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Abstract

A system of model equations coupling fluid flow, deformation of
solid structure and chemical reactions is formulated starting from pro-
cesses in biological tissue. The main aim of this paper is to analyse this
non-standard system, where the elasticity modules are functionals of a
concentration and the diffusion coefficients of the chemical substances
are functions of their concentrations. A new approach and new meth-
ods are required adapted to these nonlinearities and the transmission
conditions on the interface solid-fluid. Strong solutions for the initial
and boundary value problem are constructed under suitable regularity
assumptions on the data, and stability estimates of the solutions with
respect to the initial and boundary values are proved. These estimates
imply uniqueness directly.

∗This work was done when A.M. was on the sabbatical leave at IWR and Institut für
Angewandte Mathematik, Universität Heidelberg, October 1, 2005 - March 31, 2006.
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The approach of the paper can be used in more general problems
modeling reactive flow and transport and its interaction with elastic
cell structures. In a forthcoming paper the approach of this paper is
used for getting the upscaled system modeling reactive flow through
biological tissue on the macroscopic scale, starting from a system on
the cell level.

1 Introduction

In this paper we are studying model equations for processes in a porous
elastic structure of cells. Experimental research on the physiology of liv-
ing cells and tissues is providing more and more detailed information on
the nano- and micro-scale. There is an urgent demand for mathematical
modeling of reactive flow and transport and its interaction with elastic cell
structures. Here we are formulating model equations on the fine scale with
ε as scale parameter, which are already a mesoscopic and simplified descrip-
tion of the real processes occurring in the cells, the intercellular space and
in the membranes. We are including

1. Fluid flow in the extracellular space, diffusion, transport and reactions
of substances in the fluid.

2. Exchange of fluid and substances at the membranes.

3. Diffusion and transport of fluid and substances, chemical reactions in-
side the cells.

4. Changes of the structures and their mechanical properties, small de-
formation of the structures.

Due to technical reasons, let us assume that the cells are connected with
each other. The final aim is to derive a system of macroscopic equations
passing to the limit ε→ 0 and to provide methods to compute the solutions
of macroscopic equations using the information coming from processes on
the microscopic scale. However, the model equation for the considered multi-
physics problem has not been mathematically solved. Before passing to the
limit, one has to prove existence and uniqueness of the solutions for positive
ε, what is the main aim of this paper. The asymptotic analysis will be done
in an independent paper.

In formulating the model equations we start from the underlying real
problem and set up a system of partial differential equations modeling the
processes in a dimensionless form. This system is studied analytically.
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To study of the coupling between the motion of the solid structure and
fluid flow, a detailed description of the solid/fluid interfaces may lead to
a very complex mathematical and numerical problem. The nonlinearity of
the underlying fluid-structure interaction is so severe that even supposing
linearly elastic solid structure leads to important complications. To devise
a reasonable mathematical model, it is necessary to introduce simplifying
model assumptions capturing only the most important physics of the prob-
lem.

A common simplification is to suppose ”small” displacements and ”small”
deformation gradients leading to the hypothesis of linear elasticity for the
structure. Even for such coupling, the existing mathematical theory does
not give the global existence. Namely, in the paper [2], a structure being
an elastic plate was considered and existence of at least one weak solution,
as long as different parts of the solid structure do not meet, was proven.
The corresponding results for the coupling between the Navier-Stokes equa-
tions and the linear equations of elastodynamics is more recent and due to
Coutand and Shkoller in [4]. They have proven the short time existence
for arbitrary data. The same authors extended their results to quasilinear
elastodynamic structures in articles [5] and [3].

We are interested in the problem where the biophysical data imply that
all assumptions of the linear elasticity are satisfied. Moreover, with our
biophysical parameters, the solid structure displacement is very small, the
flow is slow and thus, we are allowed to linearize the conditions at the
fluid/structure interface. In fact the linearization of the fluid/structure in-
terface introduces the error of the same order as neglecting nonlinear terms
in the structure equations. We will motivate the linearization by the di-
mensional analysis in Section 3. Under similar assumptions, the interaction
of fluid with solid structures has been studied in the literature in several
papers and passing to the homogenization limit the macroscopic law known
as Biot law could be derived, see [6], [8], [9], [20].

The modeling novelty in our paper is dependence of the Young modules
on the concentration. Consequently, the cell chemistry causes the defor-
mation. The global existence is then consequence of the energy inequality,
resulting from the conservation of energy for the linear elasticity and for the
Stokes flow. Nevertheless, adding diffusion, transport and reactions of chem-
ical substances and their interaction with mechanics leads to new obstacles
requiring new ideas and methods.

There are two chemicals, which play a role in our model. A first one
is present only inside the cells and its cumulated content may change the
mechanical properties of the structure. The second chemical, present inside
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the cells and in the intercellular space, influences the diffusion of the first
chemical. These effects are quantitatively demonstrated in experiments, see
e.g. [19].

The dependence of the elasticity coefficients on the chemical substance
is nonlinear and nonlocal. We assume that the elasticity parameters depend
on a Volterra functional of the concentration of the relevant substance. This
leads to difficulties for the analysis. To overcome these obstacles we cut off
the concentration in the coefficients and first prove existence and uniqueness
for the cut-off problem. For the solutions of these problems we then prove
lower and upper bounds for the concentrations independent of the cut off.
Then, we conclude that the solution of the cut off problem is also a solution
of the original problem. However, proving L∞−estimates requires structural
conditions on the nonlinear reaction terms.

Next, we derive higher regularity of the solutions, whereby not only the
transmission conditions on the interface between solid and fluid part are
causing difficulties, but also the dependence of the elasticity moduli on the
concentration of one of the chemical and the dependence of the diffusion
coefficient of one of the chemicals on the concentration of the other. The
regularity results are crucial for proving uniqueness and more general the
dependence of solutions of the system on initial and boundary data.

This paper is organized as follows: In section 2 the model system is
formulated, including a set of system parameters and their order of magni-
tude in the experimental situation taken as a test case. However, getting
even the order of magnitude, based on good experiments, is a problem by
itself. In section 3, a dimensional analysis is performed leading after some
reductions to a dimensionless formulation of the model system. This system
represents a larger class of problems coupling fluid flow, solid structure and
chemical reaction for slow flow velocity and small deformations, which are
typical for biological tissues. The authors are not aware of mathematical
results for systems of this type. In section 4 this system is summarized and
the assumptions on the data are formulated. Using the Galerkin method,
in section 5 the existence of weak solutions with bounded concentrations
for the dimensionless problem is proved. Higher regularity of the solutions
is derived in section 5. These results are decisive for the analysis of the
linearization of the system studied in section 6, where the dependence on
the initial and boundary values is estimated yielding also uniqueness of the
solutions.

In the forthcoming paper [12] the limit ε→ 0 is analyzed, using similar
techniques, however, controlling the dependence on the scale parameter ε,
which for simplicity we did not undertake in this paper.
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Recently, biophysical and biochemical processes including cell layers or
tissue have attracted more attention of mathematical modelling and numer-
ical simulation. Here we mention as examples [1], [18], [21] dealing with
model equations formulated on the macroscopic scale. In [18] the Navier
Stokes equations for incompressible flow in a vessel coupled with advection-
diffusion equation for the solute concentration and its interactions with the
wall are treated. In [21] model equations for thrombosis describing flow,
transport and reactions in a vessel and at its walls are analyzed and simu-
lated. Flow and transport through interfaces are investigated in [1], assum-
ing a coupling through the Neumann data on the interface. A derivation
of effective transmission conditions on a membrane based on microscopic
information is presented in [16]. In general, it is appropriate to use con-
cepts which were successful for describing processes in porous media, also
for processes in cell layers and tissue, see e.g. [10].

2 Setting of the model

Let us consider the domain Ω = (0, 1)3 consisting of a tissue part formed by
elastic cells and a fluid part representing the intercellular space. Initially,
(i.e. at t = 0) the tissue part is denoted by Ωs, the fuid part by Ωf , and
the fluid-solid interface by Γ = ∂Ωf ∩ ∂Ωs. The boundary of the domain Ω
consists of three parts

∂Ω = Γ1 ∪ Γ2 ∪ Γ3

where Γ1 = {x1 = 0}×(0, 1)2, Γ2 = {x1 = 1}×(0, 1)2 and Γ3 = ∪j=2,3({xj =
0} ∪ {xj = 1}) × (0, 1)2. We suppose that the solid and fluid parts are
smooth and connected. The outer unit normal to ∂Ω is denoted by ν. On
the interface Γ, we denote by ν the outer unit normal to the fluid part Ωf .

Let [0, T ] denote a time interval, with T > 0. For simplicity of notation,
we define

(2.1) Qt := Ω× (0, t), Qs
t := Ωs × (0, t), Qf

t := Ωf × (0, t),

for all t ∈ [0, T ].
We suppose small deformations of the cells structure. It means that in

the solid part Ωs the equations of linear elasticity hold:

(2.2) ρs
∂2w

∂t2
−∇·(σ(w)) = 0 in Ωs × (0, T ),
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where w is the displacement in the solid part, D(w) is the strain tensor
defined by

(D(w))i,j =
1
2

(
∂wi

∂xj
+
∂wj

∂xi

)
, i, j = 1, 2, 3

and σ(w) is the stress tensor

(2.3) σ(w) = A(F(c1))D(w).

In the case when the cells are homogeneous and isotropic bodies, the elas-
ticity coefficients A are given with the help of Lamé’s coefficients 1 λ and µ
and the stress tensor has the form:

(2.4) σ(w) = λ(F(c1))∇ · (wI) + 2µ(F(c1))D(w)

The dependence of the elasticity coefficients A on the concentration c1 is
nonlinear and nonlocal; the coefficients change as a function of cumulated
quantity of chemical substance. To describe this dependence, we introduce
the operator F acting on the concentration, and given by

(2.5) F : L2(Ωs × [0, T ]) → L2(Ωs × [0, T ])

(2.6) F(c1)(x, t) = (K ?t F (c1))(x, t) =
∫ t

0
K(t− τ)F (c1(x, τ)) dτ,

where F ∈ C2(R) is Lipschitz, and the kernel K has the following properties

(2.7) K ∈ C3[0, T ], K(0) = K′(0) = K′′(0) = 0.

