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Abstract: In this work we use the method of homogenization to de-
velop a filtration law in porous media that includes the effects of inertia at
finite Reynolds numbers. The result is much different than the empirically
observed quadratic Forchheimer equation. First, the correction to Darcy’s
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law is initially cubic (not quadratic) for isotropic media. This is consis-
tent with several other authors ([31], [45], [14], [36]) who have solved the
Navier-Stokes equations analytically and numerically. Second, the resulting
filtration model is an infinite series polynomial in velocity, instead of a single
corrective term to Darcy’s law.

Although the model is only valid up to the local Reynolds number at
most of order 1, the findings are important from a fundamental perspective
because it shows that the often-used quadratic Forchheimer equation is not
a universal law for laminar flow, but rather an empirical one that is useful
in a limited range of velocities. Moreover, as stated by Mei and Auriault in
[31] and Barree and Conway in [4], even if the quadratic model were valid
at moderate Reynolds numbers in the laminar flow regime, the permeabil-
ity extrapolated on a Forchheimer plot would not be the intrinsic Darcy
permeability.

A major contribution of this work is that the coefficients of the poly-
nomial law can be derived a priori, by solving sequential Stokes problems.
In each case, the solution to the Stokes problem is used to calculate a co-
efficient in the polynomial, and the velocity field is an input of the forcing
function, F, to subsequent problems. While numerical solutions must be
utilized to compute each coefficient in the polynomial, these problems are
much simpler and robust than solving the full Navier-Stokes equations.

1 Introduction

Darcy’s Law (v = −K

µ
∇P ) adequately describes the slow flow of Newto-

nian fluids in porous media and is strictly valid for Stokes flow (Re = 0),
but is usually applicable in engineering applications for Re < 1. While
initially observed experimentally, Darcy’s law can be recovered analytically
or numerically by solving the steady-state Stokes equations. It is generally
acceptable to use Darcy’s Law for modeling flow in subsurface applications,
such as reservoirs and aquifers, because the low matrix permeability results
in low velocities. However, higher velocities are often observed in fractures
and near wellbores; a more complicated model is necessary to describe flow
in these cases.

Forchheimer’s equation (see [21]) is an empirical extension to Darcy’s
law that is intended to capture nonlinearities that occur due to inertia in
the laminar flow regime.

−∆P

L
=

µ

K
v + ρβv2 (1)
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The quadratic term is small compared to the linear term at low velocities and
Darcy’s law is often a good approximation. The constant, β, is referred to as
the non-Darcy coefficient and, like permeability, is an empirical value that
is specific to the porous medium. It is often found experimentally through
data reduction. While often assumed a scalar, the non-Darcy coefficient is
likely a tensor for anisotropic media (see [45] and [31]) since it is dependent
on the medium morphology.

Usually Eq. (1) is rearranged to create a Forchheimer plot; relating
1

Kapp

versus
ρv

µ
results in a straight line with slope β and an intercept

1
K

.

∆P

Lvµ
=

1
Kapp

=
1
K

+ β

(
ρv

µ

)
(2)

Forchheimer’s equation has been found to fit some experimental data very
well by Forchheimer in [21] and [22] and others ([1], [43], [12], [19], [9],
[27] and [34]).However, the equation has been shown to be unacceptable for
matching other experimental data ([25], [4] and [5])and even Forchheimer
(see [22])added additional terms for some data sets.

Recently, Barree and Conway ([4] and [5])conducted experiments and
produced data that did not follow the straight line in (2), suggesting that
Forchheimer’s equation is not valid over a large range of velocities. Their
data is concave downward, which they explain is caused by streamlining and
partitioning in porous media at higher velocities. Batenburg and Milton-
Taylor produced in [7] data that disagreed with Barree and Conway and
appeared to validate the Forchheimer model. However, Huang and Ayoub
argue in [24] that the work of Barree and Conway [4] was partially in a turbu-
lent flow regime and Batenburg and Milton-Taylor’s data from [7] entirely
in the turbulent regime. Nonlinearities associated with the Forchheimer
equation occur at velocities well before, and not related to, turbulence. Re-
gardless, the arguments made by Barree and Conway in [4] and [5] for a
minimum-permeability plateau has validity and are supported theoretically
and numerically by other authors in [18], [42] and [3]. In their paper [4],
Barree and Conway have also suggested that the permeability obtained by
extrapolation to the intercept in a Forchheimer plot is not the intrinsic,
Darcy permeability.

Many attempts have been made to derive the quadratic, Forchheimer
equation from first principles using homogenization. Attempts using the
formal homogenization go back to 1978 and to the paper [29] by J.L. Lions
and to the book [28], by the same author. Some other non-linear filtration
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laws could be found in the book [39]. The approach of J.L. Lions and E.
Sanchez-Palencia is applicable for Reynolds’ numbers smaller than a thresh-
old value and it was observed by Auriault, Lévy, Mei and others that the
obtained homogenized problem leads to polynomial filtration laws. This
situation is called the ”weakly non-linear” case and is studied in details in
the papers [45], [31] and [35]. Homogenization derivation of Darcy’s law is
through a two-scale expansion for the velocity and for the pressure. It is an
infinite series in ε being the ratio between the typical pore size ` and the
reservoir size L. In the leading order we obtain the velocity and pressure ap-
proximations. Handling them requires an additional term, which is of next
order and which contains second and higher order derivatives of the effec-
tive pressure. As proved in [32], in the absence of the inertia (Re= 0) this
leads to an approximation of the physical quantities which are of order ε. If
we want to go further, then we see that the velocity approximation creates
compressibility effects. Furthermore there is a force created by the lower
order terms coming from the zero order approximation. In the fundamental
paper [31] the local Reynolds number Reloc = ε Re was set to

√
ε. As a

consequence, the
√

ε-correction to Darcy’s law was quadratic filtration law.
For an isotropic porous medium this contribution was proved to be zero.
Then the next order correction is of order ε and contains simultaneously
next order inertia contribution and the compressibility and forcing contri-
butions, present in the Stokes flow case. Interaction of all these effects leads
to an effective filtration law which is not polynomial. It is only with addi-
tional restrictions to the geometry that Mei and Auriault obtain the cubic
filtration law. In [35] the local Reynolds number Reloc = ε , other effects
appear immediately and the effective filtration law is a nonlinear differential
operator and not a polynomial. Formal homogenization derivation was rig-
orously established in [10], by proving the error estimate for the whole range
of Reynolds numbers in the weak inertia case. In [30] the general non-local
filtration law for the threshold value of Reynolds’ number was rigorously
established in the homogenization limit when the pore size tends to zero.
One of the important observations from [45], [31] and [35] was that for an
isotropic porous medium the quadratic terms cancel and one has a cubic
filtration law. This observation is confirmed analytically and numerically in
the paper [20]. In [13] the authors claim that the non-linear filtration law
is quadratic even for isotropic porous media but their conclusions seem to
contradict the theory and numerical experiments.

Derivation using volume averaging was undertaken in [37], [38] and [44].
For related approaches we refer to [15] and [23]. In some cases the quadratic
correction to Darcy’s law is recovered. However, in [37], [38], Ruth and Ma
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explain that microscopic inertial effects are neglected in volume averaging
techniques and therefore cannot be used to derive a macroscopic law. They
point out that the Forchheimer equation is non-unique and any number of
polynomials could be used to describe non-linear behavior due to inertia in
laminar flow. This is confirmed in [10], where the nonlinear filtration law is
obtained as an infinite entire series in powers of the local Reynolds number.

The cubic law has been verified by several authors numerically in simple
porous media by solving the Navier-Stokes equations directly using the Fi-
nite Element Method or the Lattice-Boltzman method in [14], [36], [20] and
[26]. In most cases, the cubic law is only valid at very low velocities (where
Darcy’s law is approximately valid anyway) and the quadratic Forchheimer
equation appears applicable at more moderate velocities. Nonetheless, these
findings are significant because they suggest that

1. Forchheimer’s equation may not be universal and only valid in a lim-
ited range of velocities and

2. Permeability obtained by extrapolation to the intercept on a Forch-
heimer plot may not be the intrinsic, Darcy permeability (a point made
by Barree and Conway in [4] as well as by Skjetne and Auriault in [41].

