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Abstract

We consider the immiscible two phase mixture of water and hydrogen in a porous medium. The water phase is
incompressible and the hydrogen phase is compressible. The hydrogen dissolves in the water. The flow is described
by the system of non-linear evolution equations for the water saturation and the hydrogen pressure. Under non-
degeneracy and slow oscillation assumptions on the diagonal coefficients and with small data for the hydrogen, we
establish the existence of a weak solution.To cite this article: A. Name1, A. Name2, C. R. Mecanique 333 (2005).

Résumé

Un résultat d’existence pour les équations décrivant un écoulement diphasique gaz –liquide.
Nous considérons le mélange diphasique immiscible de l’eau et de l’hydrogène dans un milieu poreux. L’eau est

incompressible et l’hydrogène est compressible. L’hydrogène se dissout dans l’eau. L’écoulement est décrit par le
système des équations non linéaires d’évolution pour la saturation de l’eau et la pression d’hydrogène. Sous les
conditions de la non-dégénérescence et des petites oscillations des coefficients diagonaux et avec de petites données
pour l’hydrogène, nous établissons l’existence d’une solution faible. Pour citer cet article : A. Name1, A. Name2,
C. R. Mecanique 333 (2005).
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1. Introduction to the model

In the context of a deep geological radioactive waste repository, it is expected that significant quantities
of hydrogen will be generated mostly by the corrosion of metal components.

The impact of gas transfers on the evolution of the repository is a major concern for the French national
radioactive waste management agency Andra and it launched the Couplex-Gaz exercise as a benchmark
to simulate hydrogen transfers in porous media.
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This important problem renews the mathematical interest in the equations describing multiphase/mul-
ticomponent flows through porous media. It turns out that there is a satisfactory mathematical theory
for the two-phase incompressible immiscible flows and for more details we refer to the books [1], [2] and
[3], articles [4] and [5] and to subsequent publications. In the case of two-phase flows with one (or more)
compressible phases, there are practically no mathematical results. Namely, in the case of two-phase
incompressible flows equations could be reduced to a parabolic-elliptic system using ”global pressure”
introduced by G. Chavent. The system is ”weakly” coupled and the sophisticated theory, developed
for the scalar degenerate parabolic equations could be applied. If one of the phases is compressible, this
transformation does not help any more. Consequently one has to deal with a degenerate parabolic system.
We note here that if the thermodynamical variables are supposed to depend not on the physical pressure,
but on Chavent’s ”global pressure”, then it is possible to extend the known results to the compressible
case. For more details we refer to [6]. It is difficult to justify such approach from physical point of view
and we prefer keep the modeling from fundamental references.

For general modeling of multiphase/multicomponent flows through porous media we refer to the book
[7] and to the article [8]. Here we deal with 2 phases: water (liquid phase) and hydrogen (gas phase). We
suppose that both phases satisfy Darcy’s law:

v` = −Kkr`(S`)
µ`

(∇P` − ρ`g∇x2

)
and vg = −Kkrg(Sg)

µg

(∇Pg − ρgg∇x2

)
; S` + Sg = 1. (1)

The indices ` and g relate to the liquid and to the gas phase, respectively. Si, i = `, g stands for the
saturation, Pi for the pressure, K for the absolute permeability, kri for the relative permeability, µi for
the viscosity and ρi for the density. g is the gravity acceleration and for simplicity we suppose a 2D
situation.

In our particular simplified model, we suppose that water vapor is not present in the gas phase. Then
the continuity equation for the gas phase reads

∂t(φS`ρ
`X`

H2
+ φSgρ

g) + div
(
ρ`X`

H2
v` + ρgvg

)− div
(
ρ`D`

H2
∇X`

H2

)
= rg, (2)

where φ is the porosity, X`
H2

is the mass fraction of the hydrogen in the gas phase and D`
H2

is the
corresponding diffusion coefficient.

The continuity equation for the liquid phase is

∂t(φS`ρ
`X`

H2O) + div
(
ρ`X`

H2Ov`
)

= r`; X`
H2O + X`

H2
= 1. (3)

System (1)-(3) is not complet and we add (i) the capillary pressure relation, (ii) the constitutive law for
the gas, and (iii) Henry’s law:

Pg − P` = Pc`g(S`); ρg = R∗Pg; ρl
H2

=
X`

H2
ρw

1−X`
H2

= K∗
HPg, (4)

where ρw is the standard pure water density, Pc`g(S`) is the capillary pressure, being a monotone de-
creasing function of the saturation S`, and K∗

H and R∗ are (small) positive constants. For the detailed
presentation of the model we refer to the presentation of the benchmark Couplex-Gaz by J. Talandier and
the corresponding Web pages in [9]. For more general modeling of the two-phase two-component flows
through porous media one could consult the recent article [10] by A. Bourgeat and M. Jurak.