In the fluid part, we consider the Navier-Stokes system for a viscous and
incompressible fluid

ρf

(
∂v

∂t
+ (v∇)v

)
+∇p− µf∆v = 0, in Ωf (t)× (0, T )(2.8)

∇ · v = 0, in Ωf (t)× (0, T )(2.9)

where Ωf (t) is the fluid configuration at time t, Ωf (0) = Ωf , v is the fluid
velocity and p is the fluid pressure.

We note that the Lagrangian coordinates are used for the structure and
Eulerian for the fluid. Hence, Ωs is the reference domain and the interface

1Other possibility is to use Young’s modulus E and Poisson’s coefficient ν. They relate

to Lamé’s coefficients through λ =
Eν

(1 + ν)(1− 2ν)
and µ =

E

2(1 + ν)
.
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between the two media evolves with the evolution of the structure. The
kinematic interface condition is the continuity of the normal velocity and,
due to different formulations for our media, it reads

(2.10) v(x+ w(x, t), t) =
∂w

∂t
(x, t), on Γ× (0, T ).

The 3rd Newton’s law implies continuity of the contact forces. Expressing
continuity of the the contact forces at the interfaces requires introducing the
fluid Lagrangian configuration uf , defined on the initial fluid configuration
Ωf and with values in Ωf (t). It is defined through the differential equation
∂uf

∂t
= v(uf (x, t), t). Then the continuity of the the normal stresses reads

(2.11) (−pI+2µfD(v))(x+w(x, t), t) ·(∇uf )−1ν = σ(w) ·ν, on Γ×(0, T ).

In the simple situation when the solid structure is an elastic curved mem-
brane the condition can be written more explicitly (see e.g. [7]).

At the exterior boundary, for every t ∈ (0, T ), we suppose:

(−pI + 2µfD(v)) · (∇uf )−1 e1 = 0, on Γ1 ∩ Ω̄f(2.12)
A(F)D(w) · e1 = 0, on Γ1 ∩ Ω̄s(2.13)

(−pI + 2µfD(v)) · (∇uf )−1e1 = (S1,S2,S3), on Γ2 ∩ Ω̄f(2.14)
A(F)D(w) · e1 = (S1,S2,S3), on Γ2 ∩ Ω̄s(2.15)

v = 0 and w = 0, on Γ3.(2.16)

For simplicity, we suppose initial conditions equal to zero, i.e.

(2.17)


v(x, 0) = 0 in Ωf ,

w(x, 0) =
∂w

∂t
(x, 0) = 0 in Ωs.

Next, we write the equations describing the transport of chemical sub-
stances. There is a chemical diffusing only inside cells and its cumulated
content influences the elastic cells structure:

∂c1
∂t

−∇ ·
(
D1(c2)∇c1

)
= g1(c1, c2) in Ωs × (0, T )(2.18)

D1(c2)∇c1 · ν = 0 on ∂Ωs × (0, T )(2.19)
c1(0) = c10 in Ωs(2.20)
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Then, there is a second chemical, which is present in the cells and in the
intercellular space, and influencing diffusion and reactive change of the first
chemical substance.

∂c2
∂t

+ v · ∇c2 −D2∆c2 = g2(c2) in Ωf (t)× (0, T )(2.21)

∂c2
∂t

−D2∆c2 = g3(c1, c2) in Ωs × (0, T )(2.22)

(vc2 −D2∇c2)χΩf
(∇uf )−1ν = −D2∇c2χΩs · ν on Γ× (0, T )(2.23)

c2χΩf
(x+ w(x, t)) = Kc2χΩs on Γ× (0, T )(2.24)

(χΩf
+KχΩs)c2 = c2D on Γ1 × (0, T )(2.25)

∇c2χΩf
· (∇uf )−1e1 +∇c2χΩs · e1 = 0 on Γ2 × (0, T ).(2.26)

(vc2 −D2∇c2)χΩf
· (∇uf )−1ν = 0 on Γ3 × (0, T )(2.27)

D2∇c2χΩs · ν = 0 on Γ3 × (0, T )(2.28)
(χΩf

+KχΩs)c2(0) = c20 in Ω(2.29)

Concerning the transmission conditions at the interface between the cells and
the intercellular space, we remark that beside the continuity of the normal
fluxes given by (2.23), we have the jump condition (2.24) where K > 0 is
the so called calibration constant. In order to work with the usual Sobolev
spaces in the weak formulation, we redefine c2 in Ωs by setting

ĉ2 := Kc2 in Ωs × (0, T ).

Then problem (2.21) - (2.29) transforms to

∂c2
∂t

+ v · ∇c2 −D2∆c2 = g2(c2) in Ωf (t)× (0, T )(2.30)

1
K

∂ĉ2
∂t

− D2

K
∆ĉ2 = ĝ3(c1, ĉ2) in Ωs × (0, T )(2.31)

(vc2 −D2∇c2)χΩf
(∇uf )−1ν = −D2

K
∇ĉ2χΩs · ν on Γ× (0, T )(2.32)

c2χΩf
(x+ w(x, t)) = ĉ2χΩs on Γ× (0, T )(2.33)

c2χΩf
+ ĉ2χΩs = c2D on Γ1 × (0, T )(2.34)

∇c2χΩf
· (∇uf )−1e1 +∇ĉ2χΩs · e1 = 0 on Γ2 × (0, T )(2.35)

(vc2 −D2∇c2)χΩf
(∇uf )−1ν − D2

K
∇ĉ2χΩsν = 0 on Γ3 × (0, T )(2.36)

(c2χΩf
+ ĉ2χΩs)(0) = c20 in Ω(2.37)

For simplicity of notation in the following we drop the hat.
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3 Dimensional analysis

As already explained in the introduction, the system (2.2)-(2.4), (2.8)-(2.20),
(2.30)-(2.37) is very complicated and we will simplify the model, keeping
only the most important physics of the problem.

The natural way of analyzing the problem (2.2)-(2.29) is to introduce
dimensionless coordinates which are defined in terms of characteristic val-
ues of the physical parameters. A detailed analysis with respect to these
parameters will be exposed in the forthcoming paper [12], where the ho-
mogenization results strongly depend on the relationship between the non-
dimensional numbers and the typical size of the non-homogeneities. The
goal of the section is to explain why it is reasonable to drop the inertia
effects and why the fluid-solid interface could be linearized.

Typical values of characteristic parameters are: T = 20 seconds is the
characteristic flow time, characteristic domain size is L = 10−2 meters,
characteristic size of elastic moduli is Λ = 104 pascals, dynamic viscosity is
µf = 1.003 × 10−3 kg / (m sec) and densities are ρf ≈ ρs = 1000 kg/m3.
Characteristic cell size is ` = 1.5 · 10−5 meters and the cell displacement
should not be bigger than 10−6 meters. As references for these parameters
we quote [19] and personal communication by M. Weiss (BIOMS, Universität
Heidelberg). The characteristic size of the heterogeneities is then given by
ε = `/L = 1.5 10−3.

From the data we see that global Reynolds’ number is Re = V Lρf/µf =
O(ε) and the local Reynolds’ number (defined as V lρf/µf ) is of order O(ε)2.
Therefore, the inertia effets are small and we can simply neglect them.

We proceed by setting

(3.1) x∗ =
x

L
, t∗ =

t

TD
, v∗ =

v

V
, A∗ =

A

Λ
, p∗ =

p

P
, V ≈ `

T
=

L

TD
,

where TD = T/ε is the the characteristic diffusion time. Next we set
∂w∗

∂t∗
=

T

`

∂w

∂t
, but this does not give the correct information about the

size of w. To get this information, we remark that in the case of Young
moduli independent of the concentration and for negligible inertia effects at
the external boundaries, we have the energy equality

ρf

∫
Ωf (t)

|v|2 dx+ ρs

∫
Ωs

|∂w
∂t
|2 dx+

∫
Ωs

AD(w) : D(w) dx+(3.2)

2µf

∫ t

0

∫
Ωf (τ)

|∇v|2 dxdτ = 2
∫ t

0

∫
Γ
S(χΩ̄f (τ)v + χΩ̄s

∂w

∂τ
) dΓ2dτ
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Now, the right hand side in (3.2) can be further estimated. For this we make
use of the fact that the H1-norm on Ωs is equivalent to(

||w||2L2(Ωs)
+ ||D(w)||2L2(Ωs)

) 1
2

with a constant independent of ε, see [17], of the estimate

||w||2L2(Ωs)
≤
∫ t

0
||∂τw||L2(Ωs)dτ

and of w(0, x) = 0. Finally, applying Gronwall’s inequality, we obtain

||D(w)||L∞(L2) ≈
C√
Λ
A, ||∂tw||L∞(L2) ≈

C
√
ρs
A(3.3)

||v||L∞(L2) ≈
C
√
ρf
A, ||∇v||L2(L2) ≈

C
√
µf
A(3.4)

where

A =
C

√
ρfµf

∫ t

0
||S||2L2(Γ2∩Ω̄f )3dτ +(

1√
ρsΛ

+
1
ρs

)(∫ t

0
||∂tS||2L2(Γ2∩Ω̄f )3dτ

)
+ ||S||2L∞(0,T ;L2(Γ2∩Ω̄f )3)

As a consequence we find out that (a) the fluid velocity and the deformation
velocity of the structure are of the same order with respect to ε; (b) the
strain tensor of the structure is even smaller, but the fluid velocity gradient
could be of higher order with respect to the structure displacement. Thus,
for data at the exterior boundary being ”compatible” with linearization
and small Reynolds’ number, we see that terms ∇xv(x, t) · w(x, t), and the
higher order ones are negligible and it is justified to linearize the kinematic
condition (2.10) and the coefficients in the dynamic conditions (2.11).