The objectives of this work are to

1. Derive a filtration law via homogenization of the Navier-Stokes equa-
tions to account for nonlinearities due to inertia at low local Reynolds
number Re (<1),

2. Derive a procedure for determining the constants in the law without
experiment or solving the full Navier-Stokes equations,

3. Validate the filtration law through comparison to numerical solution
of the Navier-Stokes equations in simple porous media, and

4. Compare the derived law to existing models, such as the quadratic
Forchheimer’s equation or cubic law derived in [45], [31] and [35].

The paper is organized as follows. In section §2, homogenization is used
on the steady state Navier Stokes equations to arrive at infinite series poly-
nomial filtration law. In difference with the results in the article [31] and
[35], we always get a polynomial filtration law, by establishing clearly its
range of validity in terms of the local Reynolds number Reloc. This agrees
with the result of Wodié and Lévy in [45]. Nevertheless, we propose a differ-
ent two-scale expansion for the pressure. Our approach is rigorously justified
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by the error estimates from [10]. Furthermore, our approach permits to go
to any order of approximation and the constants in the polynomial can be
found a priori, by solving sequential Stokes flow problems. It is important
to note that such systematic approach gave us explicitly the permeability in
the cubic filtration law, which differs from Darcy’s permeability by a con-
tribution proportional to local Reynolds number squared. In section §3, an
expansion is used to derive a law specifically valid for periodic, axisymmetric
geometries which is simplification of the model in section §2. Such geome-
tries give an isotropic porous medium and for them we were able to derive
without cumbersome calculations the fifth order filtration law. In section
§4 details of numerical techniques used to solve the full Navier-Stokes equa-
tions, as well as the Stokes flow problems used to determine the polynomial
constants are discussed. The polynomial law is compared directly the nu-
merical solution and good agreement is found. Conclusions of the work are
summarized in Section §5.

2 Homogenization of the stationary Navier-Stokes
equations and polynomial non-linear filtration
laws

We consider the stationary incompressible viscous flow through a porous
medium. The flow regime is assumed to be laminar through the fluid part
of porous medium, which is considered as a network of interconnected chan-
nels.
In order to write the Navier-Stokes system with the viscosity µ and the
density ρ in non-dimensional form, we introduce the macroscopic character-
istic length L, the characteristic velocity V and the characteristic pressure
P. Flow is governed by a given pressure drop ∆P in the direction x1. This

pressure drop determines the characteristic volume force
∆P

L
e1. Then char-

acteristic numbers are defined as follows:

• Re =
V Lρ

µ
is the Reynolds number

• Froude’s number is Fr =
ρV 2

|∆P | .

As customary in modeling the filtration using homogenization, we use the
fact that the porous medium has a microscopic length scale ` (e.g. a typical
pore size) which is small compared to the characteristic length L.
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Therefore there is a small parameter ε = `/L in the problem and we
suppose that 2 introduced characteristic numbers behave as powers of ε.

With these conventions, the non-dimensional incompressible Navier-Stokes
system is given by

− 1
Re

∇2vε + (vε∇)vε +
P

ρV 2
∇pε =

sign (−∆P )
Fr

e1 in Ωε , (3)

divvε = 0 in Ωε , (4)

where Ωε is the fluid part of the porous medium Ω, vε is the velocity and
pε is the pressure.
For simplicity, we suppose that Ω is the cube D = (0, L)n, n = 2, 3. Then Ωε

is a bounded domain in Rn, n = 2, 3. For simplicity we suppose it periodic
but our approach would work also for a statistically homogeneous random
porous medium.

Formal description of Ωε goes along the following lines:
First we define the geometrical structure inside the unit cell Y = (0, 1)n,

n = 2, 3. Let Ys (the solid part) be a closed subset of Ȳ and YF = Y \Ys (the
fluid part). Now we make the periodic repetition of Ys all over Rn and set
Y k

s = Ys + k, k ∈ Zn. Obviously the obtained set Es =
⋃

k∈Zn Y k
s is a closed

subset of Rn and EF = Rn\Es in an open set in Rn. Following Allaire [2]
we make the following assumptions on YF and EF :

• (i) YF is an open connected set of strictly positive measure, with a
Lipschitz boundary and Ys has strictly positive measure in Ȳ , as well.

• (ii) EF and the interior of Es are open sets with the boundary of class
C0,1, which are locally located on one side of their boundary. Moreover
EF is connected.

Now we see that Ω is covered with a regular mesh of size ε, each cell being
a cube Y ε

i , with 1 ≤ i ≤ N(ε) = |Ω|ε−n[1 + O(1)]. Each cube Y ε
i is homeo-

morphic to Y , by linear homeomorphism Πε
i , being composed of translation

and an homothety of ratio 1/ε.
We define

Y ε
Si

= (Πε
i )
−1(Ys) and Y ε

Fi
= (Πε

i )
−1(YF )

For sufficiently small ε > 0 we consider the set

Tε = {k ∈ Zn|Y ε
Sk
⊂ Ω}
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and define

Oε =
⋃

k∈Tε

Y ε
Sk

, Sε = ∂Oε, Ωε = Ω\Oε = Ω ∩ εEF

Obviously, ∂Ωε = ∂Ω ∪ Sε. The domains Oε and Ωε represent, respectively,
the solid and fluid parts of a porous medium Ω. For simplicity we suppose
L/ε ∈ N.

Then for n = 2, 3 the classical theory gives the existence of at least one
weak solution (vε, pε) ∈ Vper(Ωε)×L2

0(Ωε) for the problem (3), (4) with the
boundary conditions

vε = 0 on Sε , (vε, pε) is L− periodic (5)

and

Vper(Ωε) = {z ∈ H1(Ωε)n : z = 0 on Sε, z is L−periodic and div z = 0 in Ωε}.
Let us discuss the influence of the coefficients to the size of the solution:

after testing (3) by vε and integrating over Ωε, we get

||∇vε||2L2(Ωε)n2 ≤ √
ϕ
Re
Fr
||vε||L2(Ωε)n , (6)

where ϕ = |Ωε| is the porosity. After recalling that in a periodic porous
medium, with period ε, Poincaré’s inequality gives ||vε||L2(Ωε)n ≤ ε√

2
||∇vε||L2(Ωε)n2 ,

we find out that (6) yields

||vε||L2(Ωε)n ≤
√

ϕ

2
ε2Re

Fr
=
√

ϕ

2
ε2 L|∆P |

V µ
. (7)

Now we build into the model our dimensional requirements:

• Since the dimensionless velocity should be of order one, the estimate
(7) allows to calculate the characteristic velocity and we find V =√

ϕ

2
ε2 L|∆P |

µ
, which agrees with the Poiseuille profile and with the

corresponding discussion in [20]. The corresponding Reynolds number

is then Re=
ε2L2ρ|∆P |

µ2

√
ϕ

2
.

• In order that the expansion leads to the nontrivial leading term, cor-
responding to the non-linear laminar flow, we require that at the pore
scale the forcing term, caused by the pressure drop, and the viscous
term in the fast variable are of the same order. This condition reads
ε2 Re = Fr and follows from the above choice of the characteristic
velocity.
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• Next P = |∆P |
√

ϕ

2
, assuring the well-posedness of the leading equa-

tion for the zeroth order expansion term.

• Finally, if we want to remain in the stationary non-linear laminar flow
regime, then the local Reynolds number Reloc = ε Re should be at
most of order 1. This implies that our analysis applies to the flows
such that

|∆P | ≤ µ2

ρL2ε3

2√
ϕ

and V ≤ µ

ρ`

2√
ϕ

. (8)

Consequently we will use the local Reynolds number as expansion
parameter.