In this short note our goal is to establish an existence result in a simple case when (i) the evaporation
is neglected; (ii) degeneracy is avoided , (iii) the permeability K is supposed to be a scalar and (iv) the
boundary conditions are simplified. We choose as unknowns the saturation of the liquid phase S = S`

and the rescaled hydrogen mass density U = m(S)ρl
H2

in the liquid phase. We have
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a =
R∗

K∗
H

≈ 50; m(S) = S + a(1− S);
dm

dS
= 1− a < 0; b(S) =

kr`(S)
µ`

+ a
krg(S)

µg
; ρg = aρ`

H2
. (5)

Henry’s law from (4) is generalized to large values of Pg by setting ρ`
H2

= 1− e−MH2KHPg . Since we are
going to establish the existence for small hydrogen density, the fact that we know the constitutive laws
only for small values of it does not pose problems.

With notations

A11(S, U) = K
dPg

dρ`
H2

ρ`
H2

b(S)
m(S)

+
D`

H2

m(S)
ρw

ρw + U
m(S)

; ϕ1(S, U) = Kρ`
H2

b(S)g∇x2, (6)

A12(S, U) =
KU

m(S)

{( dPg

dρ`
H2

ρ`
H2

b(S) +
D`

H2
ρw

ρw + U
m(S)

) (a− 1)
m(S)

− P ′c(S)
krw(S)

µw

}
(7)

A21(S, U) =
krw(S)
µwm(S)

K
dPg

dρ`
H2

=
1

MH2KH

K
U + m(S)

krw(S)
µw

(8)

A22(S, U) = K
krw(S)

µw

{
dPg

dρ`
H2

(a− 1)U
m(S)2

− P ′c(S)
}

; ϕ2(S,U) = K
krw(S)

µw
(ρw + U/m(S))g∇x2, (9)

the system (1)-(3), (4)-(5) becomes

∂t(φU)− div
{

A11(S,U)∇U + A12(S, U)∇S

}
+ div

(
ϕ1(S,U)

)
= rg (10)

∂t(φS)− div
(

A21(S, U)∇U + A22(S,U)∇S

)
+ div

(
ϕ2(S, U)

)
=

rw

ρw
(11)

Through the paper we suppose the following 2 hypothesis
(H1) Let limS→0,1 P ′c(S)krw(S) exist and let they be different from zero.
(H2) Let there be a constant β > 0 such that βkrw(S) < −P ′c(S) on [0, 1].
Now for the coefficients we have
Lemma 1.1 A11, A21 and A22 are C∞ functions of S and U on [0, 1] × [0, +∞[), taking values in the
intervals (a11,m, a11,M ), (0, a21,M ) and (a22,m, a22,M ), respectively. A12 = Ua12(S, U), where a12 is a C∞

function of S and U on [0, 1] × [0,+∞[), taking values between 2 positive constants, a12,m and a12,M .
ϕ1(S, U) = χ(U)Ψ1(S)g∇x2, where Ψ1 is a bounded C∞ function and χ is a C∞ bounded function of U
on [0, +∞[), behaving as U for small values of the variable. ϕ2(S, U) is a bounded C∞ function.

2. Existence of a solution

We start by defining the coefficients for S outside the interval [0, 1] : Aij(S, U) = Aij(1, U) for S > 1
and Aij(S, U) = Aij(S+, U) for S < 0. Next, for U < 0, we set Aij(S, U) = Aij(S,U+). We make the
following assumptions on the data:

(i) Ω ⊂ R2 is open, bounded and connected with smooth boundary. Let V = L2(0, T ; H1(Ω)), 0 < T <
+∞ and QT = Ω× (0, T ).

(ii) For the data we assume S0 ∈ W 1,3(Ω), U0 ∈ W 1,3(Ω), rw, rg ∈ L2(QT ) and rw, rg ≥ 0. φ is a
positive constant.