Now, after dropping the stars, we obtain the dimensionless equations for
the fluid-structure interaction:

Sh Re
∂v

∂t
+
PL

µfV
∇p = ∆v in Ωf × (0, T )(3.5)

∇ · v = 0 in Ωf × (0, T )(3.6)

ρs`L

µfT

∂2w

∂t2
=

ΛL
µfV

div(AD(w)) in Ωs × (0, T )(3.7)

v(x, t) =
∂w

∂t
(x, t) onΓ× (0, T )(3.8)

(− PL

µfV
pI + 2D(v)) · ν =

ΛL
µfV

AD(w)) · ν on Γ× (0, T ),(3.9)
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where the product of Reynolds’ and Strouhal’s number Sh Re is equal to

L2ερf/(Tµf ). Using the above reference values, we obtain that
ΛL
µfV

is very

large. Thus, in the nondimensional equation for the flow, we will consider
a viscosity coefficient of order O(1), and in the nondimensional equation for

the structure we consider elasticity coefficients of the form Λ0 =
ΛL
µfV

.

The reference pressure P is chosen such that
PL

µfV
= O(1). Due to the

continuity of the velocities (3.8) at the fixed reference interface Γ and assum-
ing the initial displacements in the fluid to be zero, it is natural to introduce
a displacement function u : Ω× (0, T ) → R3 such that

v =
∂u

∂t
on Ωf × (0, T )(3.10)

w = u on Ωs × (0, T ).(3.11)

We note that the same equations are obtained by taking the characteris-

tic time T , instead of TD. Only difference is that Λ0 =
Λ`
µfV

, Sh Re is equal

to L2ρf/(Tµf ) and the coefficients in (3.7) change on the corresponding way.
Finally, we write the equations for the concentrations in dimensionless

form. Let DR = L2ε/T . Then we set

(3.12) c∗1 =
c1
C1
, c∗2 =

c2
C2
, D∗

j =
Dj

DR
, g∗1 =

g1

GR
1

, g∗2 =
g2

GR
2

, g∗3 =
g3

GR
3

.

After dropping the stars, we obtain

∂c1
∂t

− div
(
D1(c2)∇c1

)
=
GR

1 TD

C1
g1(c1, c2) in Ωε

s × (0, T )(3.13)

∂c2
∂t

+
∂u

∂t
· ∇c2 −D2∆c2 =

GR
2 TD

C2
g2(c2) in Ωf × (0, T )(3.14)

1
K

∂c2
∂t

− 1
K
D2∆c2 =

GR
3 TD

C2
g3(c1, c2) in Ωs × (0, T )(3.15)

Thus denoting

G1 =
GR

1 TD

C1
, G2 =

GR
2 TD

C2
, G3 =

GR
3 TD

C2

we finally can write down the full set of dimensionless equations coupling
fluid flow, deformation of the solid structure and chemical reactions.
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4 Statement of the equations and assumption on
the data

Let us first make some remarks on the function spaces we are using: For
a given smooth bounded domain G ⊂ R3, we use the usual Sobolev spaces
Wm,q(G) of functions from Lq(G) having derivatives of order m in Lq(G).
For q = 2, these spaces are denoted by Hm(G). We also use the spaces of
functions depending on space and time W 2l,l

q (G × (0, T )), l > 0, consisting
of functions having derivatives with respect to space up to order 2l and with
respect to time up to order l in Lq. For the precise definition of these spaces
see [14].

In this paper, we look for solutions (u, c1, c2), with

u ∈W 3,∞(0, T ;L2(Ω)) ∩W 2,∞(0, T ;H1(Ω)) ∩H3(0, T ;H1(Ωf )),

c1 ∈W 2,1
2 (Qs

T ), and c2 ∈W 1,1
2 (Q) ∩W 2,1

2 (Qs
T ∪ Ωf

T ),

satisfying the problem for the fluid/structure interaction:

Sh Re
∂2u

∂t2
+∇p = ∆

(
∂u

∂t

)
in Ωf × (0, T )(4.1)

∇ ·
(
∂u

∂t

)
= 0 in Ωf × (0, T )(4.2)

ρs`L

µfT

∂2u

∂t2
= Λ0∇ · (AD(u)) in Ωs × (0, T )(4.3)

uχΩf
= uχΩs onΓ× (0, T )(4.4) (

−pI + 2D
(
∂u

∂t

))
· ν = Λ0AD(u) · ν on Γ× (0, T )(4.5) (

−pI + 2D
(
∂u

∂t

))
· e1 = 0, on Γ1 ∩ Ω̄f × (0, T )(4.6)

Λ0AD(u) · e1 = 0, on Γ1 ∩ Ω̄s × (0, T )(4.7) (
−pI + 2D

(
∂u

∂t

))
· e1 = (S1,S2,S3), on Γ2 ∩ Ω̄f × (0, T )(4.8)

Λ0AD(u) · e1 = (S1,S2,S3), on Γ2 ∩ Ω̄s × (0, T )(4.9)
∂u

∂t
χΩf

+ uχΩs = 0 on Γ3 × (0, T )(4.10)

u(x, 0) = 0,
∂u

∂t
(x, 0) = 0, in Ω(4.11)
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together with the problem for the evolution of the concentrations:

∂c1
∂t

−∇ ·
(
D1(c2)∇c1

)
= G1g1(c1, c2) in Ωs × (0, T )(4.12)

D1(c2)∇c1 · ν = 0 on Ωs × (0, T )(4.13)
c1(0) = c10 in Ωs(4.14)

∂c2
∂t

+
∂u

∂t
· ∇c2 −D2∆c2 = G2g2(c2) in Ωf × (0, T )(4.15)

1
K

∂c2
∂t

− 1
K
D2∆c2 = G3g3(c1, c2) in Ωs × (0, T )(4.16) (

∂u

∂t
c2 −D2∇c2

)
χΩf

· ν = −D2

K
∇c2χΩs · ν on Γ× (0, T )(4.17)

c2χΩf
= c2χΩs on Γ× (0, T )(4.18)

c2χΩf
+ c2χΩs = c2D on Γ1 × (0, T )(4.19)

(∇c2χΩf
+∇c2χΩs) · e1 = 0 on Γ2 × (0, T )(4.20)

(
∂u

∂t
c2 −D2∇c2

)
χΩf

· ν − D2

K
∇ĉ2χΩs · ν = 0 on Γ3 × (0, T )(4.21)

(c2χΩf
+ c2χΩs)(0) = c20 in Ω.(4.22)

Before starting with the analysis of the problem (4.1)-(4.22), we give the
precise assumptions on the data.

4.1 Assumptions on the data

We assume that the components of the symmetric fourth order elasticity
tensor A belong to W 3,∞(R) as function of F , and that there exists λ0 ∈
R, λ0 > 0 such that

(4.23) λ0||M ||2 ≤ A(·)MM ≤ 1
λ0
||M ||2,

for all symmetric matrices M, a.e. on R. Further, we suppose that

(S1,S2,S3) ∈ H3(0, T ;L2(Γ2))3,(4.24)
(S1,S2,S3)(0) = ∂t(S1,S2,S3)(0) = 0.(4.25)

Concerning the reaction terms we suppose that G1 > 0, G2 > 0, G3 > 0.
We also assume that g1, g2, g3 are Lipschitz continuous with respect to their
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arguments. This implies that there exist positive constants c1, c2 and c3
such that

|g1(y, z)| ≤ c1(1 + |(y, z)|) for all (y, z) ∈ R2(4.26)
|g2(z)| ≤ c2(1 + |z|) for all z ∈ R(4.27)

|g3(y, z)| ≤ c3(1 + |(y, z)|) for all (y, z) ∈ R2(4.28)

Additionally we have to impose on g1, g2, g3 structural conditions which
guarantee positivity of the solutions and for c1 also a uniform upper bound.
A possible choice of such conditions is given in the following.

x−g1(x−, y)G1 + y−g3(x, y−)G3 ≤ C((x−)2 + (y−)2)(4.29)
y−g2(y−)G2 ≤ C(y−)2(4.30)

for all x, y ∈ R, where x− = min{x, 0}. We also require that there exist
constants A1,M1 ∈ R, A1 ≥ 0,M1 > 0, such that

(4.31) g1(x, y) ≤ A1x, for x ≥M1, y ∈ R.

For the initial and boundary concentrations we assume that

(4.32) c10 ∈ C2(Ω̄s) with ∇c10 · n = 0 on ∂Ωs, and 0 ≤ c10 ≤M1,

where M1 is the constant in the assumption (4.31). We also assume that
there exists β > 0 and M2 > 0, such that

c20 ∈ H1(Ω) ∩ Cβ(Ω̄) ∩ C2+β(Ω̄s) ∩ C2+β(Ω̄f )(4.33)

and

(4.34) c20|Γ1 = c2D|t=0, ∇c20 · n = 0 on Γ2 ∪ Γ3, and 0 ≤ c20 ≤M2.