We expect that being close to the critical value Reloc = ε Re = 1 produces
non-linear effects of a polynomial type. For this reason, we restrict our in-
vestigation to the weak nonlinear effects, i.e. we will keep Reloc smaller, but
or order one .

Presence of the constant forcing term will oversimplify the result. In
order to be able to give non-linear filtration laws in the presence of gravity

effects, source terms and wells, we suppose that instead of setting
Re
Fr

e1 =

2√
ϕ

1
ε2

sign (−∆P )e1, we have for the forcing term
F(x)
ε2

, with |F(x)| ≤ 2√
ϕ

.

In the end of the section we will state the results also for F =
2√
ϕ
e1, which

corresponds to our model.
According to the scaling of data, we seek an asymptotic expansion in powers
of the local Reynolds number for {vε, pε} solution of (3)-(5).
If Reloc is sufficiently close to 1 we set the following asymptotic expansion:




(i) vε(x) = v0(x, y) + Relocv1(x, y) + (Reloc)2v2(x, y) + · · ·+
+ε{v0,1(x, y) + Relocv1,1(x, y) + · · · }+ · · ·

(ii) pε(x) = p0(x, y) + Relocp1(x, y) + (Reloc)2p2(x, y) + · · ·
+ε{p0,1(x, y) + Relocp1,1(x, y) + · · · ,

(9)

where y = x/ε.
We insert the expansions (9) into the system (3)-(5), now written in the fast
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and slow variables:

Reloc

((
v0(x, y) + Relocv1(x, y) + (Reloc)2v2(x, y) + εv0,1(x, y) + · · · )(∇y+

ε∇x)
)(

v0(x, y) + Relocv1(x, y) + (Reloc)2v2(x, y) + εv0,1(x, y) + · · · ) =

−1
ε
(∇y + ε∇x)

(
p0(x, y) + Relocp1(x, y) + (Reloc)2p2(x, y) + εp0,1(x, y) + · · ·

)

+(∇2
y + 2ε div y∇x + ε2∇2

x)
(
v0(x, y) + Relocv1(x, y) + (Reloc)2v2(x, y)+

εv0,1(x, y) + · · · ) + F; (10)

( div y + ε div x)
(
v0(x, y) + Relocv1(x, y) + (Reloc)2v2(x, y)+

εv0,1(x, y) + · · · ) = 0 (11)

After collecting equal powers of ε in (10)-(11), we obtain, as in [32], a
sequence of the problems in YF × Ω.
First we have at the order O(ε−1) (and afterwards at orders O(ε−1(Reloc)k)

∇yp
0 = 0 , i.e. p0 = p0(x)

∇yp
1 = 0 , i.e. p1 = p1(x) ,

and in fact pk = pk(x) for every k. Then at the order O(1)





−∇2
yv

0 +∇yp
0,1 = F−∇xp0 in YF × Ω

divyv0 = 0 in YF × Ω, v0 = 0 on S × Ω
{v0, p0,1} is Y − periodic, divx{

∫
YF

v0 dy} = 0 in Ω
{∫YF

v0, p0} is Ω− periodic,

(12)

and, at the arbitrary order O((Reloc)k), k ≥ 1,




−∇2
yv

k +∇yp
k,1 = −

k−1∑

`=0

(v`∇y)vk−1−` −∇xpk in YF × Ω

divyvk = 0 in YF × Ω, vk = 0 on S × Ω
{vk, pk,1} is Y − periodic, divx{

∫
YF

vk} = 0 in Ω
{∫YF

vk, pk} is Ω− periodic.

(13)

Problems (12)-(13) are standard Stokes problems in YF and the regular-
ity of the solutions follows from the regularity of the geometry and of the
data.
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Using in (12)-(13) the classical separation of scales, as for instance in
[39] or in [32], leads to the following formulas for v0 and p0,1.

v0(x, y) =
n∑

i=1

wi(y)[Fi − ∂p0

∂xi
(x)]; p0,1(x, y) =

n∑

i=1

πi(y)[Fi − ∂p0

∂xi
(x)],

where (wi, πi) ∈ C∞(∪k∈Zn(k + YF ))n+1 is the Y -periodic solution of the
auxiliary Stokes problem:

{ −∇2
yw

i +∇yπ
i = ei , divywi = 0 in YF

wi = 0 on S,
∫
YF

πi = 0 .
(14)

In addition (v0
F , p0) ∈ C∞

per(Ω)n+1, is the unique solution of :

{
(i) divxv0

F (x) = 0 in Ω , {v0
F , p0} is Ω− periodic

(ii) v0
F (x) = K(F−∇xp0)(x) in Ω,

∫
Ω p0 = 0,

(15)

where K is the permeability tensor, defined by

Kij =
∫

YF

wi
j(y)dy i, j = 1, . . . , n . (16)

and v0
F (x) =

∫
YF

v0(x, y)dy is Darcy’s velocity.
Now we turn to the corrections to Darcy’s law coming from inertia
effects.

In function of the closeness of Reloc to 1 we could continue with our
approximations. Once Darcy’s pressure p0 calculated, the scale separation
for the problem (13) gives

vk(x, y) =
k−1∑

`=0

n∑

i1,...,i`+1=1

n∑

j1,...,jk−`=1

`+1∏

m=1

[Fim −
∂p0

∂xim

(x)]
k−∏̀

r=1

[Fjr−

∂p0

∂xjr

(x)]ui1,...,i`+1,j1,...,ik−`(y)−
n∑

i=1

wi(y)
∂pk

∂xi
(x)

pk,1(x, y) =
k−1∑

`=0

n∑

i1,...,i`+1=1

n∑

j1,...,jk−`=1

`+1∏

m=1

[Fim −
∂p0

∂xim

(x)]
k−∏̀

r=1

[Fjr−

∂p0

∂xjr

(x)]Λi1,...,i`+1,j1,...,ik−`(y)−
n∑

i=1

πi(y)
∂pk

∂xi
(x)

11



where (ui1,...,i`+1,j1,...,ik−` ,Λi1,...,i`+1,j1,...,ik−`) ∈ C∞(∪k∈Zn(k + YF )) is the Y -
periodic solution of the auxiliary Stokes problem:





−∇2
yu

i1,...,i`+1,j1,...,ik−` +∇yΛi1,...,i`+1,j1,...,ik−` =
−(ui1,...,i`+1∇y)uj1,...,ik−` in YF

divyui1,...,i`+1,j1,...,ik−` = 0 in YF

ui1,...,i`+1,j1,...,ik−` = 0 on S ,
∫
YF

Λi1,...,i`+1,j1,...,ik−` dy = 0 .

In addition (vk,F , pk) ∈ C∞
per(Ω)n+1 is the solution of

(i) divxvk,F = 0 in Ω

(ii) vk,F = −K∇pk +
k−1∑

`=0

n∑

i1,...,i`+1=1

n∑

j1,...,jk−`=1

Mi1,...,i`+1,j1,...,ik−` ·

`+1∏

m=1

[Fim −
∂p0

∂xim

(x)]
k−∏̀

r=1

[Fjr −
∂p0

∂xjr

(x)]

(iii) {vk,F , pk} is Ω− periodic,
∫

Ω
pk = 0 ,

(17)

where Mi1,...,i`+1,j1,...,ik−` is defined by

Mi1,...,i`+1,j1,...,ik−` =
∫

YF

ui1,...,i`+1,j1,...,ik−`(y)dy, i, j, k = 1, . . . , n (18)

and vk,F (x) =
∫
YF

vk(x, y) dy.
The above expressions lead to the following algorithm for describing flows

by polynomial laws of any order:

• Let the local Reynolds number Reloc be smaller or equal to ε. Then,
after [10] and [32], the effective filtration is described by Darcy’s law
(15) and we have

∫

Ωε

{
|vε(x)− v0(x,

x

ε
)|2 + |pε(x)− p0(x)|2

}
dx ≤ Cε2. (19)

The estimate (19) clarifies in which sense the filtration velocity V0 :=

v0,F =
∫

YF

v0(x, y) dy approximates the physical velocity vε.
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• Next let ε <Reloc ≤ √
ε. Then we set k = 1 and use (17) to calculate

{v1,F , p1}. It gives us v1 and auxiliary Stokes problems give us ui,j .
Note that for this, knowledge of the solutions to all auxiliary Stokes
problems from previous steps was necessary. Then, after [10] and [32],
we have

∫

Ωε

{
|vε(x)− v0(x,

x

ε
)−Relocv1(x,

x

ε
))|2+

|pε(x)− p0(x)−Relocp1(x)|2
}

dx ≤ Cε2. (20)

From this estimate we will obtain in subsection 2.1 the quadratic fil-
tration law.