Définition 2.1 We call {S, U} a weak solution of the system (10)-(11) if the following properties are
fulfilled: {S, U} ∈ V 2 ∩ L∞(QT )2, ∂t{S, U} ∈ (V ∗)2 and for all {w1, w2} ∈ V 2 we have
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T∫

0

< ∂t(φU), w1 > dt +

T∫

0

∫

Ω

{
A11∇U + A12∇S − ϕ1(S,U)

}
∇w1dxdt =

T∫

0

∫

Ω

rgw1dxdt (12)

T∫

0

< ∂t(φS), w2 > dt +

T∫

0

∫

Ω

{
A21(∇U + A22∇S − ϕ2(S,U)

}
∇w2dxdt =

T∫

0

∫

Ω

rw

ρw
w2dxdt (13)

and for all wi ∈ V ∩W 1,1(0, T ; L∞(Ω)), i = 1, 2, with wi(T ) = 0,

T∫

0

< ∂tU,w1 > dt +

T∫

0

∫

Ω

(U − U0)∂tw1dxdt = 0;

T∫

0

< ∂tS,w2 > dt +

T∫

0

∫

Ω

(S − S0)∂tw2dxdt = 0. (14)

The system (10)-(11) could loose parabolicity for large values of U . Let AR
ij(S,U) = Aij(S, sup{R, U+}).

Theorem 2.1 There exist R > 0 such that for 0 < R ≤ R, the system (12)-(14), with the matrix [Aij ]
replaced by [AR

ij ], has at least one weak solution {SR, UR}.
Proof: We use the general theory of quasilinear elliptic-parabolic differential equations from the article
[11]. It is enough to check the ellipticity. It is equivalent to the positive definiteness of the quadratic form

(ξ1, ξ2) → AR
11(S, U)ξ2

1 + (AR
12(S,U) + AR

21(S, U))ξ1ξ2 + AR
22(S,U)ξ2

2 (15)

For U = 0 the sufficient and necessary conditions for the quadratic form (15) to be positive definite are (i)
AR

11(S, 0) > 0, AR
22(S, 0) > 0 and (ii)(AR

12(S, 0)+AR
21(S, 0))2 < 4AR

11(S, 0)AR
22(S, 0). The former conditions

are consequence of the hypothesis that limS→0,1 P ′c(S)krw(S) exist and is different from zero. The later
condition reads

(Kkrw(S))/((MH2KH)2µw) < (D`
H2

(−P ′c(S))/(m(S)) on [0, 1]. (16)

Under hypothesis (H2) , (16) is achieved by multiplying the 2nd equation by (MH2KH)2D`
H2

µwβ divided
by Kmax m(S). By continuity, there is a constant R > 0 such that the quadratic form (15) remains
positive definite for |U | < R. This proves the theorem. 2

Lemma 2.2 Let rg, rw ≥ 0, krw(0) = 0, let the initial values be non-negatives and let the assumptions
of theorem 2.1 be fulfilled. Then solutions are non-negatives.
Proof: We note that krw(0) = 0 implies A12(0, U) = 0. Furthermore, A21(S, 0) = 0. Now we test the
system (10)-(11) by the negative parts of a solution and obtain the result. 2

It remains to prove that for small data the L∞-norm of U is small.
Let b > 0 be a given constant. Then for the problem

1
b
∂tu−∆u = f + div F in QT ;

∂u

∂n
+ F · n = 0 on ∂Ω× (0, T ); u = u0 on Ω. (17)

the theory of parabolic potential (see e.g. [12], pages 271-276) gives

‖∇u‖Lq(QT ) ≤ A(b, q)
{

C0(b)‖u0‖W 1,q(Ω) + ‖F‖Lq(QT )2

}
+ Ā(b, q)(‖f‖Lq(QT ) + ‖u0‖W 1,q(Ω)), (18)

where A(b, q) is a continuous function of q, equal to 1 for q = 2.
Proposition 2.3 Let q ∈ (2, +∞) be such that

`(q) = max{A(a22,M , q) sup
x∈[0,1],y>0

∣∣∣∣
A22(x, y)

a22,M
− 1

∣∣∣∣, A(a11,M , q) sup
x∈[0,1],y>0

∣∣∣∣
A11(x, y)

a11,M
− 1

∣∣∣∣} < 1. (19)

Then we have
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‖∇SR‖Lq(QT ) ≤
A(a22,M , q)

