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Abstract

A system of model equations coupling fluid flow, deformation of
solid structure and chemical reactions is formulated starting from pro-
cesses in biological tissue. The main aim of this paper is to analyse this
non-standard system, where the elasticity modules are functionals of a
concentration and the diffusion coefficients of the chemical substances
are functions of their concentrations. A new approach and new meth-
ods are required adapted to these nonlinearities and the transmission
conditions on the interface solid-fluid. Strong solutions for the initial
and boundary value problem are constructed under suitable regularity
assumptions on the data, and stability estimates of the solutions with
respect to the initial and boundary values are proved. These estimates
imply uniqueness directly.

*This work was done when A.M. was on the sabbatical leave at IWR and Institut fur
Angewandte Mathematik, Universitit Heidelberg, October 1, 2005 - March 31, 2006.



The approach of the paper can be used in more general problems
modeling reactive flow and transport and its interaction with elastic
cell structures. In a forthcoming paper the approach of this paper is
used for getting the upscaled system modeling reactive flow through
biological tissue on the macroscopic scale, starting from a system on
the cell level.

1 Introduction

In this paper we are studying model equations for processes in a porous
elastic structure of cells. Experimental research on the physiology of liv-
ing cells and tissues is providing more and more detailed information on
the nano- and micro-scale. There is an urgent demand for mathematical
modeling of reactive flow and transport and its interaction with elastic cell
structures. Here we are formulating model equations on the fine scale with
€ as scale parameter, which are already a mesoscopic and simplified descrip-
tion of the real processes occurring in the cells, the intercellular space and
in the membranes. We are including

1. Fluid flow in the extracellular space, diffusion, transport and reactions
of substances in the fluid.

2. Exchange of fluid and substances at the membranes.

3. Diffusion and transport of fluid and substances, chemical reactions in-
side the cells.

4. Changes of the structures and their mechanical properties, small de-
formation of the structures.

Due to technical reasons, let us assume that the cells are connected with
each other. The final aim is to derive a system of macroscopic equations
passing to the limit ¢ — 0 and to provide methods to compute the solutions
of macroscopic equations using the information coming from processes on
the microscopic scale. However, the model equation for the considered multi-
physics problem has not been mathematically solved. Before passing to the
limit, one has to prove existence and uniqueness of the solutions for positive
€, what is the main aim of this paper. The asymptotic analysis will be done
in an independent paper.

In formulating the model equations we start from the underlying real
problem and set up a system of partial differential equations modeling the
processes in a dimensionless form. This system is studied analytically.



To study of the coupling between the motion of the solid structure and
fluid flow, a detailed description of the solid/fluid interfaces may lead to
a very complex mathematical and numerical problem. The nonlinearity of
the underlying fluid-structure interaction is so severe that even supposing
linearly elastic solid structure leads to important complications. To devise
a reasonable mathematical model, it is necessary to introduce simplifying
model assumptions capturing only the most important physics of the prob-
lem.

A common simplification is to suppose ”small” displacements and ”small”
deformation gradients leading to the hypothesis of linear elasticity for the
structure. Even for such coupling, the existing mathematical theory does
not give the global existence. Namely, in the paper [2], a structure being
an elastic plate was considered and existence of at least one weak solution,
as long as different parts of the solid structure do not meet, was proven.
The corresponding results for the coupling between the Navier-Stokes equa-
tions and the linear equations of elastodynamics is more recent and due to
Coutand and Shkoller in [4]. They have proven the short time existence
for arbitrary data. The same authors extended their results to quasilinear
elastodynamic structures in articles [5] and [3].

We are interested in the problem where the biophysical data imply that
all assumptions of the linear elasticity are satisfied. Moreover, with our
biophysical parameters, the solid structure displacement is very small, the
flow is slow and thus, we are allowed to linearize the conditions at the
fluid /structure interface. In fact the linearization of the fluid/structure in-
terface introduces the error of the same order as neglecting nonlinear terms
in the structure equations. We will motivate the linearization by the di-
mensional analysis in Section 3. Under similar assumptions, the interaction
of fluid with solid structures has been studied in the literature in several
papers and passing to the homogenization limit the macroscopic law known
as Biot law could be derived, see [6], [8], [9], [20].

The modeling novelty in our paper is dependence of the Young modules
on the concentration. Consequently, the cell chemistry causes the defor-
mation. The global existence is then consequence of the energy inequality,
resulting from the conservation of energy for the linear elasticity and for the
Stokes flow. Nevertheless, adding diffusion, transport and reactions of chem-
ical substances and their interaction with mechanics leads to new obstacles
requiring new ideas and methods.

There are two chemicals, which play a role in our model. A first one
is present only inside the cells and its cumulated content may change the
mechanical properties of the structure. The second chemical, present inside



the cells and in the intercellular space, influences the diffusion of the first
chemical. These effects are quantitatively demonstrated in experiments, see
e.g. [19].

The dependence of the elasticity coefficients on the chemical substance
is nonlinear and nonlocal. We assume that the elasticity parameters depend
on a Volterra functional of the concentration of the relevant substance. This
leads to difficulties for the analysis. To overcome these obstacles we cut off
the concentration in the coefficients and first prove existence and uniqueness
for the cut-off problem. For the solutions of these problems we then prove
lower and upper bounds for the concentrations independent of the cut off.
Then, we conclude that the solution of the cut off problem is also a solution
of the original problem. However, proving L°°—estimates requires structural
conditions on the nonlinear reaction terms.

Next, we derive higher regularity of the solutions, whereby not only the
transmission conditions on the interface between solid and fluid part are
causing difficulties, but also the dependence of the elasticity moduli on the
concentration of one of the chemical and the dependence of the diffusion
coefficient of one of the chemicals on the concentration of the other. The
regularity results are crucial for proving uniqueness and more general the
dependence of solutions of the system on initial and boundary data.

This paper is organized as follows: In section 2 the model system is
formulated, including a set of system parameters and their order of magni-
tude in the experimental situation taken as a test case. However, getting
even the order of magnitude, based on good experiments, is a problem by
itself. In section 3, a dimensional analysis is performed leading after some
reductions to a dimensionless formulation of the model system. This system
represents a larger class of problems coupling fluid flow, solid structure and
chemical reaction for slow flow velocity and small deformations, which are
typical for biological tissues. The authors are not aware of mathematical
results for systems of this type. In section 4 this system is summarized and
the assumptions on the data are formulated. Using the Galerkin method,
in section 5 the existence of weak solutions with bounded concentrations
for the dimensionless problem is proved. Higher regularity of the solutions
is derived in section 5. These results are decisive for the analysis of the
linearization of the system studied in section 6, where the dependence on
the initial and boundary values is estimated yielding also uniqueness of the
solutions.

In the forthcoming paper [12] the limit ¢ — 0 is analyzed, using similar
techniques, however, controlling the dependence on the scale parameter ¢,
which for simplicity we did not undertake in this paper.



Recently, biophysical and biochemical processes including cell layers or
tissue have attracted more attention of mathematical modelling and numer-
ical simulation. Here we mention as examples [1], [18], [21] dealing with
model equations formulated on the macroscopic scale. In [18] the Navier
Stokes equations for incompressible flow in a vessel coupled with advection-
diffusion equation for the solute concentration and its interactions with the
wall are treated. In [21] model equations for thrombosis describing flow,
transport and reactions in a vessel and at its walls are analyzed and simu-
lated. Flow and transport through interfaces are investigated in [1], assum-
ing a coupling through the Neumann data on the interface. A derivation
of effective transmission conditions on a membrane based on microscopic
information is presented in [16]. In general, it is appropriate to use con-
cepts which were successful for describing processes in porous media, also
for processes in cell layers and tissue, see e.g. [10].

2 Setting of the model

Let us consider the domain © = (0, 1) consisting of a tissue part formed by
elastic cells and a fluid part representing the intercellular space. Initially,
(i.e. at ¢t = 0) the tissue part is denoted by €1y, the fuid part by Qf, and
the fluid-solid interface by I' = 9€Q; N 9€2;. The boundary of the domain 2
consists of three parts

0N =T1uUl'xUTl'y

where 'y = {21 =0} x(0,1)%, Ty = {z1 = 1} x(0,1)? and '3 = Uj—a 3({x; =
0} U {z; = 1}) x (0,1)2. We suppose that the solid and fluid parts are
smooth and connected. The outer unit normal to 02 is denoted by v. On
the interface I', we denote by v the outer unit normal to the fluid part Q.

Let [0,T] denote a time interval, with 7' > 0. For simplicity of notation,
we define

(2.1)  Qi=0x(0,t), QF:=Qx(0,1), Qf:=Qsx(0,1),

for all t € [0, 7.
We suppose small deformations of the cells structure. It means that in
the solid part 25 the equations of linear elasticity hold:

9w

(2.2) Psw

—V-(o(w)) =0 in Qs x (0,T),



where w is the displacement in the solid part, D(w) is the strain tensor
defined by
8’(01' 871)]'

1 .
D)y =5 (Go+ 52 ). ii=1.2.3

and o(w) is the stress tensor

(2.3) o(w) = A(F(c1))D(w).

In the case when the cells are homogeneous and isotropic bodies, the elas-
ticity coefficients A are given with the help of Lamé’s coefficients ! \ and p
and the stress tensor has the form:

(2.4) o(w) = AF (1)) V - (wl) + 2u(F (e1)) D(w)

The dependence of the elasticity coefficients A on the concentration c¢; is
nonlinear and nonlocal; the coefficients change as a function of cumulated
quantity of chemical substance. To describe this dependence, we introduce
the operator F acting on the concentration, and given by

(2.5) F: L3 x [0,T]) — L*(Q, x [0,T])

(2.6) Fler)(z,t) = (K¢ F(er))(z,t) = /0 K(t—71)F(ci(x,7)) dr,

where F' € C?(R) is Lipschitz, and the kernel K has the following properties
(2.7) Kec30,T], K(0)=K'(0)=K"(0)=0.

In the fluid part, we consider the Navier-Stokes system for a viscous and
incompressible fluid

(2.8)  py (g: + (UV)U) +Vp—prAv = 0, in Qp(t) x (0,7T)

(2.9) Vv = 0, inQ(t) x (0,T)

where Q¢(t) is the fluid configuration at time ¢, Q¢(0) = Qy, v is the fluid
velocity and p is the fluid pressure.

