According to our assumption that we consider a flat fracture, ∂vL∂x3
only acts in the third dimension. More details

are provided in the Appendix. Moreover, in the general case we would deal with a normal derivative with
respect to middle surface.

The indicator functions are given by

χΩ(t) := 1 in Ω(t), and χΩ(t) := 0 in C(t), (12)

such that χC(t) = 1 − χΩ following Mikelić et al. [2015b]. The formulation contains the time-dependent
interface Γ (t) := C(t) ∩Ω(t) between Ω and C as the crack propagates.

The interface conditions are given by

[p] = 0, (13)[
−Keff (∇p,x, t)(∇p− G̃)

]
· n = vLn3, (14)

where [·] denotes the jump. Here, n3 is the third component of the unit normal vector to the interface.

We impose the following initial conditions

p|t=0 = p0F in C(0) and p|t=0 = p0R in Ω(0). (15)

For simplicity we suppose homogeneous Neumann conditions (no flow) on ∂Λ:(
−Keff (∇p,x, t)(∇p− G̃)

)
· n = 0. (16)

In the following, we study existence and uniqueness for the diffraction problem (10)-(16). Let us introduce the
Banach space W by

W = {p ∈ La(0, T ;W 1,a(Λ)) | ∇p ∈ L2(Ω × (0, T ))3 and ∇p ∈ L1+1/m(C × (0, T ))3}, (17)

where a = min{2, 1 + 1/m} . The space W 1,a contains functions from La with their gradients also in La.
The weak (variational or virtual work) formulation for problem (10)-(16) reads:

Problem 1 (Pressure diffraction problem on time-dependent domains) Find p ∈ L∞(0, T ;L2(Λ)), ∂tp ∈
L2(Ω × (0, T )), ∇p ∈ L∞(0, T ;La(Λ))3 , ∇p ∈ L∞(0, T ;L2(Ω))3 and ∇p ∈ L∞(0, T ;L1+1/m(C))3 such
that

∫ T

0

∫
Λ
θ(x, t)∂tpψ dxdt+

∫ T

0

∫
Λ
Keff (∇p,x, t)(∇p− G̃)∇ψ dxdt

=

∫ T

0

∫
Λ
qψ dxdt+

∫ T

0

∫
C(t)

∂ψ

∂x3
vL dxdt ∀ψ ∈W, (18)

p|t=0 = p0 = χΩ(0)p
0
R + χC(0)p

0
F . (19)

Problems of type (18)-(19) have been treated in Ladyzhenskaja et al. [1968], page 232, for the case G̃ = 0 and
m = 1. In Mikelić et al. [2015b] the case m = 1 has been considered and in the present work we extend these
results to a quasilinear parabolic PDE corresponding to m 6= 1.
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In order to overcome the challenge of moving domains, we use a standard approach arising from moving
boundary problems (see e.g., Formaggia and Nobile [1999]) and transform the current configuration at time t
back to its initial configuration at time t = 0. This transformation can be realized by using the corresponding
displacement field u in Ω(t). Let y ∈ Ω(0). We make the following assumptions on the current displacement,
the deformation gradient and its determinant:

x = u(y, t) + y, t ∈ [0, T ], (20)

u ∈ C1([0, T ]× Λ)3,
Dy

Dx
∈W 1,∞((0, T )× Λ)9, J(t) = det

Dy

Dx
> 0. (21)

Then, the interface Γ (t) is C1. Moreover, the normal vector n and the velocity v = ∂tu are continuous. We
have the following result

Proposition 2.1 We assume that KR ∈ L∞(Λ)9 is a uniformly elliptic matrix. For the data we assume
p0 ∈ W 1,∞(Λ), q ∈ L∞((0, T ;C(Λ))3), vL ∈ C1([0, T ];L∞(Λ)), and f̃ ∈ W 1,∞((0, T ;C(Λ))3)). With
the further assumptions in (21), the problem (18)-(19) has a unique solution p ∈ L∞(0, T ;L2(Λ)), ∂tp ∈
L2((0, T )× Λ), ∇p ∈ L∞(0, T ;La(Λ))3, ∇p ∈ L∞(0, T ;L1+1/m(C))3, and ∇p ∈ L∞(0, T ;L2(Ω))3.

Proof. We work with the diffeomorphism x = u(y, t) + y and introduce the space W 0, which contains the
functions of the space W mapped to the initial domain; for details of the definition of such a space we refer the
reader to Formaggia and Nobile [1999].

The inverse diffeomorphism transforms Γ (t) to Γ (0) and the part of Ω far from the interface is unchanged
(similar to the arbitrary Lagrangian-Eulerian approach in fluid-structure interaction Donea et al. [1982], Hughes
et al. [1981]). The weak formulation (18) transforms to∫ T

0

∫
Λ
θ0∂tp̃ψ̃J(t) dydt+

∫ T

0

∫
Λ
K0
eff (

Dy

Dx
∇yp̃− G̃0)

Dy

Dx
∇yψ̃J(t) dydt

=

∫ T

0

∫
Λ
q0ψ̃J(t) dydt+

∫ T

0

∫
C(0)

Dy

Dx
∇ψe3v

0
LJ(t) dxdt, ψ ∈W, (22)

and where ψ̃ ∈ W 0. Here p̃(y, t) = p(x(y, t), t), f̃(y, t) = f(x(y, t), t) and θ0 := χΩ(0)
1
M + χC(0)cF .

Respectively,

q0 := q(y, t) := χΩ(0)
q̃R(y, t)

ρR
− χΩ(0)α∂t(div u(y, t)) + χC(0)

q̃F (y, t)

ρF
,

G̃0 := χΩ(0)ρRge3 + χC(0)f̃(y, t),

K0
eff := K0

eff (∇yp̃,y, t) = χΩ(0)
KR(x(y, t))

ηR
+ χC(0)

KF

η
1/m
F

|̃f − Dy

Dx
∇yp̃F |1/m−1.

Letting ψ̃ = ∂tp̃, we have∫ T

0

∫
Λ
θ0(∂tp̃)

2J(t) dydt+

∫ T

0

∫
Λ
K0
eff (

Dy

Dx
∇yp̃− G̃0) · Dy

Dx
∂t∇yp̃J(t) dydt

=

∫ T

0

∫
Λ
q0J(t)∂tp̃ dydt+

∫ T

0

∫
C(0)

Dy

Dx

∂

∂x3
∂tp̃ e3vLJ(t) dydt. (23)
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We transform the second term on the left hand side of (23). Let us introduce the abbreviation

Π =
Dy

Dx
∇yp̃− G̃0, Π(0) = ∇p0 − G̃0|t=0.

Then we have∫
Λ
K0
effΠ ·

Dy

Dx
∂t∇yp̃J(t) dy =

∫
Λ
K0
effΠ · ∂tΠJ(t) dy︸ ︷︷ ︸

=I1

+

∫
Λ
K0
effΠ · ∂tG̃0J(t) dy −

∫
Λ
K0
effΠ ·

(
∂t(

Dy

Dx
)
Dy

Dx

−1
Π
)
J(t) dy −

∫
Λ
K0
effΠ ·

(
∂t(

Dy

Dx
)
Dy

Dx

−1
G̃
)
J(t) dy︸ ︷︷ ︸

=I2

= I1 + I2. (24)

We note that (21) and f ∈ W 1,∞((0, T ;C(Λ))3)) imply G̃0 ∈ W 1,∞((0, T ;C(Λ))3)). It is analogous for KF

and K0
eff . Using the assumed regularity of the coefficients yields

|I2| ≤ C(

∫
Ω(0)
|Π|2J(t) dy +

∫
C(0)
|Π|1+1/mJ(t) dy + 1) (25)

Next we transform the term I1:

I1 = ∂t

(∫
Ω(0)

1

2ηR
KRΠ ·ΠJ dy +

∫
C(0)

m

(m+ 1)η
1/m
F

K0
FΠ ·Π|Π|1/m−1J dy

)
(26)

−
∫
Ω(0)

1

2ηR
KRΠ ·Π∂tJ dy −

∫
C(0)

m

(m+ 1)η
1/m
F

K0
FΠ ·Π|Π|1/m−1∂tJ dy−

∫
C(0)

∂tK
0
F

η
1/m
F

|Π|1/m+1J dy.