• Next let
√

ε <Reloc ≤ ε1/3. Then we set k = 2 and use (17) to
calculate {v2,F , p2}. It gives us v2 and auxiliary Stokes problems
give us ui,j,k. Again, knowledge of the solutions to all auxiliary Stokes
problems from previous steps was necessary. Then, after [10] and [32],
we have

∫

Ωε

{
|vε(x)− v0(x,

x

ε
)−Relocv1(x,

x

ε
))− (Reloc)2v2(x,

x

ε
))|2+

|pε(x)− p0(x)−Relocp1(x)− (Reloc)2p2(x)|2
}

dx ≤ Cε2. (21)

From this estimate we will obtain in subsection 2.2 the cubic filtration
law.

• This way we arrive at the range ε1/(k−1) <Reloc ≤ ε1/k. For given
k we use (17) to calculate {vk,F , pk}. It gives us vk and auxiliary
Stokes problems give us ui1,...,ik . Again, knowledge of the solutions to
all auxiliary Stokes problems from previous steps was necessary. Then,
after [10] and [32], we have

∫

Ωε

{
|vε(x)−

k−1∑

j=0

vj(x,
x

ε
)(Reloc)j |2+

|pε(x)−
k−1∑

j=0

pj(x)(Reloc)j |2
}

dx ≤ Cε2. (22)

From this estimate we are able to obtain the kth order polynomial
filtration law, for any k.
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We define the effective filtration velocity and for the effective pressure by
the following formula

Vk+1 :=
k+1∑

`=0

(Reloc)`v`,F , Πk+1 :=
k+1∑

`=0

(Reloc)`p` ,

where v`,F =
∫

YF

v`(x, y) dy. The estimate (22) clarifies in which sense the

filtration velocity Vk approximates the physical velocity vε. Furthermore,
using the two-scale filtration laws (17), we obtain that Vk+1 is a polynomial
of order k + 1 in ∇Πk+1. The filtration law of order k + 1 is obtain from
the law of order k by a recursive procedure. We can write the coefficients as
functions of the vector M i1,...,il , but it leads to very cumbersome recursion
relations. We prefer to give expressions for several interesting cases.

2.1 The quadratic filtration law

Truncation of the infinite series polynomial to only two terms results in a
quadratic correction to Darcy’s law. At first glance, the homogenization may
seem to be in agreement with Forchheimer’s empirically-observed quadratic
equation. However, it has been shown (see [31], [45] and [20]) the quadratic
term vanishes for isotropic media and the first correction is cubic. This has
been verified both numerically and experimentally. The quadratic behavior
observed by Forchheimer and others likely occurs at more moderate Re,
outside the limits of this homogenization.

Similarly to the Darcy law, by separation of scales, we have v1 and p1,1

given by :

v1(x, y) =
n∑

i,j=1

uij(y)[Fi − ∂p0

∂xi
(x)] [Fj − ∂p0

∂xj
(x)]−

n∑

i=1

wi(y)
∂p1

∂xi
(x)

p1,1(x, y) =
n∑

i,j=1

Λij(y)[Fi − ∂p0

∂xi
(x)] [Fj − ∂p0

∂xj
(x)]−

n∑

i=1

πi(y)
∂p1

∂xi
(x),

where (uij ,Λij) ∈ C∞(∪k∈Zn(k + YF ))n+1 is the Y -periodic solution of the
auxiliary Stokes problem:

{ −∇2
yu

ij +∇yΛij = −(wi∇y)wj = − Divy (wi ⊗wj) in YF

divyuij = 0 in YF ; uij = 0 on S,
∫
YF

Λij dy = 0.
(23)
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In addition (v1,F , p1) ∈ C∞
per(Ω)n+1 is the solution of

(i) divxv1,F = 0 in Ω; {v1,F , p1} is Ω− periodic ,

∫

Ω
p1 = 0,

(ii) v1,F
k =

n∑

i,j=1

M ij
k {Fi − ∂p0

∂xi
} {Fj − ∂p0

∂xj
} −

n∑

j=1

Kkj
∂p1

∂xj

(24)

where Mij is defined by

Mij =
∫

YF

uij(y)dy i, j = 1, . . . , n (25)

and v1,F (x) =
∫
YF

v1(x, y) dy.
The above expansions allow us to write the quadratic filtration law.
Now we introduce the averaged velocity V1 and the averaged pressure

Π1 by
V1 = v0

F + Relocv1,F ; Π1 = p0 + Relocp1 (26)

and with these notations, (15) (ii) and (24) (ii) can be summarized in:

V1 = K(F−∇Π1) + Reloc
n∑

i,j=1

Mij(Fi − ∂Π1

∂xi
)(Fj − ∂Π1

∂xj
). (27)

or equivalently, with the error of order O((Reloc)2), as

F−∇Π1 = K−1V1 −RelocK−1
n∑

i,j=1

Mij(K−1V1)i(K−1V1)j . (28)

The quadratic expression entering in equation (27) starts to be important
when Reloc is close to 1. The filtration law (28) corresponds to the classical
form of non-Darcian filtration law. Nevertheless, the quadratic term is not
monotone. For this reason, we believe that the form (27) is more useful
for numerical calculations. Formal derivation of the law (27) using homoge-
nization was undertaken in [45], [31] and [35]. For the rigorous justification,
with correct choice of the pressure field, see the article [10].

2.2 The cubic filtration law

The cubic filtration law is obtained if we calculate the corresponding terms
for k = 2. We note that in all one dimensional cases and in cases when the
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porous media satisfies some isotropy conditions, the quadratic term van-
ishes. For detailed discussion we refer to [20], were this important property
is established under fairly realistic ”reversibility” condition. This gives im-
portance to the cubic filtration law.

Next, let us write explicitly the corresponding terms:

v2(x, y) =
n∑

i1=1

n∑

j1,j2=1

[Fi1 −
∂p0

∂xi1

(x)][Fj1 −
∂p0

∂xj1

(x)][Fj2 −
∂p0

∂xj2

(x)]ui1,j1,j2(y)

−
n∑

i=1

wi(y)
∂p2

∂xi
(x)(y)

p2,1(x, y) =
n∑

i1=1

n∑

j1,j2=1

[Fi1 −
∂p0

∂xi1

(x)][Fj1 −
∂p0

∂xj1

(x)][Fj2 −
∂p0

∂xj2

(x)]Λi1,j1,j2(y)

−
n∑

i=1

πi(y)
∂p2

∂xi
(x)

where (ui1,j1,j2 , Λi1,j1,j2) ∈ C∞(∪k∈Zn(k + YF )) is the Y -periodic solution of
the auxiliary Stokes problem:




−∇2

yu
i1,j1,j2 +∇yΛi1,j1,j2 = −(wi1∇y)uj1,j2 − (uj1,j2∇y)wi1 in YF

divyui1,j1,j2 = 0 in YF

ui1,j1,j2 = 0 on S ,
∫
YF

Λi1,j1,j2 dy = 0 .