We note that the Lagrangian coordinates are used for the structure and
Eulerian for the fluid. Hence, 2 is the reference domain and the interface

LOther possibility is to use Young’s modulus E and Poisson’s coefficient v. They relate

E E
to Lamé’s coefficients through \ = v and pu =

(14+v)(1-2v) 2(1+v)’
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between the two media evolves with the evolution of the structure. The
kinematic interface condition is the continuity of the normal velocity and,
due to different formulations for our media, it reads

(2.10) (@ + w(z,t),t) = ‘2;) (z,#), on T x (0,T).

The 3rd Newton’s law implies continuity of the contact forces. Expressing
continuity of the the contact forces at the interfaces requires introducing the
fluid Lagrangian configuration uf, defined on the initial fluid configuration
Q¢ and with values in Q¢(t). It is defined through the differential equation
out
ot

= v(u/ (,t),t). Then the continuity of the the normal stresses reads

(2.11) (—pI+2u; D)) (z+w(z,t),t)-(Vud)"'v = o(w)-v, on T'x(0,T).

In the simple situation when the solid structure is an elastic curved mem-
brane the condition can be written more explicitly (see e.g. [7]).
At the exterior boundary, for every ¢t € (0,7"), we suppose:

(2.12) (—pI +2u;D(v)) - (Vul) ey =0, on Ty NQy
(2.13) A(]—") (w)-e1 =0, on TN
(2.14) (—pI +2u;D(v)) - (Vud)les = (81,82,83), on TNy
(2.15) A(.’F)D(w) -e1 = (81,82,83), on I'snN Qs
(2.16) v=0and w=0, on T}

For simplicity, we suppose initial conditions equal to zero, i.e.

v(z,0) =0 in Qy,
(2.17)

ow

w(z,0) = N

(z,0) =0 in Q.

Next, we write the equations describing the transport of chemical sub-
stances. There is a chemical diffusing only inside cells and its cumulated
content influences the elastic cells structure:

0
(2.18) % -V (Dl(CQ)Vcl) = 91(61,62) in Qs X (O,T)
(2.19) Dl(CQ)VCl -v=20 on 6QS X (O,T)
(220) C1 (0) = C10 in Qs



Then, there is a second chemical, which is present in the cells and in the
intercellular space, and influencing diffusion and reactive change of the first
chemical substance.

3}
(2:21) 2 +v- Vey — DaAcy = ga(co) in Q(t) x (0,T)
802 .
(2.22) i DyAcy = g3(c1,c2) in Qg x(0,7)
(2.23) (vea — DQVCQ)XQf(Vuf)*lz/ = —DyVeaxa, - v on I'x (0,7)
(2.24) coxa, (v +w(z,t)) = Keaxa, on I' x (0,T)
(2.25) (xa, + Kxa,)ca = c2p on I'y x (0,7)
(2.26) Veaxq, - (Vul)"te; + Veaxa, -e1 =0 on I'y x (0,7).
(2.27) (vez — DaVea)xq, - (Vul)lv =0 on I3 x (0,7T)
(2.28) DyVeaxq, -v =20 on I's x (0,7T)
(2.29) (xa, + Kxa,)c2(0) = co in Q

Concerning the transmission conditions at the interface between the cells and
the intercellular space, we remark that beside the continuity of the normal
fluxes given by (2.23), we have the jump condition (2.24) where K > 0 is
the so called calibration constant. In order to work with the usual Sobolev
spaces in the weak formulation, we redefine ¢ in 25 by setting

¢y:=Kcp in Qg x(0,7).

Then problem (2.21) - (2.29) transforms to

0
(2.30) % +v-Vey — DyAcy = 92(62) in Qf(t) X (O,T)
1 0¢ D
(MDK%—;MF%@@) in Q x (0,7)
D
(2.32) (ve2 — DaVez)xa; (Vul )™ty = —%Végxgs 7 on I'x (0,T)
(2.33) caxa,(r +w(z,t)) = éaxa, on I'x (0,7)
(2.34) caxq; + Caxa, =cap on I't x (0,T)
(2.35) Veaxa, - (Vuf)_lel + Véaxq,-e1 =0 on Ty x(0,7)
D
(2.36) (ve2 — DaVez)xaq; (Vul )"ty — %VégXQsl/ =0 on I's x (0,7)
(2.37) (c2xa; + C2x0,)(0) = cpo in

For simplicity of notation in the following we drop the hat.



3 Dimensional analysis

As already explained in the introduction, the system (2.2)-(2.4), (2.8)-(2.20),
(2.30)-(2.37) is very complicated and we will simplify the model, keeping
only the most important physics of the problem.

The natural way of analyzing the problem (2.2)-(2.29) is to introduce
dimensionless coordinates which are defined in terms of characteristic val-
ues of the physical parameters. A detailed analysis with respect to these
parameters will be exposed in the forthcoming paper [12], where the ho-
mogenization results strongly depend on the relationship between the non-
dimensional numbers and the typical size of the non-homogeneities. The
goal of the section is to explain why it is reasonable to drop the inertia
effects and why the fluid-solid interface could be linearized.

Typical values of characteristic parameters are: T" = 20 seconds is the
characteristic flow time, characteristic domain size is L = 1072 meters,
characteristic size of elastic moduli is A = 10* pascals, dynamic viscosity is
py = 1.003 x 1072 kg / (m sec) and densities are p; ~ p; = 1000 kg/m3.
Characteristic cell size is £ = 1.5 - 1075 meters and the cell displacement
should not be bigger than 10~% meters. As references for these parameters
we quote [19] and personal communication by M. Weiss (BIOMS, Universitét
Heidelberg). The characteristic size of the heterogeneities is then given by
e=//L=151073.

From the data we see that global Reynolds’ number is Re = V. Lps/puy =
O(e) and the local Reynolds’ number (defined as Vips/jui¢) is of order O(e)2.
Therefore, the inertia effets are small and we can simply neglect them.

We proceed by setting

x t v A P / L
3.1 oD = = A= =L Vel =
( ) x L Y TD Y v V? A Y p P, T TD Y
where Tp = T/e is the the characteristic diffusion time. Next we set
ow* T Qw

% = 7o but this does not give the correct information about the
size of w. To get this information, we remark that in the case of Young
moduli independent of the concentration and for negligible inertia effects at

the external boundaries, we have the energy equality

(3.2) pf/ |v|? da —i—pS/ ’8711)’2 d:c+/ AD(w) : D(w) dx +
(1) o, Ot o

t t Hw
2,uf/ / |Vo|? dedr = 2/ /S(Xﬂf(T)U +XQSE) dlodr
0 JQs(7) 0 JT



Now, the right hand side in (3.2) can be further estimated. For this we make
use of the fact that the H'-norm on € is equivalent to
1

(ko220 + 1D@) B2(c,)

with a constant independent of ¢, see [17], of the estimate

llisgay < [ il

and of w(0,x) = 0. Finally, applying Gronwall’s inequality, we obtain

c C
(33) HD(w)HLOO(LQ) ~ ﬁAv HathLoo(Lz) ~ \/p»s

C C
(3.4) 0]l o ze) ~ —— A, [|V0]| 212y ~ ——A
SR D= iy

A

where

A= VPslf /HSH” r2n 47+

1 2 2
(\//JTA " Ps> </o ||3t3||L2(F2an)3dT> HUISI Lo zi22(02000%)

As a consequence we find out that (a) the fluid velocity and the deformation
velocity of the structure are of the same order with respect to €; (b) the
strain tensor of the structure is even smaller, but the fluid velocity gradient
could be of higher order with respect to the structure displacement. Thus,
for data at the exterior boundary being ”compatible” with linearization
and small Reynolds’ number, we see that terms V v(x,t) - w(z,t), and the
higher order ones are negligible and it is justified to linearize the kinematic
condition (2.10) and the coefficients in the dynamic conditions (2.11).

Now, after dropping the stars, we obtain the dimensionless equations for
the fluid-structure interaction:

ov PL .
(3.6) V-v—O in Qf x (0,7)
pslL 0*w AL .
(3.7) T 07 vadw(AD(w)) in Q4 x (0,7)
ow
(3.8) v(x,t) = a(m,t) onT x (0,7)
PL AL
3.9 ———pl +2D(w)) -v=—>-AD(w)) - v onI' x (0,7),
39) (o ppl+2D()-v = L ADw) (0.7)



where the product of Reynolds’ and Strouhal’s number Sh Re is equal to
AL
L%ep/(Tuy). Using the above reference values, we obtain that

is very

large. Thus, in the nondimensional equation for the flow, we will consider

a viscosity coefficient of order O(1), and in the nondimensional equation for
AL

piV

PL
The reference pressure P is chosen such that —— = O(1). Due to the

the structure we consider elasticity coefficients of the form Ay =

continuity of the velocities (3.8) at the fixed reference interface I' and assum-
ing the initial displacements in the fluid to be zero, it is natural to introduce
a displacement function u :  x (0,7) — R3 such that

(3.10) v= % on Qf x (0,7)
(3.11) w="u on Qg x (0,7).

We note that the same equations are obtained by taking the characteris-
A
tic time T, instead of Tp. Only difference is that Ay = R Sh Re is equal
Hf
to L?ps/(Ty) and the coefficients in (3.7) change on the corresponding way.
Finally, we write the equations for the concentrations in dimensionless
form. Let Dg = L%¢/T. Then we set

D.
(312) CT = Cil C; — 672 D* J * g1 * g2 % gs

cy Cy' j:D7R791:G7¥792:G7§793:G7§'

After dropping the stars, we obtain

R

T

(3.13) %il — div (Di(e2)Ver) = il 1Dgl(cl,02) in QF x (0,7)
Ocy  Ou GETp .

3.14 — + — - Vea — DaAcy = c in Qfx (0,7
(3.14) o5+ 5 Ve — DA G g2(c2) Fx(0,7)
10cy 1 GRTp .

3.15 — =2~ Doy = =3 c1,cC in Qs x(0,T
(3.15) %o~ rlAe 0293(12) (0,7)

Thus denoting

_ GETp Gy — GETp Gy — GRTp

G C, Cy Cy

we finally can write down the full set of dimensionless equations coupling
fluid flow, deformation of the solid structure and chemical reactions.