Inserting (24)-(26) into (23) and using the hypothesis on the coefficients, we obtain∫ t

0

∫
Λ

(∂τ p̃)
2J(t) dydτ +

∫
Ω(0)
|Π|2(t)J(t) dy +

∫
C(0)
|Π|1+1/m(t)J(t) dy

≤ C
(∫

Ω(0)
|Π|2(0) dy +

∫
C(0)
|Π|1+1/m(0) dy +

∫ t

0

∫
C(t)
|vL|m+1 dxdt+

∫ t

0

∫
Λ

(q0)2J dydτ

+

∫ t

0
(

∫
Ω(0)
|Π|2(τ)J(τ) dx+

∫
C(0)
|Π|1+1/m(τ)J(τ) dy)dτ + 1

)
. (27)

Gronwall’s inequality implies the a priori estimate

||∇p||L∞(0,T ;L2(Ω(t))) + ||∇p||L∞(0,T ;L1+1/m(C(t))) + ||∂tp||L2(Ω×(0,T )) ≤ C. (28)

Proving existence and uniqueness for problem (18)-(19) is based on a Galerkin technique and thus straightfor-
ward. A sketch of the proof is provided in the following:

1. We introduce finite dimensional spaces W1 ⊂W2 ⊂ · · · ⊂WN ⊂W and construct a finite dimensional
approximation pN .

2. By the estimate (27), pN exists on (0, T ) and satisfies estimate (28), which is independent of N .

3. We then let N → ∞. By estimate (28) and elementary weak and weak-* compactness, there exists a
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subsequence {pl}l∈N, such that

pl → p strongly in L2(0, T ;La(Λ)), (29)

∂tpl → ∂tp weakly in L2(Λ× (0, T )), (30)

pl → p weakly in W, (31)

∇pl → ∇p weak-* in L∞(0, T ;La(Λ)). (32)

4. Passing to the limit is now straightforward, except in the quasilinear term involving the nonlinear vis-
cosity law. The latter one is monotone in ∇p and we apply Minty’s lemma and write the Galerkin
approximation of the problem (18)-(19) in the equivalent form∫ T

0

∫
Λ
θ∂tpN (ψ − pN ) dxdt+

∫ T

0

∫
Λ
Keff (p,x, t)(∇ψ)(∇ψ − G̃)∇(ψ − pN ) dxdt

−
∫ T

0

∫
Λ
q(ψ − pN ) dxdt−

∫ T

0

∫
C(t)

∂(ψ − pN )

∂x3
vL dxdt ≥ 0, ∀ψ ∈WM ; M ≤ N. (33)

Using that

lim
N→∞

∫ T

0

∫
Λ

(χΩ
KR

ηR
+ χC

KF

η
1/m
F

|f −∇ψ|1/m−1)∇(ψ − pN ) dxdt

=

∫ T

0

∫
Λ

(χΩ
KR

ηR
+ χC

KF

η
1/m
F

|f −∇ψ|1/m−1)∇(ψ − p) dxdt,

we conclude that p satisfies variational inequality (33) for every ψ ∈ W . After applying once more
Minty’s lemma we conclude that p is a solution for problem (18)-(19).

Uniqueness is a consequence of the regularity and monotonicity.

Remark 2.2 We emphasize that the previous theoretical considerations only hold for smooth cracks without
branching and joining. Nevertheless, the associated computational method is still applicable to such settings,
which is demonstrated in Section 5.

Remark 2.3 (Lower-dimensional fracture pressure equations) Many research publications concentrate on
the accurate description of the fluid equation in the fracture. Often, the fracture is identified as a lower dimen-
sional manifold (a line in 2D or a plane in 3D) on which the lubrication equation is used, for instance in Ganis
et al. [2014], Lecampion and Detournay [2007], Schrefler et al. [2006]. Our strategy is different because the
phase-field requires a volume approximation and can be used as indicator function.

2.6 The displacement phase-field system

To compute the fractured displacement field, we follow the approach by Miehe et al. [2010b], which is based
on Francfort and Marigo [1998]. Here, the fracture length (or surface area) can be approximated using an
elliptic functional Ambrosio and Tortorelli [1990, 1992] as, thereby introducing a variable ϕ, referred to as
the phase-field variable hereafter. The phase field variable ϕ is defined as a continuous quantity that smoothly
varies between 0 and 1 on Λ for 0 ≤ t ≤ T . This smooth interpolation introduces a diffusive zone of width ε,
where ε is a regularization parameter with the fracture C being approximated as a three-dimensional domain.

11
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As is usually done in fracture settings in variational methods, we assume crack irreversibility. This condition is
an inequality constraint in time and reads:

∂tϕ ≤ 0.

For the complete quasi-static variational formulation with the irreversibility constraint, we refer to Mikelić et al.
[2015c]. In this article we consider only the incremental formulation. The corresponding incremental form is
given by

ϕ ≤ ϕold,

where ϕold denotes later the previous time step solution.

The function spaces are chosen as

Vu := H1
0 (Λ), Wϕ := H1(Λ), and W in

ϕold := {w ∈ H1(Λ)|w ≤ ϕold ≤ 1 a.e. on Λ}.

Furthermore, for modeling of fractures with pressure terms (see Mikelić et al. [2015a,c]), we define ϕ+ :=
max{0, ϕ}. The incremental formulation that describes quasi-static fracture propagation in poro-elasticity has
been derived in Mikelić et al. [2015c] and reads:

Formulation 2 Let the pressure p be given. Find vector-valued displacements u ∈ Vu and a scalar-valued
phase-field variable ϕ ∈W in

ϕold such that∫
Λ

(
(1− κ)ϕ2

+ + κ
) (
Ge(u) : e(w)

)
dx−

∫
Λ

(α− 1)(ϕ2
+p, div w) dx+

∫
Λ

(ϕ2
+∇p ·w) dx = 0,∀w ∈ Vu,

∫
Λ

(1− κ)(ϕ+ Ge(u) : e(u)(ψ − ϕ)) dx−
∫
Λ

2(α− 1)(ϕ+ p(div u)(ψ − ϕ)) dx

+

∫
Λ

2 (ϕ+(∇p · u)(ψ − ϕ)) dx+

∫
Λ
Gc

(
−1

ε
(1− ϕ)(ψ − ϕ) + ε(∇ϕ · (∇(ψ − ϕ)))

)
dx ≥ 0, ∀ ψ ∈Wϕ.

Furthermore, κ > 0 and ε > 0 are the phase-field regularization parameters with κ � ε Bourdin et al. [2000]
with κ = 10−10h. Here, Gc stands for the critical energy release rate that is related to the fracture toughness.

Remark 2.4 The solution of the previous system depends on the choice of κ and ε. As discussed in Bourdin
et al. [2000] and Borden et al. [2012], κ can be chosen very small at the machine tolerance level. The choice
of ε is restricted by the constraint ε > h. Several numerical simulations performed in Heister et al. [2015],
Wick [2015] and Lee et al. [2015] for 2D and 3D investigate the influence of ε.

2.7 Proppant transport in the fracture C

For modeling the proppant transport we solve an advective equation that determines the volumetric distribution
of concentration c, see e.g., Adachi et al. [2007], Drew and Passman [1999].

Formulation 3 Find the concentration c such that for all times t ∈ (0, T ]:

∂t(ϕ
?c) + div (vpc) = Qcq

qF
ρF
, in Λ(t)× (0, T ], (34)

where vp = Qv, Q > 0 is a coefficient for the velocity, and v is obtained from (11). The initial condition is
given by

c(x, 0) = c0(x), ∀x ∈ Λ,

12
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where c is the species concentration advected, cq is a general source or sink term. As boundary conditions, we
prescribe

vp · n = 0 on ∂Λ× (0, T ].

Various types of proppant velocity models (e.g. vp = Qv − (1 − c)vs) are discussed by Clark et al. [1981],
Daneshy [1978], Clifton and Wang [1988], Novotny [1977], Govier and Aziz [1972] regarding the slip velocity
vector (vs) with settling of proppant. Those models are based on theoretical and experimental results with
careful assumptions for proppant particle size, density, fracture width and fluid velocity, see Adachi et al.
[2007], Barree and Conway [1994], Clark and Quadir [1981], Vadimovich. Recently, modeling of the proppant
velocity parameter Q is studied in Dontsov and Peirce [2015]. The choice of a model for vp is non-trivial since
each has different assumptions with varying results. Therefore, in this work, we focus on a prototype model
to observe the distribution of proppant in the fracture. We assume the proppant velocity is equal to the fluid
velocity (no slip and settling) and instead of providing any specific Q, we restrict Q to be a constant. Several
numerical examples using prototype models with different choices for Q are presented in Section 5. Complete
studies with validations can be achieved once more experimental data are available.

3 Numerical discretization

In the previous section, we derived a phase-field model with four equations for the unknowns: displacements,
phase-field, pressure, and proppant concentration. In this section, we formulate temporal, spatial discretization
and linearization. The displacement phase-field system is treated with Galerkin finite elements, the pressure
diffraction problem is solved with an enriched Galerkin (EG) method in order that the flow is locally conserva-
tive. The transport equation is treated with cell-centered finite elements. Temporal discretization is performed
with A-stable backward Euler finite difference scheme.

We consider a shape regular mesh family {Th}h>0, and we assume that each mesh Th is a subdivision of Λ̄made
of disjoint elements T , i.e., squares when d = 2 or cubes when d = 3. Each subdivision is assumed to exactly
approximate the computational domain, thus Λ̄ = ∪T∈ThT . The diameter of an element K ∈ Th is denoted by
h and we denote hmin for the minimum. For any integer k ≥ 1 and T ∈ Th, we denote by Qk(T ) the space of
scalar-valued multivariate polynomials over T of partial degree of at most k. The vector-valued counterpart of
Qk(T ) is denoted QQQk(T ). In addition, we define a partition of the time interval 0 =: t0 < t1 < · · · < tN := T
and denote the time step size by δt := tn − tn−1.