(29)
In addition (v2,F , p2) ∈ C∞

per(Ω)n+1 is the solution of

(i) divx v2,F = 0 in Ω; {v2,F , p2} is Ω− periodic ,

∫

Ω
p2 = 0,

(ii)v2,F =
n∑

i1,i2,i3=1

[Fi1 −
∂p0

∂xi1

(x)][Fi2 −
∂p0

∂xi2

(x)][Fi3

− ∂p0

∂xi3

(x)]Mi1,i2,i3 −K∇p2,

(30)

where Mi1,i2,i3 is defined by

Mi1,i2,i3 =
∫

YF

ui1,i2,i3(y)dy i1, i2, i3 = 1, . . . , n (31)

and v2,F (x) =
∫
YF

v2(x, y) dy.
The above expansions allow us to write the cubic filtration law.
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Now we introduce the averaged velocity V2 and the averaged pressure
Π2 by

V2 = v0
F + Relocv1,F + (Reloc)2v2,F ; Π2 = p0 + Relocp1 + (Reloc)2p2

and with these notations, (15) (ii), (24) (ii) and (30) (ii) can be summarized,
with the error of order O((Reloc)3), in:

V2 = K(F−∇Π2) + Reloc
n∑

i,j=1

Mij(Fi − ∂p0

∂xi
)(Fj − ∂p0

∂xj
)+

(Reloc)2
n∑

i1,i2,i3=1

[Fi1 −
∂p0

∂xi1

(x)][Fi2 −
∂p0

∂xi2

(x)][Fi3 −
∂p0

∂xi3

(x)]Mi1,i2,i3 . (32)

This in not yet a filtration law, since it should be expressed in terms of
the effective pressure Π2. In the case of the quadratic filtration law it was
enough to replace p0 by the effective pressure Π1, but it is not the case any
more. Rewriting (32) in terms of the effective pressure Π2 gives

V2 = K(F−∇Π2) + Reloc
n∑

i,j=1

Mij(Fi − ∂Π2)
∂xi

)(Fj − ∂Π2)
∂xj

)+

(Reloc)2
{ n∑

i1,i2,i3=1

[Fi1 −
∂Π2)
∂xi1

(x)][Fi2 −
∂Π2)
∂xi2

(x)][Fi3 −
∂Π2)
∂xi3

(x)]Mi1,i2,i3+

n∑

i,j=1

(Mij + Mji)
∂p1

∂xi
(Fj − ∂Π2)

∂xj
)
}

+O((Reloc)3) = (K + (Reloc)2C)(F

−∇Π2) + Reloc
n∑

i,j=1

Mij(Fi − ∂Π2)
∂xi

)(Fj − ∂Π2)
∂xj

) + (Reloc)2
n∑

i1,i2,i3=1

[Fi1−

∂Π2)
∂xi1

(x)][Fi2 −
∂Π2)
∂xi2

(x)][Fi3 −
∂Π2)
∂xi3

(x)]Mi1,i2,i3 , (33)

where

Ckj =
n∑

i=1

(M ij
k + M ji

k )
∂p1

∂xi
, k, j = 1, . . . n. (34)

We note that the pressure p1, from the quadratic perturbation, is given
by (24) and depends non-locally on the permeability K and the geometry,
linearly on Mij and quadratically on ∇p0.
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Finally, we write the filtration law in the form which generalizes cubic
expressions for Fochheimer’s law:

F−∇Π2 = (K + (Reloc)2C)−1V2 −RelocK−1
n∑

i,j=1

Mij(K−1V2)i(K−1V2)j

−(Reloc)2
n∑

i1,i2,i3=1

Bi1,i2,i3(K−1V2)i1(K
−1V2)i2(K

−1V2)i3 +O((Reloc)3),

(35)

where the vectors Bi1,i2,i3 are given by

Bi1,i2,i3 = K−1Mi1,i2,i3 −
n∑

j=1

K−1(Mi1j + Mji1)
(
K−1Mi2i3

)
i1

. (36)

Therefore we arrived at the following conclusions:

• The cubic filtration law (35) describes the effective filtration through
porous media with the precision of order O((Reloc)3). It is different
from the effective law obtained by Rasoloarijaona and Auriault in [35],
which contains higher order derivatives of the pressure.

• The obtained law (35) is close to the result of Wodié and Lévy in [45].
Nevertheless, there is a difference in the expansion for the pressure.

• It is interesting to note the change in the permeability due to the high
local Reynolds number. It was observed before in [41].

• In [10] it is proved that the difference between the physical dimension-
less velocity vε and the upscaled velocity, satisfying the cubic filtration
law (35), is of order O((Reloc)3) in the energy (L2) norm. This rigor-
ously establishes (35) as the correct filtration law.

We conclude section §2 by writing the cubic filtration law (35) in the dimen-
sional form. We note that our procedure could be continued to any order of
precision. But for general media higher order expansions start to be cum-
bersome and we prefer giving them for the particular case of the constricted
tubes in section §3.

2.3 Dimensional form of the cubic filtration law for constant
pressure drop

Now se consider again the case F = sign (−∆P )
2√
ϕ
e1.
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Then we see immediately that

pk = 0, for every k; v0
F = K sign (−∆P )

2√
ϕ
e1; v1,F =

4
ϕ
M11;

v2,F =
8

ϕ
√

ϕ
sign (−∆P )M1,1,1.

Now, using that vphys,0 = v0
F

√
ϕ

2
ε2 L|∆P |

µ
and that physical permeability

Kphys is equal to ε2L2K, we obtain in the zero order Darcy’s law in its
dimensional form:

vphys,0 = −Kphys

µ

∆P

L
e1.

Next for V1 = v0
F + Relocv1,F = K sign (−∆P )

2√
ϕ
e1 + Reloc 4

ϕ
M11 we

use the equation (28) and obtain

∆P

L
e1 = −µ(Kphys)−1Vphys,1 + ρ(εL)5((Kphys)−1Vphys,1)21(K

phys)−1M11.

We note that

M11
1 =

∫

YF

u11
1 dy =

∫

YF

∇yw1∇yu11 dy = −
∫

YF

(w1∇y)w1w1 dy = 0.

Hence for scalar permeability there is no quadratic contribution in the di-
rection of the flow. In general (Kphys)−1Vphys,1)1 satisfies classical Darcy’s
law. We will see in next section that for constricted tubes the quadratic
terms vanishes completely.

Finally, we switch to the cubic filtration law. Now the non-dimensional

velocity is V2 = v0
F + Relocv1,F + (Reloc)2v2,F = K sign (−∆P )

2√
ϕ
e1 +

Reloc 4
ϕ
M11 + (Reloc)2

8
ϕ
√

ϕ
sign (−∆P )M1,1,1 and using (35) we get

∆P

L
= − µ

ε2L2
(K−1Vphys,2)1 +

ρ

εL
(K−1Vphys,2)21(K

−1M11)1+

ρ2

µ
(K−1Vphys,2)31((K

−1M1,1,1)1 − 2(K−1M11)21). (37)

We note that

M1,1,1
1 =

∫

YF

u1,1,1
1 (y) dy =

∫

YF

∇yw1∇yu1,1,1 dy = −
∫

YF

(w1∇y)u1,1w1 dy

=
∫

YF

(w1∇y)w1u1,1 dy = −
∫

YF

|∇yu11|2 dy < 0. (38)
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3 Non-linear filtration laws for flows through con-
stricted tubes with axial variations in diameter

In this section we study inertia effects for viscous incompressible flows through
a porous medium being a bundle of parallel axially symmetric constricted
tubes. We suppose that the porous medium is periodic, obtained by periodic
repetition of the tubes Ω̃δ = {x1 ∈ (0, L1); 0 < r̃ < δR̃(x1/δ)}, where δ > 0
is a small parameter, representing the ratio between the pore size and the
size of the domain. The porous medium contains a large number of tubes,
proportional to C/δ2. Function R̃ is periodic with the period L. This means
that the constriction repeats periodically a number of times proportional to
1/δ. In order to avoid boundary layer effects, we suppose that number an
integer.