1− `(q)

{‖A21‖∞
a22,M

‖∇UR‖Lq(QT ) + Cϕ,2 + C0‖S0‖W 1,q(Ω)

}
+ C1‖rw‖Lq(QT ) (20)

‖∇UR‖Lq(QT ) ≤
A(a11,M , q)

1− `(q)

{‖A12‖∞
a11,M

R‖∇SR‖Lq(QT ) + RCϕ,1 + ‖U0‖W 1,q(Ω)C3

}
+ C2‖rg‖Lq(QT ).(21)

Proof: Applying (18) to (11) yields

‖∇SR‖Lq(QT ) ≤A(a22,M , q)
{

sup
x∈[0,1],y>0

∣∣∣∣
A22(x, y)

a22,M
− 1

∣∣∣∣‖∇SR‖Lq(QT ) +
‖A21‖∞
a22,M

‖∇UR‖Lq(QT ) +

‖ϕ2‖Lq(QT )

}
+ C0‖S0‖W 1,q(Ω) + C1‖rw‖Lq(QT ). (22)

Next we apply (18) to (10) and get

‖∇UR‖Lq(QT ) ≤ A(a11,M , q)
{

sup
x∈[0,1],y>0

∣∣∣∣
A11(x, y)

a11,M
− 1

∣∣∣∣‖∇UR‖Lq(QT ) + ‖ϕ1‖Lq(QT ) +

‖a12‖∞
a11,M

‖∇SR‖Lq(QT )‖UR‖L∞(QT )

}
+ C0‖U0‖W 1,q(Ω) + C1‖rg‖Lq(QT ). (23)

After inserting (23) into (22) and using (19) we obtain (20)-(21).2
Corollary 2.4 Under conditions of Proposition 2.3, there are constants I1

S and I2
S, depending only on

‖S0‖W 1,q(Ω) and on bornes on coefficients, such that

‖∇SR‖Lq(QT )

(
1− A(a11,M , q)A(a22,M , q)

(1− `(q))2
a21,M

a22,M
R

) ≤ A(a22,M , q)
1− `(q)

(
I1
S + RI2

S

)
. (24)

Next, we will need the De Giorgi-Nash-Moser L∞-estimate for the equation (11). Unfortunately the
classical result establishes the bound, but without really caring how the constants depend on data. We
have to establish that for small data the L∞-norm is small. We use the result proved in the Appendix A
(see also [14]), which applied to the equation (11) reads
Lemma 2.5 Let q ∈ (4, +∞) satisfies (19), let Λ ∈ (0, 1) and let β = 2β1(Ω) + ( T

|Ω| )
1/4 be the imbedding

constant of V 1,0
2 (QT ) in L4(QT ). Let us suppose that β2(|Ω|T )(q−4)/(2q) ≤ min{1, a11,m}Λ2/4. Then we

have

‖UR‖C(Q̄T ) ≤ 65Λ
(
2‖U0‖L∞(Ω) + ‖rg‖Lq/2(QT ) +

4√
a11,m

(‖A12∇S‖Lq(QT ) + ‖ϕ1‖Lq(QT ))) (25)

The upper bound for R is equal or smaller than min{1
2

(1− `(q))2

A(a11,M , q)A(a22,M , q)
,R}. Consequently, we

estimate ‖∇SR‖Lq(QT ) by the inequality (24) and get as the upper bound IS =
2A(a22,M , q)

1− `(q)

(
I1
S +

RI2
S

)
,with R replaced by the above value.

Theorem 2.6 Let us suppose (19) with q > 4 and the hypothesis of Lemmas 1.1, 2.2 and 2.5 and
Theorem 2.1. Let {SR, UR} be a weak solution for the truncated coefficients Aij, constructed in Theorem

2.1, and let R = min{1
2

(1− `(q))2

A(a11,M , q)A(a22,M , q)
,R} and Λ0 =

√
a11,m

4
(a12,MIS + Cϕ,1|QT |1/q)−1. We

suppose the following conditions on the data

β2(|Ω|T )(q−4)/(2q) ≤ min{1, a11,m}Λ2
0/4 and 130Λ0

(
1
2
‖rg‖Lq/2(QT ) + ‖U0‖L∞(Ω)