3.1 Numerical discretization for flow/pressure using enriched Galerkin (EG)

In porous media flow it is well known that the velocities should be locally mass conservative Hughes et al.
[2000], Sun and Wheeler [2006]. This can either be achieved by post-processing of the velocities or by a direct
solution in which the function space is enriched. We employ the latter method, the enriched Galerkin (EG),
that was first proposed in Sun and Liu [2009] and is extended in Lee et al. [September 2015]. Throughout the
remaining sections, we assume the gravity G̃ ≡ 0 and that fluid leakage is zero.

3.1.1 Approximation in space and time

The EG space approximation P of the pressure function p(x, t) is approximated by piecewise polynomials in
the following finite element space:

V EG
h := Mk

0 (Th) +M0(Th). (35)
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We define,
Mk(Th) :=

{
p ∈ L2(Λ)| p|T ∈ Qk(T ), ∀T ∈ Th

}
, (36)

and denote Mk
0 (Th) by

Mk
0 (Th) := Mk(Th) ∩ C(Λ), (37)

the subspace of Mk(Th) consisting of the globally continuous piecewise continuous functions (C).

We let Eh be the set of all edges/faces and Eoh and E∂h are the collection of all interior and boundary edges/faces,
respectively. In the following, we use the notation for 2D edges but the results hold analogously for 3D faces.
The boundary edges E∂h can be further decomposed into E∂h = ED,∂h ∪ EN,∂h , where ED,∂h is the collection of
edges where Dirichlet boundary conditions are imposed, while EN,∂h is the collection of edges where Neumann
boundary conditions are imposed. In addition, we denote that E1h := Eoh ∪ E

D,∂
h and E2h := Eoh ∪ E

N,∂
h . For

any e ∈ Eoh, let T+ and T− be two neighboring elements such that e = ∂T+ ∩ ∂T−. We denote by he
the maximum length of the edges e. Let n+ and n− be the outward normal unit vectors to ∂T+ and ∂T−,
respectively (n± := n|T±). For any given function ξ defined on the triangulation Th, we denote ξ± by the
restrictions of ξ to T±.

The space Hk(Th) (k ∈ IR) is the set of element-wise Hk functions on Th, and L2(Eh) refers to the set of
functions whose traces on the elements of Eh are square integrable.

In addition, we define the average {{·}} as follows:

{{w}} :=
1

2
(w+ + w−) for w ∈ L2(Th), and {{w}} := w for e ∈ E∂h . (38)

The jump across the interior edge will defined as

[[w]] = w+n+ + w−n−on e ∈ Eoh, and [[w]] = wn for e ∈ E∂h .

Next, we define indicator functions to determine the domains for the fracture and the reservoir. As discussed in
(12), once the phase field value ϕ(tn+1) is computed, we define,

χn+1
C :=

1−H?
h(ϕ(tn+1))

2
, χn+1

Ω :=
1 +H?

h(ϕ(tn+1))

2
(39)

where H?
h(.) is an approximation of the Heaviside function given as

H?
h(s) =


1 if s > 0.5 +Dε,
−1 if s < 0.5−Dε,

s− 0.5

Dε
otherwise.

(40)

Here we set Dε = 0.1.

Let the approximation of P (x, tn) , 0 ≤ n ≤ N be denoted by Pn. Then, the discretized problem reads as
follows:

Formulation 4 Let u(tn+1), ϕ(tn+1), and the previous time step pressure solution Pn be given;

Find Pn+1 ∈ V EG
h such that S(Pn+1, w) = 0, ∀w ∈ V EG

h , (41)
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where S is the IIPG method Dawson et al. [2004] and the variational form defined as

S(Pn+1, w) :=
∑
T∈Th

∫
T
θn+1P

n+1 − Pn

δt
wdx+

∑
T∈Th

∫
T
Kn+1
eff ∇P

n+1 · ∇wdx

−
∑
e∈E1h

∫
e
{{Kn+1

eff ∇P
n+1}} [[w]] dγ +

∑
e∈E1h

∫
e

1

he
Kn+1
eff |e

[[Pn+1]] [[w]] dγ +
∑
T∈Th

∫
T
qn+1w dx. (42)

Here,

θn+1 := χn+1
Ω

1

M
+ χn+1

C cF , qn+1 := χn+1
Ω

(
qn+1
R

ρn+1
R

− α∂t(div u(tn+1))

)
+ χn+1

C
qn+1
F

ρn+1
F

,

Kn+1
eff := χn+1

Ω

KR

ηR
+ χn+1

C
KF

η
1/m
F

|f −∇Pn+1|1/m−1.

Remark 3.1 The spatial and temporal discretization of the displacements is introduced in the next section. For
this reason we still deal with ∂t(div u(tn+1)) in the above system.

3.1.2 Computational treatment of the fracture permeability KF

Following the Appendix, the fracture permeability can be further approximated as:

KF =

KHOM 0 0
0 KHOM 0
0 0 KHOM

 . (43)

In our numerical simulations, we use the diagonal form ofKF in (43) rather than (101). This is justified because
H1+r∗ = H2+1/m and KHOM is of order Hr∗ = H1+1/m, resulting in the off-diagonal terms being much
smaller than the diagonals. From the Appendix, we know that

KHOM (x, t) = −r − 1

r

(
|x3 −

h(1) + h(2)

2
|r/(r−1) − |h

(1) − h(2)

2
|r/(r−1)

)
.

We notice since h(1) ≤ 0 and h(2) ≥ 0 (see Figure 3) that KHOM is always nonnegative.

Remark 3.2 (Further possible simplifications) If we further assume x3 = 0 and symmetry of the crack open-
ing displacement h1 = −h2, we obtain

KHOM (x, t) = −r − 1

r

(
− |2h

(1)

2
|r/(r−1)

)
=
r − 1

r

(
|h(1)|r/(r−1)

)
In the Newtonian case, r = 2, we obtain the expression from Mikelić et al. [2015b], formula (2.7):

KHOM (x, t) =
1

2
(h(1))2.
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3.2 Numerical discretization of displacements and phase-field

For spatial discretization of the displacement-phase-field system, we define a fully-coupled Euler-Lagrange for-
mulation for treating U and Φ (approximating u, φ) simultaneously. We consider a time-discretized system in
which time enters through the crack irreversibility condition. The latter constraint leads to a variational inequal-
ity system. The spatial discretized solution variables are U ∈ C1([0, T ];VVV0(Th)) and Φ ∈ C1([0, T ];Z(Th)),
where

VVV0(Th) := {W ∈ C0(Λ̄;Rd) |W = 0 on ∂Λ,W |K ∈ QQQ1(K),∀K ∈ Th},
Z(Th) := {Z ∈ C0(Λ̄;R)| Zn+1 ≤ Zn ≤ 1, Z|K ∈ Q1(K),∀K ∈ Th}.

In the following, we formulate a standard variational system of Formulation 2 and we denote by Un, Φn the
time approximation of U(tn), Φ(tn) respectively. Formulating a monolithic system, we extrapolate Φ (denoted
by E(Φ)) in order to avoid an indefinite Hessian matrix:

E(Φn) = Φn−2 +
(t− tn−1 − tn−2)

(t− tn−1)− (t− tn−1 − tn−2)
(Φn−1 − Φn−2).

This heuristic procedure has been shown to be an efficient and robust method, see Heister et al. [2015]. We
then obtain the following system:

Formulation 5 Given the initial conditions U0 := U(0) and Φ0 := Φ(0) and Pn+1, we seek {Un+1, Φn+1} ∈
VVV0(Th)× Z(Th) such that

A(Un+1, Φn+1)(w, ψ − Φn+1) ≥ 0 ∀{w, ψ} ∈ VVV0(Th)× Z(Th),

where the semilinear form is given by

A(Un+1, Φn+1)(w, ψ − Φn+1)

=

∫
Λ

(1− k)(E(Φn+1)2 + k)σ+(Un+1) : e(w) dx +

∫
Λ
σ−(Un+1) : e(w) dx

−
∫
Λ

(α− 1)E(Φn+1)2Pn+1div (w) dx +

∫
Λ
E(Φn+1)2∇Pn+1 ·w dx

+ (1− k)

∫
Λ
Φn+1σ+(Un+1) : e(Un+1) · (ψ − Φn+1) dx

− 2(α− 1)

∫
Λ
Φn+1Pn+1div (Un+1) · (ψ − Φn+1) dx

+

∫
Λ

2Φn+1∇Pn+1 ·Un+1 · (ψ − Φn+1) dx

−Gc
∫
Λ

1

ε
(1− Φn+1) · (ψ − Φn+1) dx +Gc

∫
Λ
ε∇Φn+1 · ∇(ψ − Φn+1) dx,

The solution of this system is discussed in Section 4.3.

We decompose the stress tensor (i.e., the energy) into tensile σ+ and compressive σ− parts for modeling of
shear forces under compression as in Miehe et al. [2010b], Amor et al. [2009].

Remark 3.3 (Further remarks on time-dependencies) The full system is time-dependent although not all
equations contain time derivatives. The pressure and concentration equations have a time derivative whereas
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‘time’ in the phase field equation enters through the irreversibility constraint. The displacement solution
changes in time since the time-dependent variables of the other two equations enter.