Finally, for the boundary concentration c2D we require

c2D ∈ Cβ, β
2 (Γ1 × [0, T ]) ∩H2(Γ1 × (0, T )),(4.35)

c2D ∈ C2+β,1+β
2 ((Ω̄s ∩ Γ1)× [0, T ]) ∩ C2+β,1+β

2 ((Ω̄f ∩ Γ1)× [0, T ]),(4.36)

and

(4.37) 0 ≤ c2D ≤M2.
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5 Existence of weak solutions

We start with the analysis of the problem (4.1)-(4.22) by proving existence of
weak solutions. Since in this paper we are not interested how the constants
in the estimates depend explicitly on the coefficients, we replace

A(F(cN1 ) := Λ0A(F(cN1 ), g1 := G1g1, g2 := G2g2, g3 := G3g3.

and we set the coefficients Sh Re ,
ρs`L

µfT
to 1. For the proof of the existence

of week solutions, we will use the Galerkin method. Thus. let us write down
the variational formulation of the problem (4.1)-(4.22):

Find (u, c1, c2) with

u ∈W 2,∞(0, T ;L2(Ω)) ∩W 1,∞(0, T ;H1(Ω)) ∩H2(0, T ;H1(Ωf ))

0 ≤ c1 ≤M1e
A1t, c1 ∈ L2(0, T ;H1(Ωs)) ∩W 1,1/2

2 ((0, T )× Ωs),

0 ≤ c2 ≤ C, c2 ∈ L2(0, T ;H1(Ω)) ∩W 1,1/2
2 ((0, T )× Ω),

and c2− c2D(1−x1) ∈ {φ ∈ L2(0, T ;H1(Ω));φ = 0onΓ1}, satisfying for a.e.
t ∈ (0, T ) ∫

Ω

∂2u

∂t2
(t)ϕdx+ 2

∫
Ωf

D(
∂u

∂t
(t)) : D(ϕ) dx+(5.1) ∫

Ωs

A(F(c1))D(u(t)) : D(ϕ) =
∫

Γ2

(S1,S2,S3)ϕdS,

∇ · ∂u
∂t

= 0, in Ωf × (0, T ),(5.2)

u(x, 0) = 0,
∂u

∂t
(x, 0) = 0, in Ω,(5.3)

〈
∂c1
∂t

(t), ψ
〉

+
∫

Ωs

D1(c2)∇c1(t)∇ψ dx =
∫

Ωs

g1(c1, c2)ψdx,(5.4) 〈
{χΩf

+
1
K
χΩs}

∂c2
∂t

(t), ζ
〉

+
∫

Ω
D2{χΩf

+
1
K
χΩs}∇c2(t)∇ζ dx(5.5)

−
∫

Ωf

∂u

∂t
(t)c2(t)∇ζdx+

∫
Γ2∩Ω̄f

∂u

∂t
(t) · e1c2(t)ζdS

=
∫

Ω
{g2(c2)χΩf

+ g3(c1, c2)χΩs}ζdx,

c1(0) = c10 in Ωs, c2(0) = c20 in Ω,(5.6)
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for all ϕ ∈ V , ψ ∈ H1(Ωs), and ζ ∈ H1(Ω) with ζ = 0 on Γ1. Here 〈·, ·〉
denotes the dual pairing of H1(Ω)∗ and H1(Ω). The space V is defined as
follows:

V = {ϕ ∈ H1(Ω)3; ∇ · ϕ = 0 in Ωf , ϕ = 0 on Γ3}.

Theorem 1 Under the assumptions on the data from section 4.1 the prob-
lem (5.1)-(5.6) has at least a weak solution (u, c1, c2).

Proof: The existence proof consists of the following steps.

1. Local existence for the discretized cut-off problem

2. Global existence for the discretized cut-off problem

3. Compactness estimates for the discretized cut-off problem

4. Convergence of the approximates for the cut-off problem

5. Passing to the limit in the approximate cut-off problem

6. Non-negativity of the concentrations

7. Uniform upper bounds for the concentrations

1. Step: Local existence for the discretized cut-off problem
In a first step we construct Galerkin-approximations for our unknowns u, c1, c2.
Thus, let {αj}j∈N be a smooth basis for V, {βj}j∈N be a smooth basis for
H1(Ωs) and {γj}j∈N be a smooth basis for W = {φ ∈ H1(Ω), φ = 0 onΓ1}.
We are looking for an approximate solution in the form

uN (t) =
N∑

j=1

δj(t)αj , cN1 (t) =
N∑

j=1

ξj(t)βj , cN2 (t) =
N∑

j=1

ζj(t)γj+c2D(1−x1)

satisfying the approximate cut-off problem∫
Ω

∂2uN

∂t2
(t)αk dx+ 2

∫
Ωf

D(
∂uN

∂t
)(t) : D(αk) dx+(5.7) ∫

Ωs

A(F(c̃N1 ))D(uN (t)) : D(αk) =
∫

Γ2

(S1,S2,S3)αk dS,

for all k = 1, . . . , N , a.e. in (0, T ), and

(5.8) uN (0) = 0,
duN

dt
(0) = 0 in Ω,
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∫
Ωs

∂cN1
∂t

(t)βk dx+
∫

Ωs

D1(cN2 )∇cN1 (t)∇βk dx =(5.9)

=
∫

Ωs

g1(cN1 , c
N
2 )βkdx,∫

Ω
{χΩf

+
1
K
χΩs}

∂cN2
∂t

(t)γk dx+
∫

Ω
D2{χΩf

+
1
K
χΩs}∇cN2 (t)∇γk dx(5.10)

−
∫

Ωf

∂uN

∂t
(t)cN2 (t)∇γkdx+

∫
Γ2∩Ω̄f

∂uN

∂t
(t) · e1cN2 (t)γkdS

=
∫

Ω
{g2(c2)χΩf

+ g3(c1, c2)χΩs}γkdx,

for all k = 1, . . . , N, a.e. in (0, T ) and

(5.11) cN1 (0) = cN10 =
N∑

j=1

ξj(0)βj , cN2 (0) = cN20 =
N∑

j=1

ζj(0)γj .

We remark that we have to cut of the concentration cN1 in the coefficients
A(F(cN1 )) and the cut-off is given by

(5.12) c̃N1 = inf{sup{cN1 , 0},M}+ sup{inf{cN1 , 0},−M}.

Since g1, g2 and g3 are Lipschitz continuous, the Cauchy problem (5.7)-
(5.11) has a unique solution {uN , c

N
1 , c

N
2 − c2D(1 − x1)} ∈ C2([0, TN ];V ) ×

C1([0, TN ];H1(Ωs))× C1([0, TN ];W ), for some TN > 0.
2. Step: Global existence for the discretized cut-off problem

In this step we prove that TN = T by obtaining the corresponding apriori
estimates. Starting from here, we use for the partial derivative with respect
to time the notation ∂t.

First, we test (5.7) by ∂tuN and get

1
2
d

dt

∫
Ω
|∂tuN (t)|2dx+ 2

∫
Ωf

|D(∂tuN )(t)|2dx+(5.13) ∫
Ωs

A(F(c̃N1 ))D(uN )(t) : D(∂tuN )(t) =∫
Γ2

(S1,S2,S3)∂tuN (t)dS =
d

dt

∫
Γ2

(S1,S2,S3)uN (t)dS

−
∫

Γ2

∂t(S1,S2,S3)uN (t)dS
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Let us transform the elastic energy term:∫
Ωs

A(F(c̃N1 ))D(uN )(t) : D(∂tuN )(t)dx =

d

dt

∫
Ωs

A(K ?t F (c̃N1 ))D(uN )(t) : D(uN )(t)dx−

−
∫

Ωs

A(K ?t F (c̃N1 ))D(∂tuN )(t) : D(uN )(t)dx−

−
∫

Ωs

dA

dF
D(uN )(t) : D(uN )(t)

(dK
dt

?t F (c̃N1 )
)
(t)dx

Due to the symmetry of A we get∫
Ωs

A(F(c̃N1 ))D(uN )(t) : D(∂tuN )(t)dx =(5.14)

1
2
d

dt

∫
Ωs

A(K ?t F (c̃N1 ))D(uN )(t) : D(uN )(t)dx−

−1
2

∫
Ωs

dA

dF
D(uN )(t) : D(uN )(t)

(dK
dt

?t F (c̃N1 )
)
(t)dx

After inserting (5.14) in (5.13), integrating with respect to time and using
Korn’s inequality, the following energy inequality is obtained∫

Ω
|∂tuN (t)|2dx+

∫ t

0

∫
Ωf

|D(∂tuN )|2dxdτ +(5.15) ∫
Ωs

A(K ?t F (c̃N1 ))D(uN )(t) : D(uN )(t)dx ≤

C||dA
dF

||L∞(R)9(1 + ||c̃N1 ||L∞)
∫ t

0

∫
Ωs

A(F(c̃N1 ))D(uN ) : D(uN )dxdτ

C

(
||D(uN )(t)||L2(Ω)9 +

∫ t

0
||D(uN )||L2(Ω)9dτ

)
In order to estimate ||D(uN )(t)||L2(Ωf )9 , we remark that sinceD(uN )(0) = 0,
we have

||D(uN )(t)||L2(Ωf )9 = ||
∫ t

0
D(∂τuN )dτ ||L2(Ωf )9(5.16)

≤
∫ t

0
||D(∂τuN )||L2(Ωf )9dτ ≤

√
t||D(∂tuN )||L2(0,TN ;L2(Ωf ))9
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Now using Gronwall’s lemma and the fact that the 4th order tensor A is
elliptic, uniformly with respect to its argument, the estimates (5.14) and
(5.16) imply

||∂tuN ||L∞(0,TN ;L2(Ω))3 ≤ C(M)(5.17)
||D(∂tuN )||L2(0,TN ;L2(Ωf ))9 ≤ C(M)(5.18)
||D(uN )||L∞(0,TN ;L2(Ωs))9 ≤ C(M)(5.19)

where M is the cut-off constant in the definition of c̃N1 , see (5.12).
Next let us differentiate (5.7) with respect to t. It yields for all k =

1, . . . , N ∫
Ω
∂tttuN (t)αk dx+ 2

∫
Ωf

D(∂ttuN )(t) : D(αk) dx+(5.20) ∫
Ωs

A(F(c̃N1 ))D(∂tuN )(t) : D(αk)dx+∫
Ωs

dA

dF
(F(c̃N1 ))D(uN )(t) : D(αk)

(dK
dt

?t F (c̃N1 )
)
(t)dx =∫

Γ2

∂t(S1,S2,S3)αk dS

We now test equation (5.20) by ∂ttuN and get

1
2
d

dt

∫
Ω
|∂ttuN (t)|2dx+ 2

∫
Ωf

|D(∂ttuN )(t)|2dx+(5.21) ∫
Ωs

A(F(c̃N1 ))D(∂tuN )(t) : D(∂ttuN )dx+∫
Ωs

dA

dF
(F(c̃N1 ))D(uN )(t) : D(∂ttuN )