Flow is governed by a given pressure drop ∆P in the direction x1. This

pressure drop determines the characteristic volume force
∆P

L1
e1 and we sup-

pose the flow periodic in x1 direction, with the period L1.
Since we consider the stationary incompressible viscous flow through a

porous medium, it is described by the incompressible Navier-Stokes system

−µ∇2v + ρ(v∇)v +∇p =
−∆P

L1
e1 in ΩF , (39)

divv = 0 in ΩF , v = 0 on (∂ΩF ) \ ({x1 = 0} ∪ {x1 = L1}) , (40)

where ΩF is the fluid part of the porous medium, i.e. union of the constricted
separated tubes Ω̃δ.

Due to the particular periodic geometry and to the constant forcing term,
it is obvious that it is sufficient to solve the problem in just one tube. We
choose the tube with the axis r̃ = 0. Furthermore, the Navier-Stokes system
(39)-(40) is invariant to the following change of variables and unknowns:

x = δx; v =
v
δ
; p =

p

δ2
, (41)

and it is sufficient to consider the problem

−µ∇2v + ρ(v∇)v +∇p =
−∆P

L1
δ3 e1 in Ω̃ , (42)

divv = 0 in Ω̃, v and p are L− periodic in x1, (43)
v = 0 on ∂Ω̃ \ ({x1 = 0} ∪ {x1 = L}), (44)

where Ω̃ is the canonic axially symmetric constricted tube Ω̃ = {x1 ∈
(0, L); 0 < r̃ < R̃(x1)}. Without loosing generality we can suppose L = L1.
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Due to the above proved equivalence the direct numerical simulations in
§4 will be performed for a single tube with the pressure drop modified on
the way we saw above.

As we deal with a porous medium, we will apply the results from §2.
We note that the fluid part of the porous medium now is not connected.
As we will see this leads to many simplifications. Mathematical theory of
the homogenization process could be generalized to such situation (see [33]).
Also pipes could be considered as thin domains and then there is a direct
analysis by Bourgeat and Marušić-Paloka in [11].

Our goal is to find an expansion of the velocity and pressure fields in
terms of the local Reynolds number and to obtain from it polynomial non-
Darcian filtration laws, giving a relationship between the pressure drop and
the effective volumetric flow for this simple geometry.

3.1 Darcy permeability and the quadratic correction

Hence we consider a porous medium which is a bundle of capillary tubes.
Each tube is obtained by a periodic repetition of the dilated unit tube YF ==
{y1 ∈ (0, 1) : 0 < r < R(y1) = R̃(y1)/L}, contained in a cell Y = (0, 1)3.
YF has as a boundary an axially symmetrical surface of revolution S, given
by

r = R(y1), r2 = y2
2 + y2

3. (45)

The internal boundary does not intersect the boundary of Y , except at
y1 = 0, 1, where we have the inlet and outlet boundaries. In such geometry,
our expressions simplify considerably.

First, it is easy to study the problem (14) and get

wi = 0, πi = yi − 1
|YF |

∫

YF

yi dy, i = 2, 3; Kij = δ1jδi1K
11 > 0, (46)

ϕ =
∫ 1

0
πR2(y1) dy1 K11 = 2π

∫ R(0)

0
w1

1(0, r) rdr, (47)

v0
F = K11 sign (−∆P )

2√
ϕ
e1, p0(x) = 0 (48)

We recall that w1 is the 1-periodic in y1 solution for the problem (14) with
i = 1 



−∇2

yw
1 +∇yπ

1 = e1 , divyw1 = 0 in YF

w1 = 0 on S,
∫
YF

π1 = 0
{w1, π1} are 1− periodic with respect to y1.

(49)

21



Now, using that vphys,0
tube = v0

F

√
ϕ

2
ε2 L|∆P |

µ
and that physical permeabil-

ity Kphys
tube is equal to ε2L2K11, we obtain in the zero order Darcy’s law in

its dimensional form:

vphys,0
tube = −Kphys

tube

µ

∆P

L
e1.

Next step is to study the problem (23). Clearly, the solution is not zero
only if i = j = 1. Hence only cell problem to be solved is





−∇2
yu

11 +∇yΛ11 = −(w1∇y)w1 in YF

divyu11 = 0 in YF

u11 = 0 on S ,
∫
YF

Λ11 dy = 0
{u11,Λ11} are 1− periodic with respect to y1.

(50)

Consequently, only M11 is potentially a non zero vector. Let us calculate
its components:

M11
1 =

∫

YF

u11
1 (y) dy =

∫

YF

∇yw1∇yu11 dy = −
∫

YF

(w1∇y)w1w1 dy = 0.

M11
j =

∫

YF

u11
j (y) dy = by (14) = 0, j = 2, 3.

Hence there is no quadratic correction in this particular geom-
etry. Hence v1,F = 0 and p1 = 0.

For a geometry having the symmetry of mirror with respect to y1 around
y1 = 1/2, it is easy to see that −(

(w1∇y)w1
)
1

is uneven with respect to
the plane of symmetry y1 = 1/2. The components −(

(w1∇y)w1
)
j
, j = 2, 3

are even. Consequently, u11
1 is an uneven function and Λ11, u11

2 and u11
3 are

even.

3.2 Cubic filtration law

Now we study the problem (29). Clearly, the solution is not zero only if
i1 = j1 = j2 = 1. Hence only cell problem to be solved is





−∇2
yu

1,1,1 +∇yΛ1,1,1 = −(w1∇y)u1,1 − (u1,1∇y)w1 in YF

divyu1,1,1 = 0 in YF

u1,1,1 = 0 on S ,
∫
YF

Λ1,1,1 dy = 0
{u1,1,1,Λ1,1,1} are 1− periodic with respect to y1.

(51)
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Consequently, only M1,1,1 is potentially a non zero vector. Let us calcu-
late its components:

As before, M1,1,1
j = 0, j = 2, 3 and by using (38), we have M1,1,1

1 < 0.
For a geometry having the symmetry of mirror with respect to y1 around

y1 = 1/2, it is easy to see that −(
(w1∇y)u1,1+(u1,1∇y)w1

)
1

is even with re-
spect to the plane of symmetry y1 = 1/2. The components −(

(w1∇y)u1,1 +
(u1,1∇y)w1

)
j
, j = 2, 3 are uneven. Consequently, u1,1,1

1 is an even function

and Λ1,1,1, u1,1,1
2 and u1,1,1

3 are uneven.
Now v2,F = 2M1,1,1

1
8

ϕ
√

ϕ sign (−∆P )e1, p2 = 0 and the dimensional
filtration law (37) reads

∆P

L
= − µ

ε2L2K11
V Cubic +

ρ2

µ

M111
1

(K11)4
(V Cubic)3. (52)

The law (52) is the cubic non-Darcian law.

3.3 The 5th order filtration law

In order to get higher order filtration laws, we continue with the expansion
and take k = 3. Then we have:




−∇2
yu

iv +∇yΛiv = −
(

(w1∇y)u1,1,1 + (u1,1,1∇y)w1 + (u1,1∇y)u1,1

)
in YF

divyuiv = 0 in YF

uiv = 0 on S ,
∫
YF

Λiv dy = 0
{uiv,Λiv} are 1− periodic with respect to y1.

(53)
Concerning the permeability, we have as before M iv

j = 0, j = 2, 3. In
general geometry M iv

1 does not seem to be zero.

Now v3,F = Miv
1

16
ϕ2 e1 and p3 = 0, where M iv =

∫

YF

uiv(y) dy.

For a geometry having the symmetry of mirror with respect to y1 around
y1 = 1/2, it is easy to see that−(

(w1∇y)u1,1,1+(u1,1,1∇y)w1+(u1,1∇y)u1,1
)
1

is uneven with respect to the plane of symmetry y1 = 1/2. The components
−(

(w1∇y)u1,1,1 + (u1,1,1∇y)w1 + (u1,1∇y)u1,1
)
j
, j = 2, 3 are even. Conse-

quently, uiv
1 is an uneven function and Λiv, uiv

2 and uiv
3 are even. For such

geometries M iv
1 = 0.