For completeness, we define the directional derivative A′(Un+1, Φn+1)(δUn+1, δΦn+1,w, ψ), which is re-
quired for Newton’s method. We notice that several terms in the ϕ-variable vanish due to a time-lagged extrap-
olation. We seek {δUn+1, δΦn+1} ∈ VVV0(Th)× Z(Th) such that

A′(Un+1, Φn+1)(δUn+1, δΦn+1,w, ψ − Φn+1)

=

∫
Λ

((1− k)E(Φn+1)2 + k)σ+(δUn+1) : e(w) dx +

∫
Λ
σ−(δUn+1) : e(w) dx

+ (1− k)

∫
Λ
δΦn+1σ+(Un+1) : e(Un+1) · (ψ − Φn+1) dx

+ (1− k)

∫
Λ

2Φn+1σ+(δUn+1) : e(Un+1) · (ψ − Φn+1) dx

− 2(α− 1)Pn+1

∫
Λ

(δΦn+1div (Un+1) + Φn+1div (δUn+1) · (ψ − Φn+1)) dx

+ 2

∫
Λ
δΦn+1∇Pn+1 ·Un+1 · (ψ − Φn+1) dx + 2

∫
Λ
Φn+1∇Pn+1 · δUn+1 · (ψ − Φn+1) dx

+Gc

∫
Λ

1

ε
δΦn+1 · (ψ − Φn+1) dx +Gc

∫
Λ
ε∇δΦn+1 · ∇ψ dx ≥ 0,

for all {w, ψ} ∈ VVV0(Th)× Z(Th).

3.3 Numerical discretization of proppant transport

In this subsection, we concentrate on the numerical discretization of proppant transport described in Section
2.7. The space approximation C of the concentration function c(x, t) is approximated using piecewise constant
given in the finite element space,

M(Th) := {W ∈ C0(Λ̄;R) |W |T ∈ Q0(T ), ∀T ∈ Th}. (44)

We denote the approximation of C(x, tn) by Cn.

Formulation 6 Assume Un, Φn, and Pn+1 are given values at time tn with C(x, 0) = C0, where C0 is an
approximation of the initial condition c(t0). Let Cn is given, we seek Cn+1 ∈ C0([0, T ];M(Th)) so that

∑
T∈Th

∫
T

Cn+1 − Cn

δt
wdx−

∑
T∈Th

∫
T
QCn+1Vn+1 · ∇wdx−

∑
T∈Th

∫
T

q−F (tn+1)

ρn+1
F

cq(t
n+1)Cn+1wdx

+
∑
e∈Eoh

∫
e
QC∗Vn+1 · n[[w]]dγ −

∑
T∈Th

∫
T
Q
q+F (tn+1)

ρn+1
F

cq(t
n+1)wdx = 0, ∀ω ∈M(Th). (45)

Here the source terms are 0 < cq ≤ 1, q+F := max(0, qF ), q−F := min(0, qF ) and upwind value C∗ is defined
as

C∗|e :=

{
C− if V · n ≥ 0
C+ if V · n < 0.
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Such conservative flux variables Vn+1 can be obtained as follows. Let Pn+1 be the solution to the (41), we
define the flux variables Vn+1 at time step tn+1, by the following procedure:

Vn+1|T = −Kn+1
eff ∇P

n+1, ∀T ∈ Th (46a)

Vn+1 · n|e = −Keff
n+1
|e {{∇P

n+1}} · n + h−1e Keff
n+1
|e [[Pn+1]], ∀e ∈ Eoh, (46b)

where n is the unit normal vector of the boundary edge e of T , in which the value of the normal component
of Vn. The detailed proof of local and global conservation properties of such defined flux variables as well as
their approximation estimate is given in Lee et al. [September 2015].

4 Coupling algorithms and numerical solution of nonlinear and linear
systems

In this section, we propose coupling algorithms to compute the unknowns p,u, ϕ, and c that are obtained by
solving Formulation 4, 5 and 6, respectively.

4.1 The global algorithm and mesh adaptivity

Solve

Pressure (p)

Solve Displacement-

Phase Field (u, ϕ)
Refine Mesh Solve Transport (c)

Fixed-Stress Predictor-Corrector

Figure 4: Global algorithm flowchart for each time step including the mesh refinement step.

The global algorithm is illustrated in Figure 4. Here we combine monolithic and splitting algorithms which is
augmented with local mesh adaptivity. First, we solve for the degenerated pressure diffraction problem. Then,
the displacement-phase-field is solved by an efficient and robust monolithic algorithm Heister et al. [2015], Lee
et al. [2015]. The coupling of the latter problem to the pressure diffraction is realized with fixed-stress splitting
Dean and Schmidt [2009], Mikelić and Wheeler [2012], Settari and Walters [2001]. The motivation in applying
an iterative coupling algorithm is that a monolithic approach to the multiphysics problem is challenging due to
the nonlinear coupling terms and the requirement for different discretization schemes. Moreover, future exten-
sions to multiphase flow add more complexities. In addition, fixed stress splitting allows for straightforward
coupling of fracture mechanics modules to reservoir simulators for production studies. After having obtained
p,u and ϕ we use these computed values to solve for the proppant transport. Then we proceed to the next time
step and start from the beginning again.

For local mesh adaptivity, a fixed value for ε is prescribed a priori that should be maintained throughout the
entire computation. However, we must ensure that ε > h holds true in the crack region. For this purpose
we employ a recently proposed predictor-corrector mesh refinement technique Heister et al. [2015]. Since the
refinement indicator therein is based on the value of the phase-field variable, adaptivity can be performed after
solving the phase-field system as shown in Figure 4. The phase-field equation is linked through fixed-stress
to the pressure equation. The corrector step is performed after solving these systems and before solving the
proppant transport. When the crack grows and the adaptive scheme detects that a step must be re-done, the entire
fixed-stress step (corrector) needs to be solved again depending upon how many mesh levels are enforced. The
additional numerical solution has the same cost as the predictor step and is therefore an expensive operation.
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However, in Heister et al. [2015] (2D) and Lee et al. [2015] (3D) it has been demonstrated that this procedure
is efficient and accurate in comparison to global and a priori local mesh refinement. Indeed, the big advantage
is that the mesh is only refined with respect to the unknown crack location and works for curvilinear cracks,
branching and joining in two and three spatial dimensions.

Algorithm 1 The global algorithm for proppant-filled phase-field fracture

At time tn; let Pn−1,Un−1, Φn−1, Cn−1 be given.
repeat

Solve two-field fixed-stress, the inner loop, for l = 1, 2, 3, . . .:

1. Solve the pressure diffraction Formulation 4 to compute P l (with P 0 := Pn−1)
2. Solve fully-coupled linear elasticity phase-field Formulation 5

to compute {Ul, Φl} (with U0 := Un−1 and Φ0 := Φn−1)

until Stopping criterion

max{‖Ul −Ul−1‖, ‖Φl − Φl−1‖, ‖P l − P l−1‖} ≤ TOLFS, TOLFS > 0,where TOLFS = 10−4,

for fixed-stress split is satisfied (end of inner loop)

Set: (Pn, Un, Φn) := (P l,Ul, Φl).

3. Solve once the proppant transport Formulation 6 using vn to obtain Cn.

Increment tn → tn+1.

4.2 Fixed-stress iteration between the displacement-phase-field system and
pressure diffraction

The fixed-stress iteration decouples pressure and geomechanics. And our principle idea follows the standard
literature Dean and Schmidt [2009], Mikelić and Wheeler [2012], Settari and Walters [2001]. Extending fixed-
stress to phase-field fractures, we also need to include the phase-field equation into the fixed-stress iteration.
One approach is to have two loops: an outer fixed-stress iteration and an inner iteration between displacements
and phase-field Mikelić et al. [2015b]. Another idea is to keep the fixed-stress iteration but to replace the inner
iteration by a quasi-monolithic solve for the displacement-phase-field system Lee et al. [2015]. Therefore, we
restrict our presentation in this paper to the algorithm presented next.

Applying Algorithm 2 to the concrete equations yields: Given Pn,Un and Φn setting the initial fixed-stress
values P 0 := Pn,U0 := Un and Φ0 := Φn and solve for l = 1, 2, 3, . . .:

Given {Ul−1, Φl−1}, find P l such that S(P l, w; Ul−1, Φl−1) = 0, ∀w ∈ V EG
h .

In the second step of fixed-stress, we solve:

Given P l, find {Ul, Φl} such that A(Ul, Φn;P l)(w, ψ − Φl) ≥ 0, ∀{w, ψ} ∈ VVV0(Th)× Z(Th).

The numerical solution of each subproblem is briefly outlined in Section 4.3. Here, we stress that efficient and
robust solution methods for the single subproblems have been developed in other papers and we refer to them.
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Algorithm 2 Fixed-stress for phase-field fluid-filled fractures in porous media
At each time tn

repeat
Solve two-field fixed-stress (inner loop):

Solve pressure diffraction Formulation 4
Solve the (nonlinear) fully-coupled elasticity phase field Formulation 5

until Stopping criterion

max{‖P l − P l−1‖, ‖Ul −Ul−1‖, ‖Φl − Φl−1‖} ≤ TOLFS, TOLFS > 0

for fixed-stress split is satisfied
Set: (Pn,Un, Φn) := (P l,Ul, Φl).
Increment tn → tn+1.