(dK
dt

?t F (c̃N1 )
)
(t)dx

=
∫

Γ2

∂t(S1,S2,S3)∂ttuN (t) dS

In (5.21) it is necessary to transform several terms:∫
Ωs

A(·)D(∂tuN ) : D(∂ttuN )dx =(5.22)

1
2
d

dt

∫
Ωs

A(·)D(∂tuN ) : D(∂tuN )dx−

−1
2

∫
Ωs

dA

dF
(·)D(∂tuN )(t) : D(∂tuN )(t)

(dK
dt

?t F (c̃N1 )
)
(t)dx
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∫
Ωs

dA

dF
(·)D(uN ) : D(∂ttuN )

(dK
dt

?t F (c̃N1 )
)
(t)dx =(5.23)

d

dt

∫
Ωs

dA

dF
(·)D(uN ) : D(∂tuN )

(dK
dt

?t F (c̃N1 )
)
(t)dx−

−
∫

Ωs

dA

dF
(·)D(∂tuN ) : D(∂tuN )

(dK
dt

?t F (c̃N1 )
)
(t)dx−

−
∫

Ωs

dA

dF
(·)D(uN ) : D(∂tuN )

(d2K
dt2

?t F (c̃N1 )
)
(t)dx−

−
∫

Ωs

d2A

dF2
(·)D(uN ) : D(∂tuN )

(dK
dt

?t F (c̃N1 )
)2(t)dx

∫
Γ2

∂t(S1,S2,S3)∂ttuN (t) dS =
d

dt

∫
Γ2

∂t(S1,S2,S3)∂tuN (t) dS(5.24)

−
∫

Γ2

∂tt(S1,S2,S3)∂tuN (t) dS

The terms involving lower derivatives in time are estimated as follows:∣∣∣∣∫
Ωs

dA

dF
(·)D(∂tuN )(t) : D(∂tuN )(t)

(dK
dt

?t F (c̃N1 )
)
(t)dx

∣∣∣∣ ≤
C

∣∣∣∣∣∣∣∣dAdF
∣∣∣∣∣∣∣∣

L∞(R)9
(1 + ||c̃N1 ||L∞((0,TN )×Ωs))||D(∂tuN )(t)||2L2(Ωs)9

∣∣∣∣∫
Ωs

dA

dF
(·)D(uN ) : D(∂tuN )

(d2K
dt2

?t F (c̃N1 )
)
(t)dx

∣∣∣∣ ≤
C

∣∣∣∣∣∣∣∣dAdF
∣∣∣∣∣∣∣∣

L∞(R)9
(1 + ||c̃N1 ||L∞((0,TN )×Ωs))||D(uN )(t)||L2(Ωs)9 ||D(∂tuN )(t)||L2(Ωs)9

∣∣∣∣∫
Ωs

d2A

dF2
(·)D(uN ) : D(∂tuN )

(dK
dt

?t F (c̃N1 )
)2(t)dx∣∣∣∣ ≤

C

∣∣∣∣∣∣∣∣d2A

dF2

∣∣∣∣∣∣∣∣
L∞(R)9

(1 + ||c̃N1 ||L∞((0,TN )×Ωs))||D(uN )(t)||L2(Ωs)9 ||D(∂tuN )(t)||L2(Ωs)9

|
∫

Γ2

∂tt(S1,S2,S3)(t)∂tuN (t) dS| ≤

||∂tt(S1,S2,S3)(t)||L2(Γ2)3 ||∂tuN (t)||L2(Γ2)3 ≤
||∂tt(S1,S2,S3)(t))||L2(Γ2)3 ||D(∂tuN )(t)||L2(Ω)9
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It remains now to calculate and estimate ∂ttuN at t = 0. Thus let us evaluate
equation (5.7) at t = 0.∫

Ω
∂ttuN (0)αkdx+ 2

∫
Ωf

D(∂tuN (0)) : D(αk) dx+∫
Ωs

A(F(c̃N1 ))D(uN (0)) : D(αk) =
∫

Γ2

(S1,S2,S3)(0)αk dS

Taking into accout the initial conditions (5.8) and the assumption (S1,S2,S3)(0) =
0, we have that ∂ttuN (0) = 0.

Now integrating with respect to time in (5.21), using the regularity as-
sumptions from Section 4.1 on A and (S1,S2,S3) as well as the estimates
above, we obtain

1
2

∫
Ω
|∂ttuN (t)|2dx+ 2

∫ t

0

∫
Ωf

|D(∂ttuN )|2dxdτ +

1
2

∫
Ωs

A(F(c̃N1 ))D(∂tuN )(t) : D(∂tuN )(t)dx ≤

C(M)
∫ t

0
||D(∂tuN )||2L2(Ωs)9

dτ + C(M)||D(∂tuN )(t)||L2(Ωs)9 +

C(M)
(
||D(∂tuN )(t)||2L2(Ωf )9 +

∫ t

0
||D(∂tuN )||2L2(Ωf )9

)
+

||(S1,S2,S3)(t))||2H2(0,T ;L2(Γ2))3

In order to estimate ||D(∂tuN )||2L2(Ωf )9 , we proceed like in (5.16) and, since
D(∂tuN )(0) = 0, we obtain:

(5.25) ||D(∂tuN )(t)||L2(Ωf )9 ≤
√
t||D(∂ttuN )||L2(0,TN ;L2(Ωf ))9

Thus, Gronwall’s inequality implies the following estimates:

||∂ttuN ||L∞(0,TN ;L2(Ω))3 ≤ C(M)(5.26)
||D(∂ttuN )||L2(0,TN ;L2(Ωf ))9 ≤ C(M)(5.27)
||D(∂tuN )||L∞(0,TN ;L2(Ωs))9 ≤ C(M)(5.28)

Next, we test (5.9) by cN1 and obtain
(5.29)

1
2
d

dt

∫
Ωs

|cN1 (t)|2L2(Ωs)
+
∫

Ωs

D1(cN2 )|∇cN1 (t)|2dx =
∫

Ωs

g1(cN1 , c
N
2 )cN1 dx
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Finally, we use ĉN2 = cN2 − c2D(1−x1) as a test function for (5.10). It yields

1
2
d

dt

∫
Ω
(χΩf

+
1
K
χΩs)|ĉN2 (t)|2dx+D2

∫
Ω
(χΩf

+
1
K
χΩs)|∇ĉN2 (t)|2dx−

−
∫

Ωf

∂tuN ĉ
N
2 ∇ĉN2 dx+

∫
Γ2∩Ω̄f

∂tuN · e1ĉN2 ĉN2 dS =∫
Ω
{g2(c2)χΩf

+ g3(c1, c2)χΩs}ĉN2 dx−
∫

Ω
(χΩf

+
1
K
χΩs)∂tc2D(1− x1)ĉN2 dx

−D2

∫
Ω
(χΩf

+
1
K
χΩs)∇(c2D(1− x1))∇ĉN2 dx

+
∫

Ωf

∂tuN (c2D(1− x1))∇ĉN2 dx−
∫

Γ2∩Ω̄f

∂tuN · e1(c2D(1− x1))ĉN2 dS

Now we have to estimate several terms. First, since ∂tuN is bounded in
L∞(0, TN ;L6(Ωf )) we can conclude, using a Gagliardo-Nirenberg-type in-
equality, see e. g. inequality (2.9) on pag. 62 in [14], and Young’s inequality,
that

|
∫ t

0

∫
Ωf

∂tuN ĉ
N
2 ∇ĉN2 dxdτ | ≤(5.30)

||∂tuN ||L∞(0,TN ;L6(Ωf ))||ĉN2 ||L2(0,TN ;L3(Ωf ))||∇ĉN2 ||L2(0,TN ;L2(Ωf )) ≤

C(M)||∇ĉN2 ||
3/2
L2((0,TN )×Ωf )

||ĉN2 ||
1/2
L2((0,TN )×Ωf )

≤

δ||∇ĉN2 ||2L2((0,TN )×Ωf ) + C(M, δ)||ĉN2 ||2L2((0,TN )×Ωf )

To estimate the next term we have to use the embedding of H1(Ωf ) into the
space of traces L4(Γ2 ∩ Ω̄f )), see [14], Theorem 2.1, Chapter 2, to obtain

|
∫ t

0

∫
Γ2∩Ω̄f

∂tuN · e1ĉN2 ĉN2 dSdτ | ≤(5.31) ∫ t

0
||∂tuN ||L4(Γ2∩Ω̄f )||ĉN2 ||2L8/3(Γ2∩Ω̄f )

dτ ≤

||∂tuN ||L∞(0,TN ;H1(Ωf ))

∫ t

0
||ĉN2 ||2L8/3(Γ2∩Ω̄f )

dτ

Using now the interpolation inequality for L8/3 between L2 and L4, and the
trace estimate (2.21) from [14] pag. 69, we calculate

||ĉN2 ||L8/3(Γ2∩Ω̄f ) ≤ ||ĉN2 ||
1/2

L2(Γ2∩Ω̄f )
||ĉN2 ||

1/2

L4(Γ2∩Ω̄f )
≤

C||ĉN2 ||
1/4
L2(Ωf )

||ĉN2 ||
3/4
H1(Ωf )
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Now using Young’s inequality with p = 4, q = 4
3 we obtain∫ t

0
||ĉN2 ||2L8/3(Γ2∩Ω̄f )

dτ ≤ C

∫ t

0
||ĉN2 ||

1/2
L2(Ωf )

||ĉN2 ||
3/2
H1(Ωf )

dτ(5.32)

≤ δ

∫ t

0
||ĉN2 ||2H1(Ωf )dτ + C(δ)

∫ t

0
||ĉN2 ||2L2(Ωf )dτ

≤ δ

∫ t

0
||∇ĉN2 ||2L2(Ωf )3dτ + C̄(δ)

∫ t

0
||ĉN2 ||2L2(Ωf )dτ

Inserting now (5.32) in (5.31) we have estimated the boundary term as
follows

|
∫ t

0

∫
Γ2∩Ω̄f

∂tuN · e1ĉN2 ĉN2 dSdτ | ≤(5.33)