)
< R. (26)
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Then ‖UR‖L∞(QT ) ≤ R and {SR, UR} is a weak solution for the system (12)-(14).
Proof: It is a direct consequence of the preceding Lemmas, of the choice of R and Λ0 and the conditions
(26). 2

Remark 1 We note that (19) holds if the oscillation of coefficients A11 and A22, given by (6) and (9),

is not large. Physically, under the hypothesis (H1)-(H2) it reduces to the smalness of
dPg

dρ`
H2

. Assumptions

of Lemma 2.5 are always fulfied if the length of the time interval is not too large.
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Appendix A. Adapted De Giorgi-Nash-Moser parabolic estimate

In this appendix we establish a variant of the classical De Giorgi-Nash-Moser parabolic estimate, which
gives the precise dependence of the L∞-norm of the solution on the data. We repeat, after [13], that
V 1,0

2 (QT ) = C([0, T ]; L2(Ω))∩L2(0, T ;H1(Ω)). Let β be the imbedding constant of V 1,0
2 (QT ) in L4(QT ).

After [13], page 77, it is given by

β = 2β1(Ω) + (
T

|Ω| )
1/4. (A.1)

Theorem A.1 Let B ∈ (L∞(QT ))4 be a such that Bξξ ≥ α0|ξ|2, ∀ξ ∈ R2 and let g, |−→f |2 ∈ Lq(QT ),
q > 2 and u0 ∈ C(Ω). Let u ∈ V 1,0

2 (QT ) be any weak solution for the boundary/initial value problem

∂tu− div (B(x, t)∇u) = g + div −→f in QT (A.2)

u|t=0 = u0 in Ω ; (B∇u +−→
f ) · ν = 0 on ∂Ω× (0, T ). (A.3)

Let Λ ∈ (0, 1) be an arbitrary constant. Furthermore, let us suppose that

β2(|Ω|T )(q−2)/(2q) ≤ Λ2

4
min{1, α0}. (A.4)

Then u ∈ C(QT ) and we have

max
(x,t)∈QT

u(x, t) ≤ 2Λ(
2√
α0
‖|−→f |2‖1/2

Lq(QT ) +
1
2
‖g‖Lq(QT ) + ‖u0‖L∞(Ω))

(
1 + 22q(q−1)/(q−2)2

)
. (A.5)

Proof: We follow the proof of the corresponding result from the book [13], pages 181-186. It is the
Theorem 7.1. As there, we test the weak form of the problem (A.2)-(A.3) by u(k) = sup{u − k, 0},
k ≥ ‖u0‖L∞(Ω). Exactly, as in [13], pages 183-184, after straightforward calculations we get

1
2

∫

Ω

(uk(x, t))2 dx + α0

t∫

0

∫

Ak(τ)

|∇u|2 dτdx ≤
t∫

0

∫

Ak(τ)

(α0

2
|∇u|2 +

2
α0
|−→f |2 + |g|(u− k)

)
dxdτ,(A.6)

where Ak(τ) = {x ∈ Ω |u(x, t) > k}. The inequality (A.6) implies

1
2

min{1, α0}‖u(k)‖2
V 1,0
2

≤
t∫

0

∫

Ak(τ)

( 4
α0

|−→f |2
δ2

+
1
2
|g|
δ

)(
(u− k)2 + k2

)
dxdτ, (A.7)

for every δ > 0 and k ≥ max{‖u0‖L∞(Ω), δ}. We choose δ = Λ(
2√
α0
‖|−→f |2‖1/2

Lq(QT ) +
1
2
‖g‖Lq(QT ) +

‖u0‖L∞(Ω)). Then using interpolation and embedding inequalities, exactly as in [13], page 185, we obtain

Λ
2

min{1, α0}‖u(k)‖2
V 1,0
2

≤ β2µ(q−2)/(2q)(k)‖u(k)‖2
V 1,0
2

+ k2µ(q−1)/q(k), ∀k ≥ δ, (A.8)

where µ(k) =
∫ t

0
|Ak(τ)| dτ and β is the embedding constant of V 1,0

2 (QT ) in L4(QT ), given by (A.1).
Next, the assumption (A.4) implies that (A.8) reduces to

Λ
4

min{1, α0}‖u(k)‖2
V 1,0
2

≤ k2µ(q−1)/q(k), ∀k ≥ δ. (A.9)

Finally we use Theorem 6.1., pages 102-103 form [13], to conclude that (A.9) implies (A.5).2
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