4.3 Nonlinear and linear solvers

Algorithm 2 presents the fixed-stress phase field approach for fluid filled fractures in which the geomechanics-
phase-field system is coupled to the pressure diffraction problem. Here, the pressure diffraction Formulation
4 is nonlinear for m 6= 1 due to the power-law fluid in the fracture; in the Newtonian case for m = 1 the
pressure problem is linear. In both cases a Newton solver with backtracking line search is employed and
which converges for m = 1 in one single iteration. Within Newton’s method, the Jacobian is analytically
derived in order to have optimal convergence properties. The nonlinear variational inequality presented in
Formulation 5 is solved with a second Newton method in which two nonlinear iterations are combined. The
first Newton iteration is required to solve the nonlinear forward problem A(Un+1, Φn+1)(w, ψ) = 0 and the
second (semi-smooth) Newton method is a realization of a primal-dual active set strategy to treat the crack
irreversibility Φn+1 ≤ Φn constraint. The resulting scheme has been formulated in Heister et al. [2015]. In
order to enhance the convergence radius, a backtracking line search algorithm is employed. Within Newton’s
method the linear equations are solved with the generalized minimal residual method (GMRES) using diagonal
block-preconditioning from Trilinos Heroux et al. [2003]. Further details and performance of these schemes
are presented in Heister et al. [2015], Lee et al. [2015], Wick et al. [2015]. Finally, the transport Formulation 6
is linear and solved with GMRES.

5 Numerical Examples

We present in this section several examples with increasing complexity. In order to calibrate our code we first
compare Newtonian fracture flow with our quasi-Newtonian model. In the examples thereafter, the proppant
transport equation is included as well. The current programming code is an extension of Wick et al. [2015],
Lee et al. [2015] based on the MPI parallel phase-field fracture framework Heister et al. [2015] using deal.II
Bangerth et al. [2012] and p4est Burstedde et al. [2011]. Despite the fact that our theory has been performed for
three-dimensional problems, we also present 2D numerical examples in order to substantiate our developments.

5.1 Comparing crack propagation using Newtonian versus power-law fluid models
(without proppant)

The motivation for this first test is to compare Newtonian fracture flow with our quasi-Newtonian model. In
the domain Λ = (0 m, 4 m)2, we set a initial fracture centered at (2 m, 2 m) with radius r = 0.4 m with
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Figure 5: Example 5.1: Phase field values representing the fracture at times T = 0, 0.3, 0.5s with m = 1
(Newtonian fracture flow) on top and m = 0.5 at the bottom. Red (ϕ = 0) indicates the fracture.

Figure 6: Example 5.1: Fracture at times T = 0, 0.3, 0.5s with the Predictor-corrector mesh refinement where
the mesh follows the fracture path.

thickness of 2hmin as shown in the Figure 10 (a). The mechanical parameters are Gc = 1.0N/m, ν = 0.2 and
E = 108 Pa in the homogeneous domain. The fluid is injected at the center of the fracture with the constant
volume rate of qF = 200 m3/s for point source injection in the first 40 time steps and then slightly reduced by
qF = 200 m3/s× (100− n)/60 (where n is the time step number) and qL = 0. The fluid parameters are given
as ηF = ηR = 10−3 Ns/m2, ρR = ρF = 1000 kg/m3. The diagonal entry of the permeability KR = diag(kR)
is defined with its entry kR = 10−12, and all other parameters are cF = 10−10 and the Biot modulus is
M = 2.5× 108 Pa. Here ε = 2hmin, hmin = 0.022 m and the time step is δt = 0.01s, with T = 3s. For the
power law index, we use m = 1 and m = 0.5. As functional values we observe the length of the fracture and
the highest pressure value. In our numerical results, we do not observe significant differences in the fracture
length; see Figures 5. In Figure 6 we demonstrate predictor-corrector mesh refinement, where the mesh grows
with the fracture. The pressure curves are observed in Figure 8 in which the Newtonian case shows a slightly
higher pressure evolution. The corresponding pressure distribution is finally illustrated in Figure 7.
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Figure 7: Example 5.1: Pressure distribution at T = 0, 0.3, 0.5s for m = 1 (Newtonian, top) and m = 0.5
(quasi-Newtonian, bottom). Using the quasi-Newtonian model for fracture flow the highest pressure
is lower than in the Newtonian case and the fracture propagates slower. We recall that polymers that
lead to non-Newtonian fluid behavior are mainly intended to carry the proppant and not for the fracture
propagation itself EPA [2004]. This is one main reason why fracturing is performed in different stages
and specifically water is first injected and polymers is included at a later stage (time).
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Figure 8: Example 5.1: Maximum pressure evolution (in Pa) versus time (in s). As long as the crack does not
propagate (here until T = 0.25s) the pressure increases. A pressure decrease follows when the crack
evolves. Using the quasi-Newtonian model (here m = 0.5), we observe that the highest pressure is
lower than in the Newtonian case.

5.2 Tracer of the flow from injection to the production with a fixed fracture

In the domain Λ = (0 m, 10 m)2, we measure the concentration values near the production source for two
different cases; case i) high permeability (the diagonal entry of the permeability KR = diag(KR) = KF =
diag(kF ) is defined with its entry kR = kF = 10−3) for the entire domain Λ (see Figure 9 (a)) and case ii) low
permeability (kR = 10−12) domain with a fixed fracture (kF = 10−3) in the middle of the domain as shown
in the Figure 9 (e). The injection and production source are given at the point s (5 m, 5 m) and (1 m, 1 m),
respectively. The injection and production rates are given as q+ = 100 m3/s and q− = −100 m3/s with the
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(a) Case i) (b) Case i) at t = 10 (c) Case i) at t = 1000 (d) Comparison at t = 10

(e) Case ii) (f) Case ii) at t = 10 (g) Case ii) at t = 1000 (h) Comparison at t = 1000

Figure 9: Example 5.2 (a) Setup for case i) with kR = kF = 10−3 in the domain and for (e) case ii) with the
fracture in the middle (kF = 10−3) but lower permeability in the reservoir kR = 10−12. At each time
t = 10 and t = 1000, (b)-(c) illustrates the concentration values for case i) and (f)-(g) for case ii).
We compare the concentration values between each cases over the line (1, 1) − (2, 2) at (d)-(h) and
we observe the higher value of concentration near the production for case ii) with the fixed fracture at
the middle of the domain.

fluid parameters ρF = ρR = 1000 kg/m3, ηF = ηR = 10−3 Ns/m2. Here, we choose cq = 1 for all following
examples.

At each time t = 10 and t = 1000, figure 9 (b)-(c) illustrates the concentration value for case i) and (f)-(g) for
case ii). Finally, in Figure 9 (d) and (h), we plot the concentration values over the line (1, 1)-(2, 2) as indicated
by the arrows in (c)-(g). We observe that the fluid moves faster to the production source in case ii) when the
same amount of the fluid is injected for both cases. This is because the fluid spreads to all direction for case i),
and the flow is more localized and higher velocity occurs towards the production source for case ii).

5.3 A single fracture with concentration in 2D and 3D

5.3.1 2D setting

In this section, we modify the proppant speed parameter Q in (34) and observe distributions of proppant con-
centration depending on the fracture propagation.

In the domain Λ = (0 m, 4 m)2, we set a initial fracture centered at (2 m, 2 m) with radius r = 0.4 m with
thickness of 2hmin as shown in the Figure 10 (a). The mechanical parameters are Gc = 1.0N/m, ν = 0.2
and E = 108 Pa in the homogeneous domain. The fluid is injected at the center of the fracture with the
constant volume rate of qF = 200 m3/s for point source injection and qL = 0. The fluid parameters are
given as ηF = ηR = 1× 10−3 Ns/m2, ρR = ρF = 1000 kg/m3, with m = 0.9. Also other parameters are
kR = 1× 10−12, g = 0, cF = 1× 10−10, and the Biot modulus is M = 2.5× 108 Pa. Here ε = 2hmin,
hmin = 0.022 m and the time step is δt = 0.01s, with T = 3s.
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(a) Q = 1 at t = 0.5 (b) Q = 1 at t = 1 (c) Q = 1 at t = 3

(d) Q = 10 at t = 0.5 (e) Q = 10 at t = 1 (f) Q = 10 at t = 3

(g) Q = 50 at t = 0.5 (h) Q = 50 at t = 1 (i) Q = 50 at t = 3

(j) Q = 100 at t = 0.5 (k) Q = 100 at t = 1 (l) Q = 100 at t = 3

(m) Q = 250 at t = 0.5 (n) Q = 250 at t = 1 (o) Q = 250 at t = 3

Figure 10: Example 5.3.1 For all figures green contour lines indicate the growing fractures with value ϕ = 0.8.
We compare the concentration values (0 ≤ c ≤ 1) for each time t = 0.5 (first column),1 (second
column), and 3 (third column) with different values of Q = 1, 10, 50, 100, and 250.