11



4 Statement of the equations and assumption on
the data

Let us first make some remarks on the function spaces we are using: For
a given smooth bounded domain G C R3, we use the usual Sobolev spaces
W™4(G) of functions from L9(G) having derivatives of order m in L(G).
For ¢ = 2, these spaces are denoted by H™(G). We also use the spaces of
functions depending on space and time Wq2 l’l(G x (0,T)), I > 0, consisting
of functions having derivatives with respect to space up to order 2/ and with
respect to time up to order [ in L?. For the precise definition of these spaces
see [14].
In this paper, we look for solutions (u,c1,c2), with

w e WH(0,T5 LA(Q)) N W (0, T; H'(Q)) N H(0, T5 H' (2)),

¢ e Wyl(Q), and ¢ e W'(Q) N W (Q5 UL,

satisfying the problem for the fluid/structure interaction:

(4.1) Sh Re a;t;’%vp:A@l:) in Qf x (0,T)
(4.2) V- <?;) =0 in Q; x (0,7)
(4.3) Zfﬁ gi;‘ = AoV - (AD(u)) in Q, x (0,7)
(4.4) uxe, = uxo, onT x (0,T)
(4.5) (—p[ +2D (‘;Z‘)) ‘v =~MAAD(u) - v onT x (0,T)
(4.6) (—p[ +2D (‘ZZ)) e =0, on 'y NQy x (0,7)
(4.7) AoAD(u) - e; =0, on I't N Qs x (0,T)
(4.8) (—p] +2D (?;;)) ce1 = (81,82, 83), on s NQy x (0,T)
(4.9) AoAD(u) - e1 = (81,82, S3), on 'y N Qg x (0,T)
(4.10) %XQJ, + uxq, =0 on I's x (0,7)
(4.11)  wu(z,0) =0, %(:c, 0) =0, in O

12



together with the problem for the evolution of the concentrations:

0 .
(4.12) % —-V- (Dl(CQ)Vcl) = Glgl(cl,CQ) m QS X (O,T)
(4.13) Di(c2)Ver-v =0 on 5 x (0,7)
(4.14) 61(0) = C10 in Qs
0 0
(4.15) % + 67:: -Veg — DoAcy = GQgQ(CQ) in Qf x (0,7)
10 1 .
(4.16) E% — D2y = Gaga(er,ea) in Qyx (0,7)
D
(4.17) <?;:CQ — D2V62> XQ, V= _?QVC2XQS v on I'x (0,7)
(4.18) caxa, = c2xa, on I'x (0,7)
(4.19) caxo, +c2xa, = c2p on I't x (0,7)
(4.20) (chng + Veaxa,)-e1 =0 on I'y x (0,7)

0 D
(4.21) ((“;tLCQ — DgVCg) XQ; -V — %VéQXQS v=0 on T's x (0,7)
(4.22) (caxq; + caxa,)(0) = co in Q.

Before starting with the analysis of the problem (4.1)-(4.22), we give the
precise assumptions on the data.

4.1 Assumptions on the data

We assume that the components of the symmetric fourth order elasticity
tensor A belong to W3 (R) as function of F, and that there exists \g €
R, Ao > 0 such that

1
(4.23) AollMI[* < AC)MM < —[|M]]?,
0

for all symmetric matrices M, a.e. on R. Further, we suppose that

(4.24) (S1,82,83) € H3(0,T; L*(T))3,
(4.25) (S1,82,83)(0) = 0¢(S1, S2,83)(0) = 0.

Concerning the reaction terms we suppose that G; > 0,Gy > 0,G3 > 0.
We also assume that g1, g2, g3 are Lipschitz continuous with respect to their

13



arguments. This implies that there exist positive constants ci,cs and cj3
such that

(4.26) 91(y,2)] < er(1+(y,2)]) forall (y,z2) € R?

(4.27) lg2(2)] < co(l1+]z|) forall zeR

(4.28) 193(y,2)| < es(1+(y,2)]) forall (y,z) € R?

Additionally we have to impose on ¢, g2, g3 structural conditions which

guarantee positivity of the solutions and for ¢y also a uniform upper bound.
A possible choice of such conditions is given in the following.

(4.29) 2= g1(z7,y)G1 +y g3(z,y )G < C((z7)* + (y7)?)
(4.30) y g2y )G2 < Cly™)?
for all z,y € R, where = = min{z,0}. We also require that there exist

constants A1, My € R, A1 > 0, M7 > 0, such that

(4.31) g1(z,y) < Ay, forax > M, y € R.

For the initial and boundary concentrations we assume that

(4.32) c10 € C%(Q) with Veyo - n = 0o0n 09, and 0 < ¢j9 < My,

where M; is the constant in the assumption (4.31). We also assume that
there exists 8 > 0 and My > 0, such that

(4.33) o0 € HY(Q) N CP(Q) N CHP(Qy) N C2HA(Qy)

and

(4.34)  ca0l|r, = c2pli=0, Vegp-n=0o0onTUTs, and 0 < cyp < M.
Finally, for the boundary concentration cop we require

(4.35) cap € C%5(Ty x [0,T]) N H2(Ty % (0,T)),
(4.36) Cop € C2+/B’l+g((Qs N Fl) X [O,T]) N 02+B’1+g((9]¢ N Fl) X [O,TD,

and

(4.37) 0 S CoD S MQ.

14



5 Existence of weak solutions

We start with the analysis of the problem (4.1)-(4.22) by proving existence of
weak solutions. Since in this paper we are not interested how the constants
in the estimates depend explicitly on the coefficients, we replace

A(F(EN) = MAF(L), g1:=GCig1, g2:= Gaga, g3:= G3gs.

LL
and we set the coefficients Sh Re |, T to 1. For the proof of the existence
of week solutions, we will use the Galerkin method. Thus. let us write down
the variational formulation of the problem (4.1)-(4.22):
Find (u, 1, c2) with

u € W(0,T; L*(Q)) n Wh>(0,T; H'(Q)) N H*(0,T; H' (Qy))

0<ep < Mye®t ey € LX0,T; HY(Q4)) N Wy 2((0,T) x Q),

0< ey <C, g€ LX0,T; HY(Q) n Wy 2((0,T) x Q),

and ¢y —cop(1—x1) € {¢p € L*(0,T; HY(2)); ¢ = 0on T}, satisfying for a.e.
€ (0,7)

0%u ou
(5.1) Qﬁ(t)godx+2 D(at( ) : D(p)dx +
/ A(F(er)D(u(t)) : D(p) = / (81,5, 830 dS.
Qs Ty
ou .
(5.2) V. i 0, in Qf x (0,7),
(5.3) u(x,0) =0, %(x,()) =0, in Q,

(5.4) <8a(;1(t),1[)> + D1(e2)Ver(t) Vi dx —/ g1(c1, co)dz,

Qs

(5.5) <{XQf Il(xn}aacf > /D2{XQf X0, Ve (1) VE da

[ e (Vs + [

t) - eic ds
o, Ot rart; 8t() 1¢2(t)¢

—/9{92(02)X9f + gs(c1, c2)xa, }(d,
(5.6) c1(0) =cio in Qs, c2(0) =cgo in €,
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for all o € V, v € H' (), and ¢ € HY(Q) with ¢ = 0 on I';. Here (-, )
denotes the dual pairing of H!(Q)* and H'(Q2). The space V is defined as
follows:

V={pecH(Q)?® V-9o=0in Qs ¢=0on I3}

Theorem 1 Under the assumptions on the data from section 4.1 the prob-
lem (5.1)-(5.6) has at least a weak solution (u,cqy,co).

Proof: The existence proof consists of the following steps.
1. Local existence for the discretized cut-off problem
2. Global existence for the discretized cut-off problem
3. Compactness estimates for the discretized cut-off problem
4. Convergence of the approximates for the cut-off problem
5. Passing to the limit in the approximate cut-off problem
6. Non-negativity of the concentrations
7. Uniform upper bounds for the concentrations

1. Step: Local existence for the discretized cut-off problem
In a first step we construct Galerkin-approximations for our unknowns u, c1, cs.
Thus, let {o;}jen be a smooth basis for V, {3;},en be a smooth basis for
H'(€,) and {v;}jen be a smooth basis for W = {¢ € H'(Q),¢ = 0onT}.
We are looking for an approximate solution in the form

N N N
un(t) =Y 6i(Hay, e () =D &8, & (t) =Y () y+ean(l—m1)
j=1 j=1 J=1

satisfying the approximate cut-off problem

2
86%(75)0% dx + 2 8u—N)(t) : D(ay) de+
Q

(5.7) [ D%
f
/ A(F@E))D(un(t)) : Do) = / (51, 2,85, dS,
Qs I

forall k=1,...,N, ae. in (0,7), and

dun

(5.8) uy(0)=0, =X

(0)=0 in,
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o N
o Wde+ [ Die) Ve (Vi do =
Qs Qs

2/ g1(cy, ) Brda,

E]

(5.9)

1 o 1
(5.10)/9{ng + Exgs}a—i(t)fyk dx + /Q Da{xa, + EXQS}VCéV(t)V’Yk dx

oupn

oupn (
QHQf 8t

— W(t)eQ’ (t)Vypdz + /F

Qy

t) - erch (t)ydS

:/Q{.QQ(CQ)XQf +g3(61762)XQs}7kd:ﬂa

forall k=1,...,N, a.e. in (0,7) and

N
(5.11) —010—259 )55, Cév (0) :C%:ZCJ'(O)'YJ'-
j=1

We remark that we have to cut of the concentration ¢l in the coefficients

A(F(e)) and the cut-off is given by
(5.12) &V = inf{sup{cl¥,0}, M} + sup{inf{c), 0}, —M}.

Since g1, g2 and g3 are Lipschitz continuous, the Cauchy problem (5.7)-
(5.11) has a unique solution {uy,cl,cd — cop(1 —x1)} € C%([0,Tn]; V) x
CL([0, Ty]; HY(92)) x C1([0, T]; W), for some Ty > 0.

2. Step: Global existence for the discretized cut-off problem
In this step we prove that Ty = T' by obtaining the corresponding apriori
estimates. Starting from here, we use for the partial derivative with respect
to time the notation 0.