C(M)
(
δ

∫ t

0
||∇ĉN2 ||2L2(Ωf )3dτ + C̄(δ)

∫ t

0
||ĉN2 ||2L2(Ωf )dτ

)
To estimate the remaining terms, we use Hölder inequality and the assump-
tions on the data, to obtain

|
∫ t

0

∫
Ω
(χΩf

+
1
K
χΩs)∂tc2D(1− x1)ĉN2 dxdτ | ≤(5.34)

C||∂tc2D||L2((0,t)×Ω)||ĉN2 ||L2((0,t)×Ω)

|
∫ t

0

∫
Ω
(χΩf

+
1
K
χΩs)∇(c2D(1− x1))∇ĉN2 dxdτ | ≤(5.35)

C||c2D(1− x1)||L2(0,t;H1(Ω))||∇ĉN2 ||L2((0,t)×Ω)3

Then using again the boundedness of ∂tuN in L∞(0, TN ;L6(Ωf )) we have

|
∫ t

0

∫
Ωf

∂tuN (c2D(1− x1))∇ĉN2 dxdτ | ≤(5.36)

C||c2D(1− x1)||L2(0,t;H1(Ωf ))||∂tuN ||L∞(0,t;L6(Ωf ))3 ||∇ĉN2 ||L2((0,t)×Ωf )3 ,

The last boundary term can be estimated by the same techniques as for
(5.33), and thus

|
∫ t

0

∫
Γ2∩Ω̄f

∂tuN · e1(c2D(1− x1))ĉN2 dSdτ | ≤(5.37)

C(M)
(
δ

∫ t

0
||∇(c2D(1− x1))||2L2(Ωf )3dτ + C̄(δ)

∫ t

0
||ĉN2 ||2L2(Ωf )dτ

)
23



Collecting now the estimates (5.29)-(5.37), we obtain

1
2

∫
Ωs

|c1(t)|2dx+
1
2

∫
Ω
(χΩf

+
1
K
χΩs)|ĉN2 (t)|2dx(5.38)

C0

∫ t

0

∫
Ωs

|∇cN1 (t)|2dxdτ + C0

∫ t

0

∫
Ω
|∇ĉN2 (t)|2dxdτ ≤

C(M)
∫ t

0

∫
Ω
|ĉN2 (t)|2dxdτ + C.

Now, using Gronwalls lemma, we finally obtain for the concentrations the
estimates

||cN1 ||L∞(0,TN ;L2(Ωs)) ≤ C(M), ||∇cN1 ||L2((0,TN )×Ωs) ≤ C(M)(5.39)

||cN2 ||L∞(0,TN ;L2(Ω)) ≤ C(M), ||∇cN2 ||L2((0,TN )×Ω) ≤ C(M)(5.40)

Since we succeeded to prove apriori estimates with constants independent
of TN , there exists a time T > 0 such that the solution {uN , c

N
1 , c

N
2 } to the

problem (5.7)-(5.11) is defined on (0, T ), for all N ∈ N.
3. Step: Compactness estimates for the discretized cut-off prob-

lem In order to establish strong compactness of the concentrations we try
to prove an estimate of the type∫ T−h

0

∫
Ω

1
h
|cN2 (t+ h, x)− cN2 (t, x)|2dxdt ≤ C, h > 0.

Clearly, it is enough to obtain the result for the sequence {cN2 }. The corre-
sponding estimate for {cN1 } is analogous.

In the analogy with the literature, we integrate equation (5.10) with
respect to time between t and t + h and test with c̄N2 = cN2 (t + h) − cN2 (t).
We obtain the following inequality∫ T−h

0

∫
Ω
{χΩf

+
1
K
χΩs}|c̄N2 (t)|2dxdt ≤(5.41)

C

{∫ T−h

0

∫
Ω

∣∣∣∣∫ t+h

t
∇cN2 (τ)dτ

∣∣∣∣ |∇c̄N2 (t)|dxdt +∫ T−h

0

∫
Ωf

∣∣∣∣∫ t+h

t
∂τuN (τ)cN2 (τ)dτ

∣∣∣∣ |∇c̄N2 (t)|dxdt+∫ T−h

0

∫
Γ2∩Ω̄f

∣∣∣∣∫ t+h

t
∂τuN (τ) · e1cN2 (τ)dτ

∣∣∣∣ |c̄N2 (t)|dxdt+∫ T−h

0

∫
Ω

∣∣∣∣∫ t+h

t
{g2(cN2 )χΩf

+ g3(cN1 , c
N
2 )χΩs}dτ

∣∣∣∣ |c̄N2 (t)|dxdt
}
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Obviously, it is enough to estimate the transport term, all other terms are
much easier to handle. In the following calculations we use several times
Hölders inequality and the apriori estimates for uN and c2N .∫ T−h

0

∫
Ωf

∣∣∣∣∫ t+h

t
∂τuN (τ)cN2 (τ)dτ

∣∣∣∣ |∇c̄N2 (t)|dxdt ≤(5.42)

∫ T−h

0

(∫
Ωf

∣∣∣∣∫ t+h

t
∂τuN (τ)cN2 (τ)dτ

∣∣∣∣2 dx
) 1

2 (∫
Ω
|∇c̄N2 (t)|2dx

) 1
2

dt ≤

C

∫ T−h

0

(∫
Ωf

h

∫ t+h

t
|∂τuN (τ)cN2 (τ)|2dτ dx

) 1
2

||c̄N2 (t)||H1(Ωf ) dt ≤

C

(∫ T−h

0
||c̄N2 (t)||2H1(Ωf ))

) 1
2

(∫ T−h

0

∫
Ωf

h

∫ t+h

t
|∂τuN (τ)cN2 (τ)|2

) 1
2

≤

C h
1
2

∫ T−h

0

∫ t+h

t

(∫
Ωf

|cN2 (τ)|6
) 1

3
(∫

Ωf

|∂τuN (τ)|3
) 2

3

dτdt


1
2

≤

C h
1
2 ||∂tuN ||L∞(0,T ;L3(Ωf ))

∫ T−h

0

∫ t+h

t

(∫
Ωf

|cN2 (τ)|6
) 1

3


1
2

≤

C(M)h
1
2 h

1
2 ||cN2 ||L2(0,T ;L6(Ωf )) ≤ C(M)h

Therefore we conclude that the following estimates hold true∫ T−h

0

||cN2 (t+ h, ·)− cN2 (t, ·)||2L2(Ω)

h
dt ≤ C(M)(5.43) ∫ T−h

0

||cN1 (t+ h, ·)− cN1 (t, ·)||2L2(Ωs)

h
dt ≤ C(M)(5.44)

4. Step: Convergence of the approximates for the cut-off prob-
lem Now we are able to formulate the compactness properties for the se-
quence (uN , c

N
1 , c

N
2 ).

Proposition 2 There exist (u, c1, c2), with

u ∈W 2,∞(0, T ;L2(Ω)) ∩W 1,∞(0, T ;H1(Ω)) ∩H2(0, T ;H1(Ωf ))

c1 ∈ L∞(0, T ;L2(Ωs)) ∩ L2(0, T ;H1(Ωs)) ∩W 1,1/2
2 ((0, T )× Ωs),

c2 ∈ L∞(0, T ;L2(Ωs)) ∩ L2(0, T ;H1(Ω)) ∩W 1,1/2
2 ((0, T )× Ω),
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and a subsequence, denoted again (uN , c
N
1 , c

N
2 ), such that

∂tuN ⇀ ∂tu weak? in L∞(0, T ;H1(Ω))
∂tuN → ∂tu strongly in C([0, T ];Lq(Ω)), q < 6
∂ttuN ⇀ ∂ttu weak? in L∞(0, T ;L2(Ω))
∂ttuN ⇀ ∂ttu weakly in L2((0, T )× Ωf )
cN1 ⇀ c1 weakly in L2(0, T ;H1(Ωs))
cN1 ⇀ c1 weak? in L∞(0, T ;L2(Ωs))
cN1 → c1 strongly in L2((0, T )× Ωs)
cN2 ⇀ c2 weakly in L2(0, T ;H1(Ω))
cN2 ⇀ c2 weak? in L∞(0, T ;L2(Ω))
cN2 → c2 strongly in L2((0, T )× Ω)

Proof: The apriori estimates (5.17) - (5.19), (5.26) - (5.28), (5.39) - (5.40),
(5.43) - (5.44) together with compactness results from classical parabolic
theory (see e.g. [14]) imply the above weak and strong compactness prop-
erties of the sequence (uN , c

N
1 , c

N
2 ).

5. Step: Passing to the limit in the discretized cut-off problem
The convergence properties from Proposition 2 allow us any easy passing
to the limit in the approximate problem. Therefore any limit functions
(u, c1, c2) satisfy for a. e. t ∈ (0, T ) the problem∫

Ω

∂2u

∂t2
(t)ϕdx+ 2

∫
Ωf

D(
∂u

∂t
(t)) : D(ϕ) dx+(5.45) ∫

Ωs

A(F(c̃1))D(u(t)) : D(ϕ) =
∫

Γ2

(S1,S2,S3)ϕdS,

for all ϕ ∈ V = {ϕ ∈ H1(Ω)3; ∇ · ϕ = 0 in Ωf , ϕ = 0 on Γ3}, and

∇ · (∂tu) = 0, in (0, T )× Ωf(5.46)

u(x, 0) = 0,
∂u

∂t
(x, 0) = 0, in Ω(5.47)

u(t, x) = 0 in (0, T )× Γ3(5.48)
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〈
∂c1
∂t

(t), ψ
〉

+
∫

Ωs

D1(c2)∇c1(t)∇ψ dx =
∫

Ωs

g1(c1, c2)G1ψdx,(5.49) 〈
{χΩf

+
1
K
χΩs}

∂c2
∂t

(t), ζ
〉

+
∫

Ω
D2{χΩf

+
1
K
χΩs}∇c2(t)∇ζ dx(5.50)

−
∫

Ωf

∂u

∂t
(t)c2(t)∇ζdx = −

∫
Γ2∩Ω̄f

∂u

∂t
(t) · e1c2(t)ζdS

+
∫

Ω
{g2(c2)χΩf

+ g3(c1, c2)χΩs}ζdx,

for all ψ ∈ H1(Ωs) and ζ ∈W = {ζ ∈ H1(Ω), ζ = 0 on Γ1}, and

c1(0) = c10 in Ωs, c2(0) = c20 in Ω(5.51)
c2|(0,T )×Γ1

= c2D(5.52)

where the cut-off function c̃1 is defined by

c̃1 = inf{sup{c1, 0},M}+ sup{inf{c1, 0},−M}.