24



Phase-field modeling of proppant-filled fractures in a poroelastic medium
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Figure 11: Example 5.3.1 (a) Comparison of the concentration values for differentQ on the line (2, 2)−(3.6, 2),
which is the middle of the fracture at t = 3 in Figure 10. (b) Illustrates the concentration values
when non-locally conservative discretization method (continuous Galerkin) is employed for the flux.
The red arrow indicates the concentration values exceeding up to c = 70. The values are computed
on the line (2, 2)− (3.6, 2) at t = 3 with Q = 250.

(a) Q = 100; n = 5 (b) n = 20 (c) n = 44

(d) Q = 250; n = 5 (e) n = 20 (f) n = 44

(g) Q = 500; n = 5 (h) n = 20 (i) n = 44

Figure 12: Example 5.3.2 The penny shape fracture propagating for each time n is plotted with phase field
contour value for ϕ = 0.8 outside. Inside the fractures, concentration values along with fracture
propagation for different Q = 100, 250,and 500 are illustrated.
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Figure 10 illustrates the concentration of the proppant with the fracture propagation. First, the contour line
indicates the fracture (ϕ = 0.8) and we observe the different distribution of concentration for different values
of Q = 1, 10, 50, 100 and 250. Larger Q transports the concentration faster to the tip of fracture. In addition,
we plot the concentration value over the fracture (line (2, 2)-(3.6, 2)) at Figure 11 (a). The concentration values
are affected by the fracture propagation at Q = 10, 50, 100, and Q = 250 cases but not at Q = 1 case. Note
that in case Q = 250, the speed for proppant transport is so fast that the proppant accumulates at the crack tip.
We also observe some higher accumulation of proppant in the middle of the fracture since the concentration
depends on the crack width and permeability.

However, Figure 11 (b) shows the case with Q = 250 at t = 3 applying non-locally conservative (continuous
Galerkin) flux to transport the concentration value. We observe non physical phenomena with extremely high
values and this is the critical reason to use locally conservative flux.

5.3.2 3D setting

In the three dimensional domain Λ = (0 m, 4 m)3, the initial penny shape fracture is centered at (2 m, 2 m, 2 m)
on y = 2 m−plane with the radius r = 0.25 m. The fluid is injected at the center of the fracture and all the
parameters are the same as in the previous two dimensional example. Here ε = 2hmin, hmin = 0.054 m and
the time step is δt = 0.01s.

Figure 12 illustrates each step of the fracture propagation due to the injection of fluid with the transport of
concentration. In addition, we vary the Q values for the pressure diffraction system to study the differences.
This numerical example highlights the capabilities of our algorithm to handle 3D computations.

5.4 Two fractures with proppant transport

In this last example, we predict concentration values in two initial fractures in arbitrary positions propagating
due to injection. We also emphasize joining and branching of the fractures with locally refined meshes.

Figure 13 (a) presents the initial setup for the multiple fractures on the locally refined domain Λ = (0 m, 4 m)2.
The right fracture is centered at (2.25 m, 2 m) with length 0.4 m and the left fracture is centered at (1.75 m, 2.5 m)
with length r = 0.5 m. The mechanical parameters are ν = 0.2 and E = 108 Pa for the homogeneous domain.
Here the fluid is injected at the center of the fracture with the volume rate qF = 200 m3/s. The discretization
parameters are δt = 0.01s, ε = 2hmin, and hmin = 0.054 m.

Figure 13 illustrates the concentration values with fractures propagating for each time step n. Here the red
contour line indicates the evolving fractures with the phase field value ϕ = 0.8, and the proppant concentration
is moving inside the fractures with Q = 100.
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(a) n = 1 (b) n = 27 (c) n = 35

(d) n = 75 (e) n = 100 (f) n = 100

Figure 13: Example 5.4. Concentration values and joining of two fractures for each time step n. The solid
contour line indicates the fracture (ϕ = 0.8) and we emphasize the adaptive mesh refinement at (f).

Conclusions

In this contribution, we extended multiphysics phase-field fracture modeling by incorporating a power-law
fracture fluid and proppant transport. In order to achieve local mass conservative flow, the enriched Galerkin
method has been employed. In our numerical examples we considered different scenarios. First, we com-
pare Newtonian versus power-law fracture flow models without solving proppant transport. In the remaining
examples, proppant transport is included for quasi-Newtonain fluid. Here, tests in two and three dimensions
have been computed where the crack pattern and the concentration distribution have been compared. The prop-
pant transport equation has been restricted as a prototype model in this work. Future extensions for including
gravitational forces or slip velocity vectors are planned.
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6 Appendix: Nonlinear Darcy’s law for a power law in a flat 3D penny
shape fracture

In the appendix we provide a short derivation of the relation between the velocity and the pressure gradient for
power law quasi-Newtonian fracture flow. Here, e(v) denotes the rate of the strain tensor, i.e. the symmetrized
gradient of the velocity

e(v) =
1

2
(∇v + (∇v)τ ).

The matrix norm | · | is defined by ∣∣ξ∣∣2 = Tr(ξξt), ξ ∈ R9

The (fracture) viscosity ηeffF is assumed to be a power-law function of the microscopic shear strain rate e(v),
which is expressed in term of the second invariant of the strain tensor eII(v) = Tre(v)2 by

ηeffF = ηF γ̇
m−1 = ηF

∣∣√2e(v)
∣∣m−1 = ηF

∣∣√2e(v)
∣∣r−2, (47)

where ηF is the shear consistency of the fluid, m is the power-law exponent, characterizing the strain rate
sensitivity of the fluid, and r = m+ 1, 1 < r < +∞. For more details we refer to Bird et al. [1987].

In the following, the notation and geometry assumptions follow the Appendix of Mikelić et al. [2015b]. A flat
3D fracture ΩC = C is characterized by the ratio 1 ε between its characteristic width H in the direction x3 and
its characteristic horizontal length L in directions x1 and x2; a sketch is provided in Figure 3. Here we assume
that the crack boundary is given by

x3 = h(2)(x1, x2, t) for x3 ≥ 0 and x3 = h(1)(x1, x2, t) for x3 < 0, t ∈ [0, T ]. (48)

Here h(2) and h(1) meet at x3 = 0, the tip region. ω is a smooth bounded domain in R2 and

ΩC(t) = {(x1, x2, x3) | h(1)(x1, x2, t) < x3 < h(2)(x1, x2, t), (x1, x2) ∈ ω }, t ∈ [0, T ]. (49)

The fluid flow in the fracture is described by the incompressible power-law quasi-Newtonian Navier-Stokes
equations

∂v

∂t
+ (v · ∇)v +

1

ρF
∇p− 2

ηF
ρF

div
(
|
√

2e(v)|r−2e(v)
)

= f in ΩC(t); (50)

div v = q in ΩC(t), (51)

where ρF = ρ0F is the fluid density and ν = ηF |
√

2e(v)|r−2/ρF is the kinematic viscosity. For simplicity, we
assume that the volume force f is independent of x3.

Next, we derive a dimensionless form of the lubrication equation following the classical lubrication theory
references (see e.g. Szeri [2011]). Let U be the characteristic velocity in the directions x1 and x2 and Re=

1We note that the ε used in the Appendix is not related to the phase-field regularization parameter.
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ULρF
ηF

the Reynolds number. Then we set

t̄ =
t

T0
; x =

x1
L
, y =

x2
L
, z =

x3
H
, vεx =

v1
U
, vεy =

v2
U
, vεz =

v3L

UH
, q̄ = q

L

U
,

f̄ = f
ρFH

r

ηFU r−1
, p̄ =

Hr

ηFLU r−1
p, w(j)(x, y, t̄) =

1

H
h(j)(x1, x2, t) and ε =

H

L
.

The symmetrized velocity gradients transform as follows

eij(v) =
1

2
(
∂vi
∂xj

+
∂vj
∂xi

) =
U

L
eij(v

ε), 1 ≤ i, j ≤ 2;

ei3(v) =
1

2
(
∂vi
∂x3

+
∂v3
∂xi

) =
U

2H
(∂zv

ε
i + ε2∂xiv

ε
z), 1 ≤ i ≤ 2;

e33(v) =
U

L
∂zv

ε
z.

Lemma 7 Let the nonlinear viscosity S be defined as

S(|∂z(vεx, vεy)|) =
(
|∂zvεx|2 + |∂zvεy|2

)r/2−1
. (52)

Then we have
ν =

ηF
ρF

(
U

H
)r−2S(|∂z(vεx, vεy)|) +O(ε2). (53)

For simplicity, we skip all bars and denote the rescaled ΩC with the same symbol. The system (50)-(51)
becomes

ρFU
3−rHr

LηF
(
L

UT0
∂tv

ε
x + ((vεx, v

ε
y, v

ε
z) · ∇x,y,z)vεx)

= −∂xpε + ∂z(S(|∂z(vεx, vεy)|)∂zvεx) + fx +O(ε2) in ΩC(t), (54)

ρFU
3−rHr

LηF
(
L

UT0
∂tv

ε
y + ((vεx, v

ε
y, v

ε
z) · ∇x,y,z)vεy) (55)

= −∂ypε + ∂z(S(|∂z(vεx, vεy)|)∂zvεy) + fy +O(ε2) in ΩC(t),

ρFU
3−rHr−1

ηF
(∂tv

ε
z + ((vεx, v

ε
y, v

ε
z) · ∇x,y,z)vεz) = − 1

ε2
∂zp

ε +
1

ε
fz+

2∂z(S(|∂z(vεx, vεy)|)∂zvεz) + divx,y(S(|∂z(vεx, vεy)|)∂z(vεx, vεy)) +O(ε) in ΩC(t), (56)

∂xv
ε
x + ∂yv

ε
y + ∂zv

ε
z = q +O(ε2) in ΩC(t). (57)

We assume
ρFU

3−rHr

LηF
� 1, and

L

T0U
� 1 and neglect the inertia term at the main order.
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6.1 Incorporating boundary conditions

Concerning the boundary conditions, we recall that the unit normal n and tangential vectors τ (j), j = 1, 2 can
be expressed in the form

n =
−ε∂xw e1 − ε∂yw e2 + e3√

1 + ε2|∇x,yw|2
; τ (1) =

e1 + ε∂xw e3√
1 + ε2|∂xw|2

; τ (2) =
e2 + ε∂yw e3√

1 + ε2|∂yw|2
.