In our numerical exemples we will only consider the constricted tubes
having the symmetry of mirror with respect to y1 around y1 = 1/2. Hence
M iv

1 = 0 and there is no 4th order term in the non-Darcy law.
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We can switch now to the 5th order contribution.
Only auxiliary problem with solution which is not identically zero is the

following:




−∇2
yu

v +∇yΛv = −
(

(w1∇y)uiv + (u1,1,1∇y)u1,1+

(u1,1∇y)u1,1,1 + (uiv∇y)w1

)
in YF

divyuv = 0 in YF

uv = 0 on S ,
∫
YF

Λv dy = 0
{uv, Λv} are 1− periodic with respect to y1.

(54)

Now v4,F = Mv
1 sign (−∆P ) 32

ϕ2√ϕ
e1 and p4 = 0, where Mv =

∫

YF

uv(y) dy.

As before, Mv
j = 0, j = 2, 3.

For a geometry having the symmetry of mirror with respect to y1 around
y1 = 1/2, it is easy to see that−(

(w1∇y)uiv+(u1,1,1∇y)u1,1+(u1,1∇y)u1,1,1+
(uiv∇y)w1

)
1

is even with respect to the plane of symmetry y1 = 1/2. The
components−(

(w1∇y)uiv+(u1,1,1∇y)u1,1+(u1,1∇y)u1,1,1+(uiv∇y)w1
)
j
, j =

2, 3 are uneven. Consequently, uv
1 is an even function and Λv, uv

2 and uv
3 are

uneven.
Dimensional velocity is now given by

εV Fifth = −L2K11

µ

∆Pε3

L
−L8ρ2M111

1

µ5

(∆Pε3

L

)3−R14
0 ρ4Mv

1

µ9

(∆Pε3

L

)5 (55)

and we get the following fifth order non-Darcian law:

∆P

L
= − µ

ε2L2K11
V Fifth +

ρ2

µ

M111
1

(K11)4
(V Fifth)3−

ρ4ε2L2

µ3

3(M111
1 )2 −K11Mv

1

(K11)7
(V Fifth)5. (56)

The law (56) is the 5th order non-Darcian law.

4 Numerical simulations

Numerical simulations are performed here in simple porous medium to deter-
mine the coefficients of the polynomial; the resulting model is then compared
to the numerical solution of the full Navier-Stokes equations. The sinusoidal
geometry depicted in Figure 1 is periodic, isotropic and symmetric so the ex-
pansion solution derived in section §3 is applicable. One advantage of using
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Figure 1: The constricted tube

the sinusoidal geometry is that a limited number of numerical simulations of
the Navier-Stokes equations have been performed by Deiber and Schowalter
in [16] and by Deiber and others in [17], which allowed for verification of our
results. The variation in radius of a sinusoidal duct is given by the following
equation:

R(z) = a− γ cos
(2πz

L

)
. (57)

The model geometry used has properties a = 0.16, γ = 0.08, and L = 1
and fluid properties viscosity and density are chosen arbitrarily as 1.0 Pa-sec
and 1 kg/m3, respectively. The Stokes equations could be solved numeri-
cally in this porous medium using various methods and the Finite Element
Method (FEM) is utilized here. In this work the FEM software COMSOL
Multiphysics is used as a tool to solve the sequential Stokes problems as well
as the full Navier-Stokes equations. The number of elements (10816) was
chosen so that additional refinement did not result in an improvement in
the solution. The resulting system of equations is solved using COMSOL’s
library of linear solvers.

The values of K11, M111, and Mv must be determined in order to cal-
culate the coefficients of equation (56). As described in section §3, these
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parameters may be found from solving Stokes problems of the form:

−∇P + µ∇2v = F; ∇ · v = 0, (58)

with velocity field v = 0 on the lateral boundary S and with {v, P} being
L−periodic in the axial variable. The forcing function, F, is summarized in
Table 1 and each subsequent function is dependent on the previous velocity
fields.

Forcing Function, F Output velocity Calculated value of the
averaged quantity

e1 w1 K11 = 3.411E − 4

(w1 · ∇)w1 u11 M11
1 = 0

(w1 · ∇)u11 + (u11 · ∇)w1 u1,1,1 M111
1 = −1.255E − 14

(w1 · ∇)u1,1,1 + (u1,1,1 · ∇)w1

+(u11 · ∇)u11 uiv M iv
1 = 0

(w1 · ∇)uiv + (u1,1,1 · ∇)u11

+(u11 · ∇)u1,1,1 + (uiv · ∇)w1 uv Mv
1 = 1.314E − 24

Table 1: Forcing functions for Stokes problems and resulting coefficients
obtained numerically

Streamline plots of the velocity field are shown in Figure 2 for the first
five problems and a few observations can be made from the qualitative flow
patterns.

The velocity field is symmetric for the first, third, and fifth terms and
flow is normal at the boundaries. This is consistent with the model de-
veloped in section §3, which leads to finite values of K11, M111

1 , and Mv
1 .

These values are calculated using equations (49), (50), (51), (53) and (54)
respectively. The 2nd order and 4th order terms are antisymmetric and flow
does not enter or exit the periodic boundaries, resulting in the expected
zero values of M11 (isotropic medium) and Miv (symmetric and isotropic
medium). Plugging in the values from Table 1 into equation (56), gives the
following filtration law for this porous medium:

∆P

L
= −2931.47V − 0.92705V 3 + 4.57415 · 10−5 · V 5 = PF5(V ). (59)

The model predicts the first correction to Darcy’s law is cubic. The
magnitude of the coefficients diminishes greatly with order and the cubic
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term (and certainly higher order terms) may be negligible in practice, which
explains Darcy’s law often being an acceptable approximation at low Re.

Hence the momentum equation is replaced by the polynomial filtration
law. Its coefficients are calculated using the auxiliary Stokes’ problems (49),
(50), (51), (53) and (54) and then we have a nonlinear scalar PDE for
the pressure, valid in the whole reservoir. Its numerical solution is much
cheaper than solving the full Navier-Stokes system in the complicated pore
geometry. The approximation was validated theoretically by estimates (19)-
(22), proved in [30]. Here we validate its accuracy by comparison to a direct
numerical solution of the Navier-Stokes equations.

We will solve problem (42)-(44), with δ = 1, for different pressure drops
∆P . Then we will compute the average of the velocity over the constricted
tube and check whether it satisfies the nonlinear filtration law obtained by
homogenization.

The full Navier-Stokes equations (42)-(44) are solved using the FEM in
COMSOL as was done for the Stokes problems. The equations are solved at
various applied pressure gradients to compute velocity fields and a macro-
scopic average velocity, V. Figure 3 shows streamlines of the velocity field at
various pressure drops; slight changes can be observed as the Re increases
which accounts for corrections to Darcy’s law.

At the Table 2 we give the comparaison between pressure drops ∆P calc =
fF5(V ), evaluated using (59), and the given pressure drops:

Figures 4a and 4b compare the analytical model (Equation (59)) to the
numerical results and show excellent agreement.

In Figure 4a a plot of pressure gradient versus velocity appears linear
and the cubic behavior is difficult to distinguish.

Figure 4b is similar to a Forchheimer plot (Equation (2)) and the cubic
correction to Darcy’s law is more apparent. Moreover, the cubic coefficient
is verified by the agreement. The fifth order contribution to pressure loss is
not significant, and roundoff error makes it nearly impossible to observe on
any plot.