First, we test (5.7) by Oyuy and get

(5.13) 2dt/ Dy (t)] dx—i—Q/Qf DG ) (1) 2 +

/Q A(F(@))D(u)(t) - D(@un)(t) =

d

dt / (81, 82, Sg)uN(t)dS

/ (81552783)6tuN( )dS =
T2

— 8t(51,82,83)uN(t)dS
T2
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Let us transform the elastic energy term:

[ A D)) DO (1 =
D Ak % FEYY)Dlun) () : D(u

_ / A % FE)D@un) (1) : D(un)(t)dz —

_/ %D(UN)(t) : D(“N)@)(% * (&) (t)dw
Qs

~N)(t)dx —

Due to the symmetry of A we get
/ A(F(END(un)(t) : D(Quy)(t)de =

2dt/ A(K 5 F(&)))D(un)(t) : D(un)(t)dz —

1 /Q A D) (1) D) (1) (% w0 FE)) (D)

(5.14)

After inserting (5.14) in (5.13), integrating with respect to time and using
Korn’s inequality, the following energy inequality is obtained

t
(5.15) / Byun (t)|2dz + / / |D(8yun)|2dadr +
Q 0o Joy

/ AK % FEY)D(un)(t) : Dlu)(t)dz <

cyy HLOO 1+\el|yLw// D(u) : D(uy)dadr

c <HD(UN)(t)!L2<Q)9 ; /0 HD<uN>uLz(Q>9dT)

In order to estimate || D(un)(?)[|2(q,)?, we remark that since D(un)(0)

we have

t
(5.16)  [ID(un)(®)]lr2(0 = |/0 D(drun)dr||r2(qy)0

t
< / 1D @) 22 9 < VEID@rn) | 2o msizc2,

:07
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Now using Gronwall’s lemma and the fact that the 4th order tensor A is
elliptic, uniformly with respect to its argument, the estimates (5.14) and
(5.16) imply

(5.17) [|0un || Lo 0,122 < C(M)
(5.18) I1D@un)|r20,1y:220p0)0 < C(M)
(5.19) HD(UN)‘|L°°(O,TN;L2(QS))9 < C(M)

where M is the cut-off constant in the definition of ¢, see (5.12).
Next let us differentiate (5.7) with respect to t. It yields for all k =

(5.20) /QatttuN(t)ozk dr +2 A D(0nun)(t) : D(ag) dx +
f

dK

| @D s D) (G = FE) (s =

at<81, 82, Sg)Oék dS
'

We now test equation (5.20) by dyun and get

1d

521) 14 / Oyt (1) 2z + 2 / D (@run)(8)2dz +

/Q A(F(E)D(Byun)(t) : D(Ouuy)dz +
dA

(F(E)D(un)(t) : D(attUN)(% * F(&))) (t)dx

q, dF dt

= at(Sl,SQ,Sg)attuN(t) ds
s

In (5.21) it is necessary to transform several terms:

(5.22) /Q ACYD(Oyun) : D(@yun)dz =

| AOD@ry) : D@y -

5 [, GO0 Do) 0) (G 0 Pl )
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(5.23) /Q fl‘]‘l__(.)p(u]v) . D(Opun) (% o F(EN)) (t)da =

% 5 Z}‘l__(.)p(w) : D(&tuN)(% wt F(EV)) (t)da —
_ /Q ﬁ(.)p(atu]v) : D(atuN)(% wt FEV)) (t)dz -
- [ R - D@ (5w P 01 -
- j;f‘;(.)p(w) : D(@tuN)(% w0 FE)2(1)de

d
(5.24) / 081,82, 83)Duux (1) dS = - [ 0.(81,,83)dhun (1) dS
FQ F2

- att (817 827 S3)atUN (t) ds
1)

The terms involving lower derivatives in time are estimated as follows:

| G OD@n6): DO )0 (G 0 FIE) (0o
dA
P

<

¢ (1 + lle 1 2o (0.7 x 2D (eun ) D17 2 g, 0

[,o© (R)Q

2
/Qs jﬁ()D(UN) : D(atUN)(% x F(E)))(t)dz| <

dA
dF

C (1 + 1| o (0,1 ) x 20 )P (W ) (8) ] £2 (02,9 | D (Brun ) (£) || 22 (62,0

Lo (R)Q

<

2
/Q %(-)D(um : D(c‘%w)(% i F(EN))*(t)da

@
dF?

C (1 + [1E0 | £oe (0,7 x 0 1P (un ) () £2 (000 y0 || D (Opun) (8)] | 22 (0,0

[ (]R)Q

‘ 8tt (Sla 527 83)(t)8tuN(t) dS| S

s
110kt (S1, S2, S3) (1) || L2 (10)3 10sun ()| L2(ry)s <
1106t (S1, S, S3) (E) || L2 (109)3 1 D (Orun ) ()| L2 (02)
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It remains now to calculate and estimate Oyun at t = 0. Thus let us evaluate
equation (5.7) at ¢ = 0.

/ Opun (0)agdr + 2 D(0yun(0)) : D(ay) dx +
Q or

[ AF@ D) Do) = [ (S1.528)0)ads
Qs I'a

Taking into accout the initial conditions (5.8) and the assumption (S, S2,S3)(0) =
0, we have that dyun(0) = 0.

Now integrating with respect to time in (5.21), using the regularity as-
sumptions from Section 4.1 on A and (81,82, S3) as well as the estimates
above, we obtain

1 t
/\attuN(t)|2dx+2// |D(dyuy)|*drdr +
2 Ja 0 Jo;

1

2/ A(F(@EN)D(9yun)(t) : D(Oyuy)(t)dz <

S

t
C(M)/O 1D(Beun) |20, y0dT + C(M)||D@run) (B)l]12(0,)0 +

t
c1) (D@ Oy + [ D@ e, ) +
11(S1, 82, 83) (D)1 120, 1:12 (108

In order to estimate HD(@tuN)HQLQ(Qf)g, we proceed like in (5.16) and, since
D(0yun)(0) = 0, we obtain:

(5.25) HD(atUN)(t)HH(Qf)f’ < \/ﬂ’D(attUNﬂ\L2(0,TN;L2(Qf))9

Thus, Gronwall’s inequality implies the following estimates:

(5.26) [Owun||Loc0,ry:z2))p < C(M)
(5.27) ID@wun)llz201y22(0p0 < C(M)
(5.28) [D(Ovun) || Lo 0, 7x:22(00))0 < C(M)

Next, we test (5.9) by ¢ and obtain

(5.29)

1d
sii | Oy + [ DUV OPdr = [ gr(el H)eda
Qs Qs Q.
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Finally, we use é) = ¢} —cop(1 —21) as a test function for (5.10). It yields

L d 1 AN (412 1 AN ran 12
th/Q(XQf + ?XQSMCQ (1) dac—i—DQ/Q(XQf + ?XQSHVCQ (t)2dx —
_ 8tuNé§VVé§de+/ Bruy - ered el ds =

Qf FQI"‘IQf

. 1 .
/{92(02)Xﬂf + g3(c1, c2)x, }é da — / (xe; + gox0.)0can (1 — x1)ey da
Q Q
1 )
Dy [ (o, + X0 Viean (1~ 00)) Ve da
Q

+ 3tuN(02D(1 - xl))VééVda: — / B 8tuN . 61(02D(1 - :cl))éévdS
Qf FgﬂQf

Now we have to estimate several terms. First, since dyuy is bounded in
L>(0,Tn; L5(Qf)) we can conclude, using a Gagliardo-Nirenberg-type in-
equality, see e. g. inequality (2.9) on pag. 62 in [14], and Young’s inequality,
that

(5.30) | / t Orun e Vel dedr| <
0o Joy
10cun |l (0,525 1162 22007323 @) IV N 2032202, )) <
CODIVE 0.1 185 1 0y,
6Hvéév||L2((0’TN)><Qf) + C(M, 5)\|6§V||L2((0,TN)fo)

To estimate the next term we have to use the embedding of H 1(Qy) into the
space of traces L*(I's N Qy)), see [14], Theorem 2.1, Chapter 2, to obtain

t
(5.31) \// dpun - e1éy ¢ dSdr| <
FQQQJC
/0 \|5tuN|’L4(r2rwﬁf)\|é§v|’%s/S(Fme)dTS

~N |12
HatuNHLOO(O,TN;Hl(Qf))/O ife HLs/S(erQf)dT

Using now the interpolation inequality for L%? between L? and L*, and the
trace estimate (2.21) from [14] pag. 69, we calculate

~N AN 11/2 1/2

16 s ranceyy < 1168 N otrynm, 168 1 ety <
~N1/4 ~N(13/4

Cliey oo, 185 50
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Now using Young’s inequality with p =4,q = % we obtain

~ 1/2 3/2
532 [ 18 Basranndr < © [ 131550 18 133, yir
<5 /0 1Y 1By, dr + ) /0 A

t t
<3 [ IVl + CO) [ 165 o

Inserting now (5.32) in (5.31) we have estimated the boundary term as
follows

t
(5.33)] / / Oruy - eréy ¢ dSdr| <
0 Fzﬂﬂf

t t
C(M) <5/0 |Vé§V|yiQ(Qf)3dT+O(5)/O IIééVI%z<Qf)dT>

To estimate the remaining terms, we use Hélder inequality and the assump-
tions on the data, to obtain

t
1 A
(5.31) [ [ 0y + gerandieant o) daar| <
0 JQ

Cll0vcanl 20,0 x 18 | z2((0,0 %)

(5.35) |/ / xay + xa) V(e (l - 21)) Vel dedr| <

Clleap(1 — xl)HLQ 0.0 @)1V | £2((0.0)x)

Then using again the boundedness of dyuy in L>(0, Ty; L8(Q2y)) we have

¢
(5.36)|/ dyun (cap(1 — x1))Véd dedr| <
0 Joy
Cllean(1 = 21)|| 220,611 @) 10N | oo 0,505 2,y VER L2 (0,0 %923
The last boundary term can be estimated by the same techniques as for
(5.33), and thus
t
(5.37) / / uun - ex(ean(1 — 21))e dSdr| <
Fgﬂﬁf
t - t
(M) (6 | 19— a0l pir +0) [ ||%2mf>df>
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Collecting now the estimates (5.29)-(5.37), we obtain

1 9 1 1 AN 12
639 5 [ @l [ o+ e 0P

C’o// Ve ()] da:dT—l—Co/ /|V (t)|Pdzdr <
// (t)|2dzdr + C.