Then for vε = (vεx, v
ε
y, v

ε
z) we have

vε · n = ε
−∂xw vεx − ∂yw vεy + vεz√

1 + ε2|∇x,yw|2
= ε(vεz −∇x,yw · (vεx, vεy)) +O(ε3);

vε · τ (1) =
vεx + ε2∂xwv

ε
z√

1 + ε2|∂xw|2
= vεx + ε2(∂xw vεz −

vεx
2

(∂xw)2) +O(ε4),

and analogously for vε · τ (2).

We assume that the velocity in the fracture is larger than in the surrounding porous medium. Hence we have at
z = w(x, y, t):

0 = vε · τ (1) = vεx + ε2(∂xw vεz −
vεx
2

(∂xw)2) +O(ε4) (58)

and an analogous expression for vε · τ (2). In normal direction we must impose the kinematic boundary condi-
tion:

Dh

Dt
= −vout.

The term vout is used to calculate the previously introduced leak-off qL. We then obtain

∂th+ (v1, v2) · ∇x1,x2h− v3 = −vout on x3 = h(x1, x2, t),

and in the dimensionless form we have

L

T0U
∂tw + (vεx, v

ε
y) · ∇x,yw − vεz = −vLO on z = w(x, y, t), (59)

where vout = UεvLO.

Remark 6.1 An alternative to the zero tangential velocity condition (58) is to impose the Beavers and Joseph
slip condition on the moving boundary:

M

[
vε · τ (1)
vε · τ (2)

]
=

[
ν(|e(vε)|)e(vε)n · τ (1)
ν(|e(vε)|)e(vε)n · τ (1)

]
, (60)

where M is the (symmetric) slip matrix. The slip law (60) was introduced in Beavers and Joseph [1967].
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6.2 The lubrication approximation

Following classical expansions from lubrication theory, we expand the velocities and the pressure as follows

vεx = v0x + ε2v1x +O(ε4); vεy = v0y + ε2v1y +O(ε4); vεz = v0z + ε2v1z +O(ε4); (61)

pε = p0 + ε2p1 +O(ε4); (62)

w =

{
w(2)(x, y, t) for z ≥ 0, (the upper surface)

w(1)(x, y, t) for z < 0 (the lower surface).
(63)

Inserting (61)-(63) into (54)-(57) yields at the order O(1) in ΩC :

−∂xp0 + fx + ∂z(S(|∂z(v0x, v0y)|)∂zv0x) = 0; −∂yp0 + fy + ∂z(S(|∂z(v0x, v0y)|)∂zv0y) = 0; (64)

−∂zp0 = 0; ∂xv
0
x + ∂yv

0
y + ∂zv

0
z = q; (65)

v0x(x, y, w, t) = 0 = v0y(x, y, w, t). (66)

Following Szeri [2011], we use (64)-(66) to calculate v0x, v
0
y and obtain a PDE for p0. However, presence

of the nonlinear viscosity S complicates the task and we start with an viscosity expression as a function of
|(fx, fy)−∇x,yp0|:

Proposition 6.1 The nonlinear viscosity S, defined by (52), satisfies

S(|∂z(v0x, v0y)|) = |(fx, fy)−∇x,yp0|(r−2)/(r−1)|z −
w(1) + w(2)

2
|(r−2)/(r−1). (67)

Proof. The first equation in (65) yields p0 = p0(x, y, t) (the geostrophic approximation). Next we integrate the
equations in (64) to get

S(|∂z(v0x, v0y)|)∂zv0x = Ax(x, y, t) + z(∂xp
0 − fx), (68)

S(|∂z(v0x, v0y)|)∂zv0y = Ay(x, y, t) + z(∂yp
0 − fy). (69)

Formulas (68)-(69) yield

S(|∂z(v0x, v0y)|) = S(z) =

(
(Ax + z(∂xp

0 − fx))2 + (Ay + z(∂yp
0 − fy))2

)(r−2)/(2r−2)
. (70)

It remains to calculate Ax and Ay. We first integrate (68)-(69) between w(1) and z and obtain the following
expressions for the velocity components:

v0x(z) = Ax

∫ z

w(1)

dξ

S(ξ)
+ (∂xp

0 − fx)

∫ z

w(1)

ξ dξ

S(ξ)
, (71)

v0y(z) = Ay

∫ z

w(1)

dξ

S(ξ)
+ (∂yp

0 − fy)
∫ z

w(1)

ξ dξ

S(ξ)
. (72)

Let us introduce the following abbreviations

a = a(x, y, t) =

∫ w(2)

w(1)

dξ

S(ξ)
and b = b(x, y, t) =

∫ w(2)

w(1)

ξ dξ

S(ξ)
. (73)
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Then we have
Ax = −(∂xp

0 − fx)
b

a
and Ay = −(∂yp

0 − fy)
b

a
,

which yields

S(z) = |(fx, fy)−∇x,yp0|(r−2)/(r−1)|z −
b

a
|(r−2)/(r−1). (74)

Next,

v0x = (∂xp
0−fx)

∫ z

w(1)

(ξ − b
a)dξ

S(ξ)
=
r − 1

r
(∂xp

0−fx)|(fx, fy)−∇x,yp0|(2−r)/(r−1)
(
|z− b

a
|r/(r−1)−|w(1)− b

a
|r/(r−1)

)
.

(75)

The boundary condition v0x(w(2)) = 0 yields
b

a
=
w(1) + w(2)

2
and we have

v0x =
r − 1

r
(∂xp

0 − fx)|(fx, fy)−∇x,yp0|(2−r)/(r−1)
(
|z − w(1) + w(2)

2
|r/(r−1) − |w

(1) − w(2)

2
|r/(r−1)

)
,

(76)

v0y =
r − 1

r
(∂yp

0 − fy)|(fx, fy)−∇x,yp0|(2−r)/(r−1)
(
|z − w(1) + w(2)

2
|r/(r−1) − |w

(1) − w(2)

2
|r/(r−1)

)
,

(77)

S(z) = |(fx, fy)−∇x,yp0|(r−2)/(r−1)|z −
w(1) + w(2)

2
|(r−2)/(r−1). (78)

Remark 6.2 If the zero tangential velocity condition (58) is replaced by Beavers and Joseph slip condition
(60) at the moving boundary, then the conditions (66) have to be replaced by

M0

[
v0x
v0y

]
|z=w(j) = S(w(j))∂z

[
v0x
v0y

]
|z=w(j) , j = 1, 2, (79)

whereM =
ηF
HρF

(
U

H
)r−2M0 andM0 is the (symmetric) dimensionless slip matrix. Considerations analogous

to the above ones give us expressions for (v0x, v
0
y) .

With these preparations, we are ready to calculate the corresponding nonlinear permeability. First let us identify
the coefficient in the relations linking (v0x, v

0
y) and∇x,yp0. Let r∗ = r/(r − 1) be the conjugate exponent to r.

K(z) = −r − 1

r
|(fx, fy)−∇x,yp0|(2−r)/(r−1)

(
|z − w(1) + w(2)

2
|r/(r−1) − |w

(1) − w(2)

2
|r/(r−1)

)
= K̃(z)|(fx, fy)−∇x,yp0|(2−r)/(r−1), (80)

v0x = −K(z)(∂xp
0 − fx), v0y = −K(z)(∂yp

0 − fy), (81)
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For z ≥ (w(1) + w(2))/2, Ke(z) =

∫ w(2)

z
K(s) ds =

|(fx, fy)−∇x,yp0|(2−r)/(r−1)

r∗(1 + r∗)21+r∗
×(

(w(2) − w(1))r
∗
(−2z + w(2) + w(1) + 2r∗(w(2) − z)) + (2z − w(2) − w(1))1+r

∗
)
, (82)

For z ≤ (w(1) + w(2))/2, Ke(z) =

∫ w(2)

z
K(s) ds =

|(fx, fy)−∇x,yp0|(2−r)/(r−1)

r∗(1 + r∗)21+r∗
×(

r∗(w(2) − w(1))1+r
∗

+ (w(1) + w(2) − 2z)
(
(1 + r∗)(w(2) − w(1))r

∗ − (w(1) + w(2) − 2z)r
∗))

, (83)

Ke(z) = K̃e(z)|(fx, fy)−∇x,yp0|(2−r)/(r−1), (84)

Kabs = Ke(w
(1)) =

(w(2) − w(1))1+r
∗

(1 + r∗)2r∗
|(fx, fy)−∇x,yp0|(2−r)/(r−1) = K̃abs|(fx, fy)−∇x,yp0|r

∗−2.