In order to conclude the proof of Theorem 1, we now show that a solution
to the cut-off problem (5.45)-(5.52) is also a solution to our original problem
(5.1)-(5.6). For this we find lower and upper bounds for the concentrations
c1, c2 which depend only on the bounds for the data but not on the cut-off
constant M.

6. Step: Non-negativity of concentrations
Thus let us first prove that c1, c2 ≥ 0. We test equation (5.49) by c−1 =
inf{c1, 0}, equation (5.50) by c−2 = inf{c2, 0}, and add the obtained equali-
ties. We get, with k0 = min{1, 1/K}

1
2

∫
Ωs

|c−1 |
2 +

k0

2

∫
Ω
|c−2 |

2 +
∫ t

0

∫
Ωs

D1(c2)|∇c−1 |
2 + k0D2

∫ t

0

∫
Ω
|∇c−2 |

2

≤ |
∫ t

0

∫
Ωs

∂tu∇c−2 c
−
2 |+ |

∫ t

0

∫
Γ2∩Ω̄f

∂tu · e1c−2 (t)c−2 dS|+∫ t

0

∫
Ω
{c−1 g1(c

−
1 , c2) + c−2 g3(c1, c

−
2 )}χΩs + c−2 g2(c

−
2 )χΩf

dxdτ

The first two terms on the right hand side can be estimated analogously to
the similar terms in (5.30) and (5.31) respectively. To estimate the last term
on the right hand side we use the assumption (4.29) and (4.30) on g1, g2 and
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g3. We obtain

1
2

∫
Ωs

|c−1 |
2 +

k0

2

∫
Ω
|c−2 |

2 +
∫ t

0

∫
Ωs

D1(c2)|∇c−1 |
2 + k0D2

∫ t

0

∫
Ω
|∇c−2 |

2

≤ C

(∫ T

0

∫
Ωs

|c−1 |
2 +

∫ T

0

∫
Ω
|c−2 |

2

)
Next, we apply Gronwalls inequality to get

c−1 = c−2 = 0

7. Step: Uniform upper bounds for the concentrations
In the last step of our proof we will construct upper bounds for the concen-
trations c1, c2. Let us start with the bound for c1 and test equation (5.49)
with the function

ψ(t, x) = e−A1tψ1(t, x)

where ψ1 ∈ L2((0, T ),H1(Ωs)) and ψ1(0, x) = 0. We obtain∫
Ωs

∂tc1e
−A1tψ1dx+

∫
Ωs

D1(c2)e−A1t∇c1∇ψ1dx =
∫

Ωs

g1(c1, c2)e−A1tψ1dx

Now we want to set

(5.53) ψ1 = (e−A1tc1 −M1)+ = sup{e−A1tc1 −M1, 0}, a.e. on [0, T ]× Ωs.

Therefore we write the term containing the time derivative as follows∫
Ωs

∂tc1e
−A1tψ1dx =

∫
Ωs

∂t(e−A1tc1 −M1)ψ1dx+
∫

Ωs

A1e
−A1tc1ψ1dx

Now taking ψ1 as in (5.53), we obtain

1
2
d

dt

∫
Ωs

|(e−A1tc1 −M1)+|2 dx+
∫

Ωs

A1e
−A1tc1(e−A1tc1 −M1)+dx(5.54)

≤
∫

Ωs

g1(c1, c2)e−A1t(e−A1tc1 −M1)+dx

Now due to the structural condition (4.31) on g1, we can estimate the right
hand side in the above inequality by∫

Ωs

g1(c1, c2)e−A1t(e−A1tc1 −M1)+dx ≤(5.55)

≤
∫

Ωs

A1c1e
−A1t(e−A1tc1 −M1)+dx
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Then from (5.54) and (5.55) we obtain after integration with respect to time∫
Ωs

|(e−A1tc1 −M1)+|2(t) dx ≤ 0

This implies
c1 ≤M1e

A1t a.e. on [0, T ]× Ωs.

Due to the transport term in the equation for c2, we have to use a
different technique to prove the upper bound for c2. Thus, let us write the
equation for c2 in the form

â∂tc2 + vχΩf
∇c2 = ∇ · (âD2∇c2) + f in Ω× (0, T )(5.56)

[vc2χΩf
− âD2∇c2] · ν = 0 on Γ× (0, T )(5.57)

c2χΩf
= c2χΩs on Γ× (0, T )(5.58)

c2 = c2D on Γ1 × (0, T )(5.59)
∇c2 · e1 = 0 on Γ2 × (0, T )(5.60)

(vc2χΩf
− âD2∇c2) · ν = 0 on Γ3 × (0, T )(5.61)

c2(0) = c20 in Ω(5.62)

where

(5.63) â =

{
1 in Ωf

1
K in Ωs

and f =

{
g2(c2) in Ωf

g3(c1, c2) in Ωs

and [vc2χΩf
− âD2∇c2] · ν represents the jump in the normal flux. For this

problem, we have that the coefficient â is bounded in L∞(Ω) and strictly
positive. From the properties of u we get

v = ∂tu ∈W 1,∞(0, T ;L2(Ωf )) ∩ L∞(0, T ;H1(Ωf )) ∩H1(0, T ;H1(Ωf ))

and thus
v ∈ L∞(0, T ;L6(Ωf )).

The reaction term satisfies f ∈ L∞(0, T ;L6(Ω)) due to the conditions (4.27)
- (4.28). These regularity properties imply that the conditions (7.1)-(7.2),
form ([14], page 181) are satisfied with χ1 = 1

2 , r = +∞, q = 3. Thus, anal-
ogously to Theorem 7.1 in the same reference, we can proof the boundedness
of the solution c2, i.e. there exists C2 ≥ 0, such that

sup|c2(x, t)| ≤ C2, a.e. on Ω× [0, T ].
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6 Regularity of weak solutions

In this section, we prove that assuming higher time regularity for the data
of the fluid/structure problem, we can prove more time regularity for the
displacements. Using this result, we then show higher regularity for the
concentrations c1 and c2 in time and space. Thus, let us first prove the
following theorem.

Theorem 3 Let A ∈ (W 3,∞(R))9, (S1,S2,S3) ∈ H3(0, T ;L2(Γ2))3 and
(S1,S2,S3)(0) = ∂t(S1,S2,S3)(0) = 0. Then, we have

||∂tttu||L∞(0,T ;L2(Ω))3 ≤ C(6.1)
||D(∂tttu)||L2(0,T ;L2(Ωf ))9 ≤ C(6.2)
||D(∂ttu)||L∞(0,T ;L2(Ωs))9 ≤ C(6.3)

Proof: In order to simplify the notation, we denote the partial derivative
of order j with respect time by ∂j

t . Let us start by differentiating equation
(5.20) with respect to t. It yields∫

Ω
∂4

t uN (t)αk dx+ 2
∫

Ωf

D(∂3
t uN )(t) : D(αk) dx+(6.4) ∫

Ωs

AD(∂2
t uN )(t) : D(αk)dx+ 2

∫
Ωs

dA

dF
dF
dt
D(∂tuN )(t) : D(αk)dx+∫

Ωs

{
d2A

dF2

(
dF
dt

)2

+
dA

dF
d2F
dt2

}
D(uN )(t) : D(αk)dx =∫

Γ2

∂2
t (S1,S2,S3)αk dS

We now test equation (6.4) by ∂3
t uN and get

1
2
d

dt

∫
Ω
|∂3

t uN (t)|2dx+ 2
∫

Ωf

|D(∂3
t uN )(t)|2dx+(6.5) ∫

Ωs

AD(∂2
t uN )(t) : D(∂3

t uN )(t)dx+

2
∫

Ωs

dA

dF
dF
dt
D(∂tuN )(t) : D(∂3

t uN )(t)dx+∫
Ωs

{
d2A

dF2

(
dF
dt

)2

+
dA

dF
d2F
dt2

}
D(uN )(t) : D(∂3

t uN )(t)dx =∫
Γ2

∂2
t (S1,S2,S3)∂3

t uN (t) dS
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In (6.10) it is necessary to transform serveral terms:∫
Ωs

AD(∂2
t uN ) : D(∂3

t uN )dx =
1
2
d

dt

∫
Ωs

AD(∂2
t uN ) : D(∂2

t uN )dx(6.6)

−1
2

∫
Ωs

dA

dF
dF
dt
D(∂2

t uN ) : D(∂2
t uN )dx

∫
Ωs

dA

dF
dF
dt
D(∂tuN ) : D(∂3

t uN )dx =(6.7)

d

dt

∫
Ωs

dA

dF
dF
dt
D(∂tuN ) : D(∂2

t uN )dx

−
∫

Ωs

dA

dF
dF
dt
D(∂2

t uN ) : D(∂2
t uN )dx

−
∫

Ωs

{
d2A

dF2

(
dF
dt

)2

+
dA

dF
d2F
dt2

}
D(∂tuN )(t) : D(∂2

t uN )dx

∫
Ωs

{
d2A

dF2

(
dF
dt

)2

+
dA

dF
d2F
dt2

}
D(uN ) : D(∂3

t uN )dx =(6.8)

d

dt

∫
Ωs

{
d2A

dF2

(
dF
dt

)2

+
dA

dF
d2F
dt2

}
D(uN ) : D(∂2

t uN )dx

−
∫

Ωs

{
d2A

dF2

(
dF
dt

)2

+
dA

dF
d2F
dt2

}
D(∂tuN ) : D(∂2

t uN )dx

−
∫

Ωs

{
d3A

dF3

(
dF
dt

)3

+ 3
d2A

dF2

dF
dt

d2F
dt2

+
dA

dF
d3F
dt3

}
×

× D(uN ) : D(∂2
t uN )dx

∫
Γ2

∂2
t (S1,S2,S3)∂3

t uN dS =
d

dt

∫
Γ2

∂2
t (S1,S2,S3)∂2

t uN dS(6.9)