Now, using Gronwalls lemma, we finally obtain for the concentrations the
estimates

(5:39) e[| o.yiL2(00)) < CM), IV | 2(0,my)x020) < C(M)
(540) [ ||z (0.mwiz2() < C(M),  |IVed || 20,1y x) < C(M)

Since we succeeded to prove apriori estimates with constants independent
of Ty, there exists a time 7' > 0 such that the solution {uy,cd,c)} to the
problem (5.7)-(5.11) is defined on (0,7), for all N € N.

3. Step: Compactness estimates for the discretized cut-off prob-
lem In order to establish strong compactness of the concentrations we try
to prove an estimate of the type

T—h
1
/ / LNt 4+ o) — Y (8, 2) Pdwdt < C, B> 0.
0 ah
Clearly, it is enough to obtain the result for the sequence {c'}. The corre-
sponding estimate for {c'} is analogous.
In the analogy with the literature, we integrate equation (5.10) with

respect to time between ¢ and ¢ + h and test with & = ¢ (t + h) — ' (¢).
We obtain the following inequality

T—h
G [ [ fan, + g e (0 dedt <

Al
/0 o /Q f /t T o () (r)dr
.

t+h
/ / (92()xe, + gs(e . )xa, }dr

t+h
vy (r)dr||VeY (t)|dzdt +
t

Vel ()| dxdt +

t+h
/ Orun (1) - ercd (7)dr| | (t)|dadt +

ENC )dxdt}

.
.
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Obviously, it is enough to estimate the transport term, all other terms are
much easier to handle. In the following calculations we use several times
Holders inequality and the apriori estimates for uy and c?v.

T—h t+h
(5.42% / / Orun (1)e (7)dr| |VEY () |dwdt <
0 Qf t

/OT—h </Qf /tt+haTuN(T)c§V( ) (/ ve) ]2dx> dt <
C/OT—h </th/t+h|3ru1v(7')02 (1)] de:U) ||E2 (t)HHl(Qf) dt <
c(/omua Olfnary) (/T h/ﬂf /Hh Drun () (7 >|>i

1
2

[ ( [ <r>\6> E ( /. |aTUN<T>|3) et

1

1
) T—h pt+h AT 2
Ch2|[Ovun|| Lo 0,1;L3(05)) / / /|02 (7)] <
0 t Qf

1 1
C(M)h2 h=||ey || 20,0500,y < C(M) h

Therefore we conclude that the following estimates hold true

T—h CN t+h7 _CN(ta‘)”2

(5.43) / ez ¢ ) - 2 L@ gt < o)
0
T (e (¢4 b)Y — (8|2

(5.44) / et ¢ i - ! L) gy < o(M)
0

4. Step: Convergence of the approximates for the cut-off prob-
lem Now we are able to formulate the compactness properties for the se-
quence (uy,cd, ).

Proposition 2 There exist (u,cy,c2), with

u € W2°(0,T; L*(Q)) N Wh>(0,T; H'(Q)) N H*(0,T; H())
c1 € L(0,T5 LA(9)) N L2(0,T; HY(Q4)) N Wy /2((0,T) x ),
¢z € L(0,T5 LA(9)) N L2(0,T; HY(Q)) N Wy 2((0,T) x Q)
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and a subsequence, denoted again (up, c{v, cév), such that

dun — O weak® in  L=(0,T; HY(Q))
Ouny — O strongly in - C([0,T]; LY(Q)), ¢ <6
Oyuny — Opu weak™ in  L*(0,T; LQ(Q))
Oguny — Opu weakly in Lz((O, T) x §y)
Y — ¢ weakly in  L*(0,T; H(Qs))
Y — ¢ weak* in  L™(0,T; L*(Qy))
N — ¢ strongly in L*((0,T) x Q)
=~ ¢y weakly in  L*(0,T; H*(2))
= ey weak in  L(0,T; L*(Q))

ey — ¢y strongly in  L*((0,T) x Q)

Proof: The apriori estimates (5.17) - (5.19), (5.26) - (5.28), (5.39) - (5.40),
(5.43) - (5.44) together with compactness results from classical parabolic
theory (see e.g. [14]) imply the above weak and strong compactness prop-
erties of the sequence (uy,cl, clY).

5. Step: Passing to the limit in the discretized cut-off problem
The convergence properties from Proposition 2 allow us any easy passing
to the limit in the approximate problem. Therefore any limit functions
(u,c1, c2) satisfy for a. e. t € (0,7") the problem

(5.45) Q?;tg(t)godx—FQ 5 D(g::(t)) . D(p)dz +

| AFE)D@N) D) = [ (5152 8)0ds.
forallp e V={pe H(Q)?3 V-¢=01in Qf, =0 on I's}, and
(5.46) V- (8pu) =0, in (0,7) x
(5.47) u(z,0) =0, ?,;:(x, 0) =0, in O
(5.48) u(t,z) =0 in (0,7) x T3
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(5.49) <8actl(t),1/)> +/QS Di(e2)Ver () Vi de = /QS g1(c1,c2)Grpde,
550 ({xn + 10 520.0) + [ Dale, + foxn}Veal) Ve do

K
ou ou
—(t)c tde:—/ —
| Gieova=— [

(t) - erca(t)CdS
+/{92(62)X9f + g3(c1, c2)xa, }(d,
Q

for all 1 € HY(Qg) and ¢ € W = {¢ € H(Q), ( =0o0onT;}, and

(5.51) c1(0) =c1p in Qg c2(0) =c9o in Q

(5.52) cal(o,r)xT, = 2D
where the cut-off function ¢; is defined by

¢, = inf{sup{c1,0}, M} + sup{inf{c;,0}, —M}.

In order to conclude the proof of Theorem 1, we now show that a solution
to the cut-off problem (5.45)-(5.52) is also a solution to our original problem
(5.1)-(5.6). For this we find lower and upper bounds for the concentrations
c1, co which depend only on the bounds for the data but not on the cut-off

constant M.
6. Step: Non-negativity of concentrations

Thus let us first prove that c;,ca > 0. We test equation (5.49) by ¢, =
inf{c1, 0}, equation (5.50) by ¢, = inf{cs,0}, and add the obtained equali-

ties. We get, with kg = min{1,1/K}

1 B k B t 3 t 3
3 [l [P [ [ Dieorver Pk [ [ 9eP
2 Ja, 2 Ja 0 Ja, 0 Jo
t t
< ]/ / 8tuV02_02_]+|/ / O - ercy (t)ey dS| +
0 Qs 0 FQﬂQf

t
/ / (T a1(e] e2) + 5 ga(er, ) xa + & 925 )xa, dedr
0 0

The first two terms on the right hand side can be estimated analogously to
the similar terms in (5.30) and (5.31) respectively. To estimate the last term
on the right hand side we use the assumption (4.29) and (4.30) on g1, g2 and
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g3. We obtain

1 t 3 t 3
i m? /m? | [ preorwvepvrn: [ [ ve
Qs 0 JQ
0 Qs 0 Q

Next, we apply Gronwalls inequality to get
¢ =c5g =0

7. Step: Uniform upper bounds for the concentrations
In the last step of our proof we will construct upper bounds for the concen-
trations cp, co. Let us start with the bound for ¢; and test equation (5.49)
with the function

U(t,x) = e My (¢, 7)
where 11 € L?((0,T), H'(s)) and 11(0,z) = 0. We obtain
dycre” My da + Di(co)e MV e Viprda :/ g1(c1, ea)e™ M da
Qs Qs s

Now we want to set
(5.53) o = (e Mte; — M), = sup{e Mle; — My, 0}, a.e. on[0,7] x Q.

Therefore we write the term containing the time derivative as follows

/ 8tclefAltw1d1’ = / 8t(67A1t01 - M1)¢1d$ + / AleiAltclwld.%'
Qs Qs Qs

Now taking 17 as in (5.53), we obtain

1d
2 dt

S/ gi(cr,ea)e” Mt (e~ Moy — My, da
Qs

(5.54) - / [(e=Mte; — M), | da —|—/ Are=Mtey(em Mty — M) 1 dx

Now due to the structural condition (4.31) on g;, we can estimate the right
hand side in the above inequality by

(5.55) / gi(cr, ea)e Mt (e Atte; — M) pda <

s

g/ AlclefAlt(efAltcl — M) 4dx
Qs
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Then from (5.54) and (5.55) we obtain after integration with respect to time

[l e~ ). Py de < 0

This implies
c1 < Mpet ae. on [0,T] x Q.

Due to the transport term in the equation for cs, we have to use a
different technique to prove the upper bound for ¢o. Thus, let us write the
equation for c¢s in the form

adeca +vxa,Vea =V - (aDaVea) + f in Qx(0,7)
[UCQXQf —aDsVer]-v=0 on I'" x (0,
CoXq; = C2XQ, on I' x (0,

(5.56)

(5.57)

(5.58)

(5.59) Co = Cap on 'y x (0,T
(5.60) Vey-e1 =0 on I'y x (0,7)
(5.61) 0,7
(5.62)

5.61 (vczng —aDyVes) v =0 on I's x (0,7)
5.62 CQ(O) = C20 in €
where
1 inQ in Q
(5.63) a=3, 7 and = golea) I &y
% in € g3(c1,c2) in Qg

and [veaxq P aDsVes] - v represents the jump in the normal flux. For this
problem, we have that the coefficient @ is bounded in L () and strictly
positive. From the properties of u we get

v = O € WH(0,T; L*()) N L=(0,T; HY(Qy)) N HY(0,T; H*())
and thus
v e L>®(0,T; L%(Qy)).