5 Conclusions

Darcy’s law states that velocity is proportional to pressure gradient in porous
media; it is usually accepted for low velocities in the creeping flow regime
(Reloc << 1). Darcy’s law can be found analytically or numerically by
solving the Stokes equations, but for finite Reloc the inertial terms will
add additional resistance in a porous medium and the relationship between
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pressure gradient and velocity is nonlinear. Experimentally, a quadratic
correction to Darcy’s law is often observed, but work by several authors ([31],
[45], [14] , [36]) has suggested this functionality is not correct, particularly
for Reloc < 1. In this work homogenization has been used to derive a general
filtration law in porous media (for Reloc less than unity) and it verifies that
the first correction to Darcy’s law is cubic for isotropic media. A novel
finding of the homogenization (as well as the expansion for axisymmetric,
periodic media) is that the filtration law is an infinite series polynomial
and that the coefficients can be determined a priori by solving a series of
successive Stokes flow problems. We note that we establish simultaneously
the filtration velocity as a polynomial in the pressure gradient (see e.g. (55)
and the inverse relationship (see e.g. (56)) where the pressure gradient is a
polynomial in the velocity.

The Stokes problems were solved here for a specific medium (an ax-
isymmetric, periodic, sinusoidal duct) and the first five coefficients of the
infinite series polynomial were determined. As predicted by the model, the
quadratic and 4th order terms are zero because of isotropy and symmetry,
respectively. Excellent agreement between the analytical model and a nu-
merical solution of the full Navier-Stokes equations is found, verifying the
cubic functionality as well as the quantitative value of the cubic coefficient.
Fifth (and higher) order terms are not significant and are not observable
numerically. In practice even the cubic term can often be neglected, which
verifies the use of Darcy’s law at low Re.

The infinite series filtration model is only valid for Reloc < 1 and, as pre-
viously stated, corrections to Darcy’s law are probably negligible in practice.
Additional pressure loss due to inertia is most significant and of most inter-
est in subsurface applications at higher Reloc (but still in the laminar flow
regime). Nonetheless, the results are important from several fundamental
perspectives. First of all, it further suggests that Forchheimer’s quadratic
equation is only empirical and not a universal law valid within the entire
laminar flow regime. Since the quadratic model may not be fundamental,
deviations from Forchheimer at high Reloc may also occur (and in fact are
observed). Second, as other authors have observed, even if the quadratic
law were valid at higher Reloc , extrapolation to the intercept on a Forch-
heimer plot (Equation 2) would not result in the intrinsic, Darcy permeabil-
ity. Future work will focus on developing a more general model based on
homogenization and/or numerical simulation applicable for Reloc > 1.

Nomenclature

v Physical velocity [L/t]
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p Pressure [F/L2]

V Characteristic velocity [L/t]

µ Viscosity [F/L2− t]

ρ Density [M/L3]

L Characteristic length M

P Characteristic pressure [F/L2]

∆P Pressure drop

Re Reynolds number

Fr Froude’s number

Ω Reservoir

Y Unit cell

Ys Solid part of the unit cell

YF Pore

Ωε Pore space (the fluid part of Ω)

ε Ratio between the pore size ` and the reservoir size L

ϕ Porosity

F Dimensionless forcing term

vε Dimensionless physical velocity

pε Dimensionless pressure

K Dimensionless permeability
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Darcy’s Law at Low Reynolds Numbers, J.Fluid Mech., Vol. 343 (1997),
331-350.

[21] P. Forchheimer: Wasserbewegung durch Boden, Zeits. V. Deutsch Ing.
Vol. 45 (1901), p. 1782-1788.

[22] P. Forchheimer: Hydraulik, 3rd ed., Teubner, Leipzig.

[23] S.M. Hassanizadeh, W.G. Gray : High Velocity Flow in Porous Media,
Transport in Porous Media, Vol. 2 (1987), 521-531.

[24] H. Huang, and J. Ayoub: Applicability of the Forchheimer Equation
for Non-Darcy Flow in Porous Media. SPE 102715, presented at the
2006 SPE Annual Technical Conference and Exhibition, San Antonio
(September 24-27, 2006).

31



[25] B.Y.K. Kim: The Resistance to Flow in Simple and Complex Porous
Media Whose Matrices are Composed of Spheres. M.Sc. Thesis, Uni-
versity of Hawaii at Manoa (1985).

[26] D.L. Koch, and A.J.C. Ladd: The First Effects on Fluid Inertia on
Flows in Ordered and Random Arrays of Spheres, J. Fluid Mech. Vol.
448 (2001), p. 213-241.

[27] E. Lindquist: On the flow of water through porous soils. Premier
Congrès des Grands Barrages, Stockholm (1933) 5, 81-101.

[28] J.L Lions, Some Methods in the Mathematical Analysis of Systems and
Their Control, Gordon and Breach, New York, 1981.

[29] J.L. Lions: Some problems connected with Navier-Stokes equations,
Lectures at the IVth Latin-American School of Mathematics, Lima,
1978, in Lions, Jacques-Louis Œuvres choisies de Jacques-Louis Li-
ons. Vol. II. (French) [Selected works of Jacques-Louis Lions. Vol. II]
Contrôle. Homogénéisation [Control. Homogenization]. Edited by Alain
Bensoussan, Philippe G. Ciarlet, Roland Glowinski, Roger Temam,
François Murat and Jean-Pierre Puel, and with a preface by Bensous-
san. EDP Sciences, Les Ulis; Société de Mathématiques Appliquées et
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Figure 2: The streamlines for the Stokes auxiliary problem. Fig. a displays
streamlines corresponding to the forcing function e1 and so on.
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Figure 3: The streamlines for the Navier-Stokes equations
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V = ∆P
L ∆P calc |∆P calc−∆P |

|∆P | ∆PD,calc |∆P D,calc−∆P |
|∆P |∫

YF
v1dx = fF5(V ) = fF5(V )

3,41E-04 1 1,00 6,39E-07 1,00 6,39E-07
3,41E-01 1000 1000,00 6,88E-07 999,96 3,75E-05
4,29E-01 1258,925412 1258,92 7,17E-07 1258,85 5,90E-05
5,41E-01 1584,893192 1584,89 7,63E-07 1584,75 9,32E-05
6,81E-01 1995,262315 1995,26 8,35E-07 1994,97 1,47E-04
8,57E-01 2511,886432 2511,88 9,49E-07 2511,30 2,33E-04
1,08E+00 3162,27766 3162,27 1,13E-06 3161,11 3,69E-04
1,36E+00 3981,071706 3981,07 1,41E-06 3978,75 5,84E-04
1,71E+00 5011,872336 5011,86 1,83E-06 5007,24 9,24E-04
2,15E+00 6309,573445 6309,56 2,48E-06 6300,35 1,46E-03
2,70E+00 7943,282347 7943,26 3,40E-06 7924,93 2,31E-03
3,40E+00 10000 9999,95 4,58E-06 9963,53 3,65E-03
4,27E+00 12589,2541 12589,19 5,4501E-06 12517,0 0,00574308
5,36E+00 15848,932 15848,87 3,9787E-06 15706,1 0,00901274
6,71E+00 19952,623 19952,79 8,2538E-06 19672,0 0,01406378
8,38E+00 25118,864 25120,39 6,086E-05 24572,5 0,02175123
1,04E+01 31622,777 31630,78 0,00025309 30573,5 0,03318218
1,16E+01 35481,339 35498,46 0,00048243 34037,6 0,04068967
1,29E+01 39810,717 39846,28 0,00089323 37836,6 0,04958874
1,35E+01 41686,938 41734,23 0,0011345 39454,0 0,05356496
1,43E+01 44668,359 44740,35 0,00161169 41988,6 0,059993
1,52E+01 47863,009 47971,60 0,00226881 44656,8 0,0669867

Table 2: Comparison between the starting pressure drops and the pressure
drops recalculated from the 5th order nonlinear filtration law, for velocity
obtained by direct solving the stationary Navier-Stokes system
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Figure 4: Fig. a: Darcy’s filtration law as the fifth order filtration law in
the range of small Reynolds’ numbers 0 ≤ Re ≤ 4; Fig. b: The cubic
filtration law as the fifth order filtration law in the range of more important
Reynolds’ numbers
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