(85)

Next we reconsider the the kinematic boundary condition (59). Using expansions (61) and boundary condition
(66) yield

L

T0U
∂tw

(j) = v0z(x, y, w
(j))− v(j)LO, j = 1, 2. (86)

The incompressibility condition from (65) allows to calculate v0z :

∂zv
0
z = q − ∂xv0x − ∂yv0y = K̃(z) divx,y

(
|(fx, fy)−∇x,yp0|(2−r)/(r−1)(∇x,yp0 − (fx, fy))

)
+

|(fx, fy)−∇x,yp0|(2−r)/(r−1)(∇x,yp0 − (fx, fy)) · ∇x,yK̃(z) + q.

Integration between z and w(2) in z variable and using (86) yield

v0z =
L

T0U
∂tw

(2) + v
(2)
LO − K̃e(z) divx,y

(
|(fx, fy)−∇x,yp0|(2−r)/(r−1)(∇x,yp0 − (fx, fy))

)
−

|(fx, fy)−∇x,yp0|(2−r)/(r−1)(∇x,yp0 − (fx, fy)) · ∇x,yK̃e(z) +

∫ w(2)

z
q dξ. (87)

If we take z = w(1), then we arrive at the Reynolds lubrication equation for a power-law fluid:

L

T0U
∂t(w

(2) − w(1)) + v
(2)
LO − v

(1)
LO +

∫ w(2)

w(1)

q dξ = div x,y

(
K̃abs|(fx, fy)−∇x,yp0|r

∗−2(∇x,yp0 − (fx, fy))

)
.

(88)

The equation (88) is the Reynolds lubrication equation (see Bird et al. [1987] and Christopher and Middleman
[1965]), which is a generalization of the classical Reynolds equation for a Newtonian fluid (see Szeri [2011]).
We note that this expansion is not valid in the fracture tip region and that the Navier-Stokes equation do not
simplify there.

Remark 6.3 For the rigorous mathematical justification of the validity of equation (88) we refer to Mikelić and
R.Tapiéro [1995], where convergence of vε to v0 was shown.

Remark 6.4 Let cF be the proppant compressibility. If T0 ≤ cF ηF ε
−2(U/H)r−2, then the incompressibility
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condition should be replaced by the continuity equation for a slightly compressible fluid. It would imply only a
slight modification of equation (88). Namely, in such setting one has to add the term (w(2) −w(1))κ∂tp

0 to the
left hand side of equation (88). The same modification applies to the equations which follow.

6.3 Calculation of the nonlinear permeability

In order to have a Darcy-type law for the effective flow, we still miss an equation for v0z .

div x,y

(
|(fx, fy)−∇x,yp0|r

∗−2(∇x,yp0 − (fx, fy))

)
=

1

K̃abs

{
L

T0U
∂t(w

(2)−w(1))+v
(2)
LO−v

(1)
LO+

∫ w(2)

w(1)

q dξ

}
−|(fx, fy)−∇x,yp0|r

∗−2(∇x,yp0−(fx, fy))·∇x,y log K̃abs.

(89)

We introduce equation (89) into equation (87) and get

v0z(x, y, t) = K̃e(z)|(fx, fy)−∇x,yp0|r
∗−2∇x,y log

K̃abs

K̃e(z)
· (∇x,yp0 − (fx, fy))+

(1− K̃e(z)

K̃abs
)(

L

T0U
∂tw

(2) + v
(2)
LO +

∫ w(2)

w(1)

q dξ) +
K̃e(z)

K̃abs
(
L

T0U
∂tw

(1) + v
(1)
LO). (90)

Hence we got the following Darcy’s law

v0xv0y
v0z

 = −


K̃(z) 0 −K̃e(z)∂x log K̃abs

K̃e(z)

0 K̃(z) −K̃e(z)∂y log K̃abs

K̃e(z)

−K̃e(z)∂x log K̃abs

K̃e(z)
−K̃e(z)∂y log K̃abs

K̃e(z)
0

 (∇x,yp0 − (fx, fy))

|(fx, fy)−∇x,yp0|2−r∗

+

 0
0

(1− K̃e(z)

K̃abs
)( L
T0U

∂tw
(2) + v

(2)
LO +

∫ w(2)

w(1) q dξ) + K̃e(z)

K̃abs
( L
T0U

∂tw
(1) + v

(1)
LO)

 . (91)

Darcy’s law (91) is supplemented by the equation ∂zp0 = 0. In fact the dependence on z for ∂z(p0 − εzfz)
comes only at order O(ε2). Hence, since Darcy’s law (91) is valid at order O(ε2), we can include the equation
∂zp

0 = 0 into it by putting an O(ε−2) coefficient at the place (3, 3) in the permeability. This approach yields

v0xv0y
v0z

 = −


K̃ 0 −εK̃e∂x log K̃abs

K̃e

0 K̃ −εK̃e∂y log K̃abs

K̃e

−K̃e∂x log K̃abs

K̃e
−K̃e∂y log K̃abs

K̃e

K̃
ε


(
(∇x,yp0, ε−1∂zp0)− (fx, fy, fz))

|(fx, fy, fz)− (∇x,yp0, ε−1∂zp0)|2−r∗

+

 0
0

(1− K̃e(z)

K̃abs
)( L
T0U

∂tw
(2) + v

(2)
LO +

∫ w(2)

w(1) q dξ) + K̃e(z)

K̃abs
( L
T0U

∂tw
(1) + v

(1)
LO)

 , (92)

implying

v0 = −K|(∇x,yp0, ε−1∂zp0)− (fx, fy, fz)|r
∗−2((∇x,yp0, ε−1∂zp0)− (fx, fy, fz)) + A +O(ε), (93)
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with

K =


K̃(z) 0 −εK̃e(z)∂x log K̃abs

K̃e(z)

0 K̃(z) −εK̃e(z)∂y log K̃abs

K̃e(z)

−K̃e(z)∂x log K̃abs

K̃e(z)
−K̃e(z)∂y log K̃abs

K̃e(z)

K̃(z)
ε

 (94)

A3 = (1− K̃e(z)

K̃abs
)(

L

T0U
∂tw

(2) + v
(2)
LO +

∫ w(2)

w(1)

q dξ) +
K̃e(z)

K̃abs
(
L

T0U
∂tw

(1) + v
(1)
LO),

A1 = A2 = 0. (95)

It remains to go back to the dimensional form. We set

KHOM (x, t) = −r − 1

r

(
|x3 −

h(1) + h(2)

2
|r/(r−1) − |h

(1) − h(2)

2
|r/(r−1)

)
, (96)

For x3 ≥ (h(1) + h(2))/2, KHOM
e (x, t) = (h(2) − h(1))r∗(−2x3 + h(2) + h(1)+

2r∗(h(2) − x3)) + (2x3 − h(2) − h(1))1+r
∗
, (97)

For x3 ≤ (h(1) + h(2))/2, KHOM
e (x, t) = r∗(h(2) − h(1))1+r∗ + (h(1) + h(2)−

2x3)
(
(1 + r∗)(h(2) − h(1))r∗ − (h(1) + h(2) − 2x3)

r∗
)
, (98)

Kabs
HOM =

(h(2) − h(1))1+r∗

(1 + r∗)2r∗
. (99)

Then (92) becomes vF1vF2
vF3

 =
KF

ηr
∗−1
F

|f −∇pF |r∗−2(f −∇pF )

+

 0
0

(1− Ke(x3)
Kabs )(∂th

(2) + v
(2)
out +

∫ h(2)
h(1) q dξ) + Ke(x3)

Kabs (∂th
(1) + v

(1)
out)

 , (100)

where the fracture absolute permeability is

KF =


KHOM 0 −KHOM

e ∂x1 log
Kabs

HOM

KHOM
e

0 KHOM −KHOM
e ∂x2 log Kabs

KHOM
e

−KHOM
e ∂x1 log

Kabs
HOM

KHOM
e

−KHOM
e ∂x2 log

Kabs
HOM

KHOM
e

KHOM

 . (101)

Furthermore,

vL = (1− Ke(x3)

Kabs
)(∂th

(2) + v
(2)
out +

∫ h(2)

h(1)
q dξ) +

Ke(x3)

Kabs
(∂th

(1) + v
(1)
out), (102)
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where v(j)out = −Dh(j)/Dt.
In the tip zone the permeability degenerates and Darcy’s law (100) should not be used. For an advanced
discussion of the interface conditions we refer to Marciniak-Czochra and Mikelić [2012]. Further discussions
on the singularity of the tip region can be found in Kovalyshen [2010], Desroches et al. [1994], Mitchell et al.
[2007], Garagash and Detournay [2000], Detournay and Peirce [2014] and the many references cited therein.
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slab. Modélisation Mathématique et Analyse Numérique (M2 AN), 29:3–22, 1995.
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