The reaction term satisfies f € L>(0,7T; L°(Q)) due to the conditions (4.27)
- (4.28). These regularity properties imply that the conditions (7.1)-(7.2),
form ([14], page 181) are satisfied with y; = %, r = +00, ¢ = 3. Thus, anal-
ogously to Theorem 7.1 in the same reference, we can proof the boundedness

of the solution cs, i.e. there exists Cy > 0, such that

sup|ea(z,t)] < Cy, a.e. on x [0,7].
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6 Regularity of weak solutions

In this section, we prove that assuming higher time regularity for the data
of the fluid/structure problem, we can prove more time regularity for the
displacements. Using this result, we then show higher regularity for the
concentrations ¢; and co in time and space. Thus, let us first prove the
following theorem.

Theorem 3 Let A € (W3*®(R))?, (S1,8,83) € H3(0,T;L*(T'2))3 and
(S1,82,83)(0) = 04(S1,S2,83)(0) = 0. Then, we have

(6.1) Owul| o002 < C
(6.2) [D(Owew)|| 2075220050 < C
(6.3) [[D(0u)l| oo 0,200 < C

Proof: In order to simplify the notation, we denote the partial derivative
of order j with respect time by 8/. Let us start by differentiating equation
(5.20) with respect to t. It yields

(6.4) /Q Ofux(tloxde +2 | D(@un)(®): Do) da +
)

dA dF
2 . il
0. AD(Ofun)(t) : D(ag)dx + 2 o, dF di

d?A (dF\? dAdF
SO(E) +25 24D : D =
/QS {dﬂ ( dt ) TaF } (uw)(t) : Dlow)de

0%(S1,Ss, S3) ey, dS
s

D(0un)(t) : D(ag)dx +

We now test equation (6.4) by dux and get

1d

(6.5) 2dt/g|a§uN(t)|2da:+2/Q |D(Oun)(t)|dz +
f

/ AD(d?uy)(t) : D(DPuy)(t)dx +

S

dA dF
2 — =D - D(&3
/Qs a7 ar POun)(t) : D(O7un)(t)de +

2 2 2
/Q {j;‘(cg) +jj‘__‘ﬁltf}D<uN><t>:D<a§um<t>dx=

/ 0%(S1, S, S3)Pun (t) dS
'y
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In (6.10) it is necessary to transform serveral terms:
(6.6) /Q AD(d%uy) : D(9}uy)dz =ou / AD(9?uy) : D(d*uy)dx

1 [ dAdF ., .
—2/9 e D(@ux) : D(Gfux)da

dA dF .
(6.7) /Q ﬁED(atuN) : D(Puy)dx =

d [ dAdF )
7 0. EED(@UN) : D(0yun)dx
dA dF
—/Q ﬁED(afuN) : D(0}uy)da
B?A (dF\? dAdPF
d?A (dFN\? dAdEF
d d’A d}" dA d*F
d’A (dF dA d*F
o {d}“2 (d) dF dt? }D(at“N) - D(0Fux)da
P4 (dF\ | PAAF EF | dALF
Q dF3 \ dt d]—"2 dt dt? dF dt3
X D(UN (8t2uN
2 3 d 2 2
(6.9) Ot (Sl,SQ,Sg)at (3 dS = % Ot (Sl,SQ,Sg)at (3 dsS
T'o Iy

2(S1, Sz, S3)d%up dS
Iy

As before, (S, S2,83)(0) = 0,(S1,S2,S3)(0) = 0 implies dPuy = 0. Thus,
integrating (6.10) with respect to time and using the regularity of the coef-
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ficients as well as the boundedness of ¢; in L*(£25), we obtain:

1d
(6.10) 2dt/ﬂ|8fuN(t)\2dac+2/ﬂ ID(Fun) (8)de +
f

% AD(OPun)(t) : D(OFuy)(t)dx
Qg

< 0 [ 1R, i +
C||ID(Byun) ()| z2()0 [1D(OFun) (8)]| 2(0,)0 +
C/Ot 1D (8run ) (7)] 20,9 | 1D (07 un ) ()] | 1200 )0 +
C||ID(un) ()| z2(0,)0 [1D(OFun) (8)]| 2(02,)0 +

t
c /0 1D (un) (7| 2 60, y9 | D (02 ) () |2y +

t
¢ (I @la + [ 10O, 0) +
11(S1, 82, S3) ()| Fr3 0, 7:12 (108

In order to estimate HD(@?UN)H%Q(QHQ, we proceed like in (5.16) and, since
D(9}un)(0) = 0, we obtain:

(6.11) D@7 un) ()l 20,00 < VEHID@Fun)l| z2(0,15:22(2)))0

Thus, using the estimates (5.17)- (5.19) and (5.26)-(5.28) from Step 2 in the
proof of Theorem 1, Gronwall’s inequality leads to:

(6.12) 107 un |02 < €
(6.13) I1D@Fum)lzz01y;2200 < C
(6.14) HD@?UN”|L°°(0,TN;L2(QS))9 = C

Finally, after passing to the limit for N — 0, we obtain the assertion of the
theorem.

Let us now show more regularity for the concentrations ci, co. First, by
direct generalization of the proof of Theorem 10.1 in ([14], page 204-206),
we have:

LEMMA 4 Let cop € Cﬁ’g(l“l X [O,T]) and cog € Hﬁ(Q), CQO‘[‘I = CQD‘t:O,
for some B> 0. Then every weak solution cy to the problem (5.56) — (5.62),
constructed in Theorem 1, is Hélder-continuous on € x [0,T].
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Next, we note that the problem (5.56) — (5.62) is a transmission problem.
Using the classical results on difraction problems from ([14], page 224-232),
we obtain higher regularity for cp in 2y and €, separately.

LEMMA 5 Let cog and cop satisfy the assumptions from section 4.1. Then,
we have ¢y € C’QJFB’Hg(Qf x [0,T]) and cg € CQJ“B’Hg(QS x [0,T7).

Additionally to this interior regularity results, we now prove a global
higher integrability for the derivatives.

Theorem 6 Let cop € H*(Q) and cop € H?(T'y x (0,T)). Then, for any
weak solution ca of the problem (5.56)—(5.62), we have Veg € L(0,T; L?(12)),
Acy € L*(0,T; L3 (925 U Q) and dyep € L2((0,T) x ).

Proof: We multiply equation (5.56) in €, by D2Acy and in 2y by
V - (D3Vea — veg), and integrate with respect to . We obtain

(6.15) D?/ Orca A _ D3 |A |2—D/ A
. K Jo, tC2LC2 K Jo, G2 = L2 893 2
(6.16) 0rcaV - (DaVeg — veg) —/ |V - (D2 Vg — veg) 2
Qy Qy

= / QQV . (DQVCQ — ’UCQ)
Qp

In (6.15), (6.16) we integrate by parts in the terms containing the time
derivative and add the two equations to get

D D?
(6.17) —K,Q/ O%chVcQ - 8tVCQ(.D2VC2 — UCQ) - 1{2/ |ACQ|2
Qs Qs

Qy

D
- IV - (DyVey — ve) |2 + =2 OrcaVeg - n
K
Q IOl

+ Orca(DaVeg —vea) - n
09

= Dz/ 93A62+D2/ g2Aca —/ govVe
s Qy Q
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Here, we denote by n the outer unit normal to the underlying domain. Now,
by straightforward calculations we obtain

2

D D
(6.18) ?2 0:VcaVeg + Doy / 0:VeaVeg + ?2 ‘A02|2
Qs Q; Q,

D
+D§/ |Aca|? = K2/ OrcaVeg - n+ Orca(DaVea —vea) - n
Qy Qs a0

+ 0yVegves + 2Dy AcovVey — DQ/ g3Aco

_DQ/ ngCQ—I—/ g2vaQ—/ 'UQIV@]Q
Qf Qf Qy

Using the equation for cz on €2¢, the term on the right hand side containing
0:V o has to be transformed as follows

(6.19) OVegvey = — Vegveg — Vo 0rvey
Qy dt Qy Qy
- Veau(DaAcs + go — vVes)
Qy
Insearting (6.19) into (6.18), we obtain
6.20) —— — D —= D A
( )th/Q{KXQSJr 2X9f}|V02| +/Q{KXQS+ axe; ( |Ac|
D
== OcaVeg - n + Orca(DaVeg —vea) - m
K Jaq, 09,
+D2 ACQUVCQ — Dg/ g3ACQ — DQ/ QQACQ
Qf Qs Qf
d
+— Vesvey — VeaOpves

Let us now estimate the terms on the right hand side of (6.20). Using
the flux continuity at the interface I', and the boundary conditions for the
concentrations cy, co, we get

D
(6.21) -2 OrcaVeo - n + Orca(DaVeg —veg) - m =
K Jaq, 09
D,
— OeaopVes - n + 8t02D(D2V02 — UCQ) ‘n
K Joo.rr, 89,1r

— / Oicoven -
8QfﬂF2
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Since cop € H(I'1 x (0, 7)) and v € L>(0,T; H'(£2y)), we have the estimate

(6.22)

D
e / OicapVes - n + / 8,502D(DQVC2 — UCQ) ‘n
K Jaq.nr, 80Ty

< € (llaca®ll 2,00, + lle2®l 1) )

To estimate the last term on the right hand side of (6.21) we note that
by Theorem 3 we have that d,v € L>(0,T; H'(€f)). Thus, using similar
arguments as in (5.31), we have

(6.23) —/ Oicovey - M =
8QfﬁF2

—8t/ ]cQPv-n—l—/ lca?0w - n
8QfﬁF2 8QfﬂF2

s—at/ ol - 4 11060l e o1 1 e ()
99 MTs L= O S) HH (@)

In order to estimate the next term on the right hand side in (6.20), we
recall that by elliptic regularity for transmission problems, see e.g. estimate
(16.12) in ([14], pages 205-223), we have

(6.24) llea(t)l|m2(,00,) < C {llea®)l 1oy + 182Dl 20,00, + co®) |

where ¢y(t) represents the boundary conditions at 0f2, and it is an element
of L*>°(0,T"). Thus, we can estimate

(6.25) AcovVey

Qf
1 1
< [[Ac2(®)llz2@p llv@llzs@p V2|20 V2Dl 6 )

1
< CllAc2 (Ol z2@pllv@®llzs@plIVe2 ()| L2q,) *

|

1 1
h(t) = [lv®)llzs@pl Vel 2o 2Ol gy

1
ha(t) = [[o(O)l s IVe2 (DI 72q,

< |[Aco)|z2@pllvOlLs@plIVea ()]s,

=

1 1
x {ch(tm iy 1820|220, + (co(t))

To shorten the notation, we introduce the functions
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By Theorem 1, hy € L?(0,T) and hy € L*(0,T). Thus, the right hand side
n (6.25) can be estimated as

(6.26) AcouVey| < C(hi(t) + ha(t)) [[Aca(t)|]L2(a))

Qf
+ha ()] Aca(8)] [T,
< A2 ua.) + CO)A(1)

with § > 0 and h € L'(£2). Next

(6.27) ‘Dz /Q gsAes + Dy /Q 8| < 3018 |z2@ 00,
s f

where § € L?(0,T), due to the Lipschitz property of the nonlinearities go and
g3. Finally, the last term on the right hand side in (6.20) can be estimated
using similar arguments as in (5.30) and the fact that by Theorem 3, d;v €
L>(0,T; H'(2f). Thus, we have

(6.28) Verdpes| < Cllea(dllE q,

Qf

Now, for § small enough, integrating with respect to time in (6.20) and using
the estimates above, we obtain

Do
(6.29)/{KXQ +D2X9f}|V02 (t)]* + //{ X0, +D2X9f}|A02|2

§C<1+ v@anuxxﬂ—/“ wﬂm%@yn)
Qy 00 yNIo

We estimate the last two terms on the right hand side in (6.29) using similar
arguments like in (5.30) and (5.31) respectively, and obtain
Vea(t)v(t)ea(t)

/ lea(t)[v(t) - n
Qs 6QfﬁF2
< 3IVea(t)l 720,y + CO)llea®)l 720,

The first term is absorbed into the left hand side of (6.29), and the second
one can be estimated by 0(6)||02(t)]|%w(0,T;L2(Qf)). Thus, finally we can

_.I_
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conclude that

(6.30) Vey € L%°(0,T; L2(Q))
(6.31) Acy € L(0,T;L*(y)) and  Ace € L*(0,T; L*(Qs))

In the last step of the proof, we use the equations for ¢s to conclude that
(6.32) drcy € L*(0,T; L*(R)).

Thus, Theorem 6 is proved.

Now, we switch to the study of c;.

Theorem 7 Let cig € C?(Qs) and Ver-n =0 on 9. Then ¢y € Wg’l(st
(0,7)), for all g > 1.

Proof: By Lemma 4 we have that D(c2) is Holder continuous and takes val-
ues between two positive constants. The reaction term g;(cy, ¢2) is bounded
due to the Lipschitz-continuity of g;. Hence Theorem 9.1 in ([14], pages
341-342) yields ¢; € W2 (Qs x (0,T)), for all ¢ > 1, and the theorem is
proved.

By Sobolev’s embedding, see Lemma 3.3 in ([13], page 80), we obtain

Corollary 8 c¢; and Ve are Holder continuous.

7 Stability and uniqueness results

In this section, we give the stability and uniqueness of the regular so-
lutions to the problem (4.1)-(4.22). To this end, we consider solutions
(u(j),cgj),céj)), j = 1,2, corresponding to the data (Sfj),Séj),Séj)), j=1,2
for the displacements and ggj ), géj ), géj ), cgj[)),c%) and c%), j = 1,2, for the
concentrations.

Let us start with the calculations for the displacements. We introduce
ou = uM —u®. §¢; and §(S;, Sz, S3) are defined analogously. Then, du is
a solution of the following problem

9%5u déu
(7.1) Qw(t)god$—|—2 o, D(W(t)) : D(p) dx +
| A DEun) Do) = [ 8515800 ds,



for all ¢ € V, a.e. in (0,7, and

(72) V- <885:> —0, in Qf x (0,7),
(7.3)  du(z,0) =0, agt (2,0) = 0, in Q.

Theorem 9 The following estimates hold for all t € [0,T] :

(7.4) 0e0ul| oo (0,1,12 ()3 + [ D(Oedu)|[ L2 (0,4522(025))0 +

[ D(6u)]| Loo (0,622 (24))0

< C{16(S1, 82, S3)lmr 0,023 + 116¢tll L1 04505 (02,)) }
and
(7.5) Oedul| Loc 0,622 (02))2 + [ D(Oudu)|[L2(0,4,12(0;))0 +

1D (0:0u)|| oo (0,4;1.2 (024))

< CH{I16(S1, 82, S3)lm2(0,1:22(r))2 + 10ctll L1 (045000 (02)) } -

Proof: We test equation (7.1) by ¢ = 5; 9 §u and as in the second step of the
proof of Theorem 1, we get

2 ! 2
(7.6) /Q O,5u(t)2dz + /0 /Q D@ dedr +
A(F () D(Su)(t) : D(6u)(t)dx

Q.
< ]|<S 81,52,33)||H1(0TL2(F2))3 +

A(f(c§2>))} D®) : D(8,0u)dzdr

To estimate the last term on the right hand side, we first transform it as
follows:

(7.7) t / {A(f@”)) —A(f(c§2>))}p(u<2>) . D(80u)dzdr
0 JQs
{AFE) - AFE) | D@ ) : D(Gu(t))de
/ [AFE) ~ AFE)} DOwW?) : D(ou)dwdr
Qs

dA d]: () dA d]: () @) .
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Now, we estimate the three terms on the right hand side of (7.7) separately.

(7.8) /Q {AFE) - AFE) } D@D @) : DEu())da
< |ID(Su(®)] 2000 D) | oo 07220, ))0 ¥
X C|[IC 561||L°°(0,T;L°°(Qs))
< C[D(6u(t)|| L2y llde1ll 0,600 00)
(7.9) () A(f(c?)))}p(atu(?));D(au)dxdT
< HD 5”)"Lz(O,t;LZ(QS))Q‘|D<8tu(2))|’LQ(O,T;L2(QS))9 X
X C[|KC *¢ 6CIHL°°(O,T;L°°(QS))
< ClD(6u)l| 20,0209 €1l L1 (0,600 (04))
(D dr (@) @\. p
(7.10) {dfm )= 2l @) L D) Do)

| [ % (Fe) — ()]

><!D( )( )I!D(5U)( )|dxdr +

d}_
//‘ |(1> <2)

dt
< C|\D(5U)\|L2(0,t;L2(QS))9HD( uN)p20,7502 00 16¢1] L1 (02 (00))

(e \\D ) (1) 1D (5u) (7| +

After plugging (7.8) - (7.10) into (7.7), we obtain

Qf
/Q A(f(cg”))p(au)(t) . D(6u)(t)dz
< C {11661, 82, 80)| B o az s + el @ar=c0 )

which proves (7.4). Next, we differentiate (7.1) with respect to time. It
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yields

(7.12) /Q IR su(t)pdr + 2 A D(d25u(t)) : D(y)dx +
!

/Q AF@)D@ibu(t) s D) = | (1, 82, 83)pdS,
_/Q ;l;l_-\( <1>)C§;( (1)) D(u(t)) : D(¢)dx
- /Q {AFEE) - A(f(cﬁz)))}D(atu@)(t)) . D(p)dz

Now, we test (7.12) by 0?du and, as in the second step of the proof of
Theorem 1, we find out

t
(7.13) / 025u(t)dz + / / | D(8260) 2 dwdr +
0 Joy

/A cl D(0¢6u)(t) : D(0¢ou)(t)dx

< y|5 31,82783)|IH2(0TL2<FQ>>3 +

A(f@?’))} D(0u®) : D(O26u)dadr| +

dF dA dF
/Q {% dfr(cgn) dt(§’>—dfr(cga>)dt<c§2>>}D<u<2><t>>:D<a§5u>

Let us estimate the last two terms on the right hand side. First, proceeding
as in (7.8) - (7.10) and using the estimates from section 5 for the displace-
ments, we obtain

(7.14)

A(f(&))} D(Ow?) : D(826u)dxdr

S

{A(f(c% - A(f(c%”))} D@ (1)) : D(Dr5u(t))da

{A A(f(c§2>))} (2u®) : D(8,6u)dzdr

S

1), dA dF e
{ <”>dt(1) dF ) g )

x D<u<2><t>> : D(@r3w)| < ClID@:du(t))l 2 10erll 00 0.
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Next

(7.15) )= df‘( N ar

dA‘ d]:( (1))
. LdF'@") at
dA dF

s <2>>} D (1) : D@,5u(t)

dA dF
+ / / { (M) ( gl)) d]—“'( (2)) dt( e ))} X

« D(&u?): D (atau)‘

d?A dF  1),\° d*A dF , .\
" / / {d]—'2 ! <dt(cl )> @) <dt(cl )>

dA,  &F, ), dA d&EF, o
a7 e gz () T g g )

x D(u®?) : D(@téu)‘
< CH{ID@bu(t)| 2 () + [1D(3:0u)| 2 (0,622 (000)) } X

x[[de1 10,4000 (00))
After plugging (7.14)-(7.15) into (7.13), we get

t
(7.16) / 025u(t)dz + / / D(026u) 2 dudr +
Q 0 Ja;

A(F( ) D(0y6u)(t) : D(9y6u)(t)da

dA dF
{ o el (e <2>>} Y

xD(u<2> (1)) : D(@féu)‘ <

Qs
< C{110651,82,8) Bz 0.2y + 106 llr sz |
which proves (7.5).

Now, we continue with estimates for dc;. Using the initial-boundary-
value problem (4.12)-(4.14) for ¢;, we obtain the following problem for dc;.

(7.17) Obey — V- (Dl(cgl))V(écl)) = gl(cgl), cgl))
—g1(e?, ) + (Da(eh”) = Di(e?)) Act?
+ Vel (D;(cg”)vcg” - D’l(c§2))vc§2)) — R in Q% (0,T)

(7.18) V(dc1)-v=0 on 09 x (0,7)
(7.19) (561(0) = (5610 in Qs
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The following theorem holds.

Theorem 10 Let c%) € C?(Qy) and Vc%)-y =00nQsx(0,T), forj=1,2.
Then, there exists a > g > 0, such that

(7.20)  [lderlly2ge) < C {II0eally2rgeyt™ + erollmra,) b
for allt € (0,T).

Proof: We argue as in the proof of Theorem 7. We note that cgl) is Holder
continuous. Then, Theorem 9.1 in ([14], pages 341-342) yields

(7.21)  |lderllyar s < C {I1RlIz2gn + 0wl lm ) }
Now, it remains to estimate F. Let R = Ry + Ry + R3 + R4, where

Ry = 91(051), Cgl)) - 91(052), ng))

Ry = (Di(ef”) = Di(e?)) Acl?
Ry = VcEQ)DII(Cgl))V(;CQ
Ry = Vv (D) - Dy ()

Now, using the regularity properties from section 6, we estimate
(7.22) [[Rillzaqary < € (I10enllzean + 19eall2(or)
(7:23) || Ralliap) < CIAL llu1gplleallziogpt™
(7:24) [|Bsllzep) < CIVE M@yl V0eall pors gt
(7.25)  |[Rallz2(gp)) < ClIVE? | ngay 10call 1o VeS|l oss oot
for a > 0 and [ sufficiently big. Hence, we obtain
(126)  oerllysrgy < C{lI6erllian + 198l s gpyt®
+ I16eall Lo l1e™ + llderol i,y b
Since the straightforward energy estimate for ¢; gives

(7.27) [0c1| oo 0,6:22(04)) + IV (e[| 2 (0,602 (024))
< C{lldcall L0000t + l6c10l| L2004 } 5
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after inserting (7.27) into (7.26), we obtain
(7.28)  loeallyza(0s < C{llcr0llma,)
IV 8eall oraggpt® + 116eallioggp 1t }
Now the embedding theorem, see Lemma 3.3 in ([13], page 80), implies that
(7.29) [IVoeall prossgq) + [10e2llLioiqs) < Clldeallyyzr g

and we get (7.20).

Finally, we have to derive an estimate for dco. We note that dco is the
solution to the following problem:

03¢ + V - (VV8es + v xa, = V - (aDsV (6e2)) +6f  in Q2 x (0,7)

{ng (v(l)écg + 5@0&2)) — dD2V02:| v=0 on I'x (0,T)

deaxa, = dcaxa, on I'x (0,T)
dcg = dcop = C&) — cg:)) on T'y x (0,7)
V(decg) -1 =0 on T'y x (0,7)
(ng (vWdey + 51)052)) - &DQVCQ) v=20 on I's x (0,7)
dc2(0) = degg := c%) — cg%) in Q

where a is defined as in (5.63) and

1 2
5f = {692 = g2(c”) — gulc?)

dg3 = 93(051)7 Cgl)) — 93(0?)7 ng)) in Q,

in Qy

JFrom the estimate (7.20), it is clear that we need higher order estimates
for dca. The following theorem holds.

Theorem 11 Let cé%) c HY Q) and céj[)) € H?(I'y x (0,7)) for j = 1,2.

Then, we have the estimate

(730)  [Wocallyza gp + ezl gp, < € {100l =i
H[0e6v|[r2(0,1,11(025)) + 192Dl B2y % (0,7)) + 1020l F1(02)
18zl 2 oyt + loeroll e,y §

s
t
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Proof: The proof follows the lines of the regularity Theorem 6. We first
multiply the above equation for dcy in Qs by DaA(dcz) and in Qf by V-
(D3V (8cg) — vWdey — (51)0(2)), and integrate with respect to x. We obtain

(7.31) DQ/ Byca\(Scy) — / NG & Dg/ 5gsA(6cs)

(7.32) 9:6¢aV - (DaV (8cz) — vy — (51)0& ))
Qy

—/ IV - (DyV (be3) — vM ey — 52}0&2))|2
Qy

= 0g2V - (DaV (deg) — v ey — (50052))
Qf

In (7.31) and (7.32) we integrate by parts in the terms containing the time
derivative and add the two equations to get

(7.33) 22 / OV (562)V (6¢5) + D | 0V(3e2)V (52)
Qy
D3 D
+=2 |A(5(02)|2 + D%/ IAB(co)]? = 22 0t6caV(dc2) - n
K Q, K Jaq,

+ 0rdca(DaV (0ca) — vW ey — (51)052)) “n
0%

+ [ 9V (6ca)(vWdey + dvet?)
Qy

42Dy | A(c)(v DV (ez) + duVes?)
Qy

—Dg/ 5Q3A((502) — DQ (592A((502)
Qs Qf

+ [ 6920V (5ep) + Suves?) — / vV (8c5) + svV el 2
Qy Qy

The term on the right hand side containing 0;V(dc2) has to be transformed
as follows

(7.34) [ 9,V (5e2)(vWécy + svcl?) = dﬁ v<5cz)(u<1>5cQ+5vcg2>)
Qy

— V((Scz)(atv(l)écg + 815(51165 )) — V(écg)(v(l)&gdcg + (5v8tc§2))
Qy Qy
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Now, we use the equation for dcy to replace 9idcy in (7.34) and then insert
the result in (7.33). We obtain

(735)1;(_2 0V (0e2)V(0c2) + D | 8,V(5¢9)V(5cs)
s Qy

Q
D3 D
22 [ 186 + D3 [ 18 =72 [ odeav(den)
Qs Qf 08

+ 8y6¢a(DaV (6ey) — v WM ey — 5vc§2)) n

09
d
+— V(de)(vMdey + 5@0&2)) — V(de) (8w Méey + 8t6vc§2))
+Do A(6e2)vIV (8ea) + 2Dy A(écg)évag)
Qy Qy
—Dg/ 593A(502) — DQ 592A((502)
Qs Q;

+ 59251)ch2)—/ v(l)V(écg)évagz) —/ |5va§2)|2
Qf Qf Q

We note that in comparison to (6.18) on the right hand side of (7.35) the
following new terms appear:

(7.36) / 8t(5CQD(S’UC§2) n —|—/ 8t5626vcg2) n
8Qfﬂl—‘1 8QfﬂI‘2
d
V(écg)évcg) — V(502)8t6v0(2)

_i_i
dt Jo, Q 2

- V(écg)év&gcg ) + 2D, A((SCQ)MVC;Z) + 59251)Vc§2)
Qy Qy

—/ vV (8ey) 5va / léva@)\
0y

We estimate three of the terms in (7.36) which are more difficult. All others
can be estimated using similar techniques as before. Thus, we first transform
the second term as follows

(7.37) / 8t(5025vc§2) n = Gt/ 502(51}0(22) “n
8QfﬂF2 8Qfﬂr2

—/ 50287557)052) -n— / 5025v3tcg2) -n
8er11“2 8er11“2
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Now, using the embedding theorem for traces, see [14], and the regularity

(2)

of ¢; 7, we can estimate

< Clloca ()] @) 180 Ol ) lles? )0

/ Sea(t)u(t)cSD (t)da
aﬂf NIo

t
/ / (5628t5vc;2)
0 anﬁrz

< ClJdesll 20 1 @) 1001 2200 @) 1657 | oo

2 a
< Clidezll st @ 1801 20 a0 11657 w2 o

t 2
/ / 5025U6¢C§ )
0 8QfﬁF2

< ClJdesl| 20 1 @) 1001 2200 @) 1905 o 1t

< Clldeal| 20,6112 100 200,451 (02)

To estimate the fourth term we proceed as follows

t
/ V(6c2)dydvcs?
o Joy

5
< CHV(SCQ‘|L4(O,t;L2(Qf))‘|8tév‘|L5/4(0,t;L2(Qf))Hcg )HLoo(Qtf)
< C(n)||at(sv||i5/4(07t;L2(Qf)) + 77||V662||%4(0,t;L2(Qf))

Finally, for the sixth term in (7.36) can be estimated as follows

t
/ A(écg)évag)
o Ja,

t
S/O ||A(502)||L2(Qf)|\5U||L6(Qf)||VC§2)||L3(Qf)
< CllA(Se2)||z2 0,622 10| Lo 0,528 ()

Now, using the above estimates, the estimate which was already established
in the proof of Theorem 6, as well as the estimate (7.20), we obtain estimate
(7.39).

Now, we can state our stability result.
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Theorem 12 The initial-boundary-value problem (4.1)-(4.22) is stable with
respect to the perturbations of the data, i.e.

(7.38) 10s6ul| oo (0,6;22())2 + [P (Owdu)|[ L2 (04,12 (02))9
DO oo (0,4522(0))0 + [ D(00w) || oo (0,452 (024))
Hloerllyp2 iz + ll0c2llwp gy + [19eallyrzap)
< C{lldciollg () + l16¢20ll a1 () + l10c2n |l m2(ry x (0,1
+ 116(S1, 82, S3)| 20,7 12(19))% }

Proof: First we note that for 0 < ¢t < Ty = Tp(«), the estimate (7.20) from
the statement of Theorem 11 gives

(7.39) H502HW22,1(Q§) + H(SC?HWSJ(Q{) <C {Hat(SUHLOO(O,t;Hl(Qf))
+0wdul| 20,651 (02)) + 0c2Dl| 20y % (0.1)) + |10¢20] | F2 ()
+[dcioll g1 o)

Next, we start with the estimates (7.4)-(7.5) and plug inside the estimate

(7.20) for |[e1||pr(0,:n00(02,))- This gives us an estimate of the quantities at
the left hand side of (7.4) and (7.5) in terms of |‘5C2HW22’1(Q 1. Finally, we

replace ||5C2||W22’1(Q§) by the estimate (7.39) and obtain '
(7.40) 10udul| oo (0,222 + [[D(Owdu)|[ L2 (04,12 (02,))9
+H|D(6u)l| oo 0,452 + [P (00Ul oo (0,4522(020))0
< C {l10c10ll (o) + l16c20ll 1) + [10¢2pl |2, x (0,7
16(S1, S2, S3) 20,7522 (r2))
+ ¢ (HatéuuLoo(O,t;Hl(Qf))g + |thMHL?(o,t;Hl(Qf)w)}
Now, for 0 < t < T71 = T1(a) < Tp(a), we conclude the estimate (7.38).

Since Ty and 77 do not depend on the data, we can repeat the procedure
and arrive at ¢ = T after a finite number of steps.

Corollary 13 The initial-boundary-value problem (4.1)-(4.22) has a unique
solution (u,cy,c2), with

u € W30, T; LA(Q)) N W2°(0,T; H () 0 H3(0, T; H (),

¢ € WPNQS), and ¢y € W (Q)nWEH Q5 UQL).
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