−
∫

Γ2

∂3
t (S1,S2,S3)∂2

t uN dS

As before, (S1,S2,S3)(0) = ∂t(S1,S2,S3)(0) = 0 implies ∂3
t uN = 0. Thus,

integrating (6.10) with respect to time and using the regularity of the coef-
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ficients as well as the boundedness of c1 in L∞(Ωs), we obtain:

1
2
d

dt

∫
Ω
|∂3

t uN (t)|2dx+ 2
∫

Ωf

|D(∂3
t uN )(t)|2dx+(6.10)

1
2

∫
Ωs

AD(∂2
t uN )(t) : D(∂2

t uN )(t)dx

≤ C

∫ t

0
||D(∂2

t uN )(τ)||2L2(Ωs)9
dτ +

C||D(∂tuN )(t)||L2(Ωs)9 ||D(∂2
t uN )(t)||L2(Ωs)9 +

C

∫ t

0
||D(∂tuN )(τ)||L2(Ωs)9 ||D(∂2

t uN )(τ)||L2(Ωs)9 +

C||D(uN )(t)||L2(Ωs)9 ||D(∂2
t uN )(t)||L2(Ωs)9 +

C

∫ t

0
||D(uN )(τ)||L2(Ωs)9 ||D(∂2

t uN )(τ)||L2(Ωs)9 +

C

(
||D(∂2

t uN )(t)||2L2(Ωf )9 +
∫ t

0
||D(∂2

t uN )(τ)||2L2(Ωf )9

)
+

||(S1,S2,S3)(t))||2H3(0,T ;L2(Γ2))3

In order to estimate ||D(∂2
t uN )||2L2(Ωf )9 , we proceed like in (5.16) and, since

D(∂3
t uN )(0) = 0, we obtain:

(6.11) ||D(∂2
t uN )(t)||L2(Ωf )9 ≤

√
t||D(∂3

t uN )||L2(0,TN ;L2(Ωf ))9

Thus, using the estimates (5.17)- (5.19) and (5.26)-(5.28) from Step 2 in the
proof of Theorem 1, Gronwall’s inequality leads to:

||∂3
t uN ||L∞(0,TN ;L2(Ω))3 ≤ C(6.12)

||D(∂3
t uN )||L2(0,TN ;L2(Ωf ))9 ≤ C(6.13)

||D(∂2
t uN )||L∞(0,TN ;L2(Ωs))9 ≤ C(6.14)

Finally, after passing to the limit for N → 0, we obtain the assertion of the
theorem.

Let us now show more regularity for the concentrations c1, c2. First, by
direct generalization of the proof of Theorem 10.1 in ([14], page 204-206),
we have:

Lemma 4 Let c2D ∈ Cβ, β
2 (Γ1 × [0, T ]) and c20 ∈ Hβ(Ω̄), c20|Γ1 = c2D|t=0,

for some β > 0. Then every weak solution c2 to the problem (5.56)− (5.62),
constructed in Theorem 1, is Hölder-continuous on Ω̄× [0, T ].
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Next, we note that the problem (5.56)−(5.62) is a transmission problem.
Using the classical results on difraction problems from ([14], page 224-232),
we obtain higher regularity for c2 in Ωf and Ωs separately.

Lemma 5 Let c20 and c2D satisfy the assumptions from section 4.1. Then,
we have c2 ∈ C2+β,1+β

2 (Ωf × [0, T ]) and c2 ∈ C2+β,1+β
2 (Ωs × [0, T ]).

Additionally to this interior regularity results, we now prove a global
higher integrability for the derivatives.

Theorem 6 Let c20 ∈ H1(Ω) and c2D ∈ H2(Γ1 × (0, T )). Then, for any
weak solution c2 of the problem (5.56)−(5.62), we have ∇c2 ∈ L∞(0, T ;L2(Ω)),
∆c2 ∈ L2(0, T ;L2(Ωf ∪ Ωs)) and ∂tc2 ∈ L2((0, T )× Ω).

Proof: We multiply equation (5.56) in Ωs by D2∆c2 and in Ωf by
∇ · (D2∇c2 − vc2), and integrate with respect to x. We obtain

D2

K

∫
Ωs

∂tc2∆c2 −
D2

2

K

∫
Ωs

|∆c2|2 = D2

∫
Ωs

g3∆c2(6.15) ∫
Ωf

∂tc2∇ · (D2∇c2 − vc2)−
∫

Ωf

|∇ · (D2∇c2 − vc2)|2(6.16)

=
∫

Ωf

g2∇ · (D2∇c2 − vc2)

In (6.15), (6.16) we integrate by parts in the terms containing the time
derivative and add the two equations to get

−D2

K

∫
Ωs

∂t∇c2∇c2 −
∫

Ωf

∂t∇c2(D2∇c2 − vc2)−
D2

2

K

∫
Ωs

|∆c2|2(6.17)

−
∫

Ωf

|∇ · (D2∇c2 − vc2)|2 +
D2

K

∫
∂Ωs

∂tc2∇c2 · n

+
∫

∂Ωf

∂tc2(D2∇c2 − vc2) · n

= D2

∫
Ωs

g3∆c2 +D2

∫
Ωf

g2∆c2 −
∫

Ωf

g2v∇c2
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Here, we denote by n the outer unit normal to the underlying domain. Now,
by straightforward calculations we obtain

D2

K

∫
Ωs

∂t∇c2∇c2 +D2

∫
Ωf

∂t∇c2∇c2 +
D2

2

K

∫
Ωs

|∆c2|2(6.18)

+D2
2

∫
Ωf

|∆c2|2 =
D2

K

∫
∂Ωs

∂tc2∇c2 · n+
∫

∂Ωf

∂tc2(D2∇c2 − vc2) · n

+
∫

Ωf

∂t∇c2vc2 + 2D2

∫
Ωf

∆c2v∇c2 −D2

∫
Ωs

g3∆c2

−D2

∫
Ωf

g2∆c2 +
∫

Ωf

g2v∇c2 −
∫

Ωf

v2|∇c2|2

Using the equation for c2 on Ωf , the term on the right hand side containing
∂t∇c2 has to be transformed as follows∫

Ωf

∂t∇c2vc2 =
d

dt

∫
Ωf

∇c2vc2 −
∫

Ωf

∇c2∂tvc2(6.19)

−
∫

Ωf

∇c2v(D2∆c2 + g2 − v∇c2)

Insearting (6.19) into (6.18), we obtain

1
2
d

dt

∫
Ω

{
D2

K
χΩs +D2χΩf

}
|∇c2|2 +

∫
Ω

{
D2

2

K
χΩs +D2

2χΩf

}
|∆c2|2(6.20)

=
D2

K

∫
∂Ωs

∂tc2∇c2 · n+
∫

∂Ωf

∂tc2(D2∇c2 − vc2) · n

+D2

∫
Ωf

∆c2v∇c2 −D2

∫
Ωs

g3∆c2 −D2

∫
Ωf

g2∆c2

+
d

dt

∫
Ωf

∇c2vc2 −
∫

Ωf

∇c2∂tvc2

Let us now estimate the terms on the right hand side of (6.20). Using
the flux continuity at the interface Γ, and the boundary conditions for the
concentrations c1, c2, we get

D2

K

∫
∂Ωs

∂tc2∇c2 · n+
∫

∂Ωf

∂tc2(D2∇c2 − vc2) · n =(6.21)

D2

K

∫
∂Ωs∩Γ1

∂tc2D∇c2 · n+
∫

∂Ωf∩Γ1

∂tc2D(D2∇c2 − vc2) · n

−
∫

∂Ωf∩Γ2

∂tc2vc2 · n

34



Since c2D ∈ H2(Γ1×(0, T )) and v ∈ L∞(0, T ;H1(Ωf )), we have the estimate∣∣∣∣∣D2

K

∫
∂Ωs∩Γ1

∂tc2D∇c2 · n+
∫

∂Ωf∩Γ1

∂tc2D(D2∇c2 − vc2) · n

∣∣∣∣∣(6.22)

≤ C
(
||∆c2(t)||L2(Ωs∪Ωf ) + ||c2(t)||2H1(Ωf )

)
To estimate the last term on the right hand side of (6.21) we note that
by Theorem 3 we have that ∂tv ∈ L∞(0, T ;H1(Ωf )). Thus, using similar
arguments as in (5.31), we have

−
∫

∂Ωf∩Γ2

∂tc2vc2 · n =(6.23)

−∂t

∫
∂Ωf∩Γ2

|c2|2v · n+
∫

∂Ωf∩Γ2

|c2|2∂tv · n

≤ −∂t

∫
∂Ωf∩Γ2

|c2|2v · n+ ||∂tv||L∞(0,T ;H1(Ωf ))||c2(t)||2H1(Ωf )

In order to estimate the next term on the right hand side in (6.20), we
recall that by elliptic regularity for transmission problems, see e.g. estimate
(16.12) in ([14], pages 205-223), we have

(6.24) ||c2(t)||H2(Ωs∪Ωf ) ≤ C
{
||c2(t)||H1(Ω) + ||∆c2(t)||L2(Ωs∪Ωf ) + c0(t)

}
where c0(t) represents the boundary conditions at ∂Ω, and it is an element
of L∞(0, T ). Thus, we can estimate∣∣∣∣∣

∫
Ωf

∆c2v∇c2

∣∣∣∣∣ ≤ ||∆c2(t)||L2(Ωf )||v(t)||L6(Ωf )||∇c2(t)||L3(Ωf )(6.25)

≤ ||∆c2(t)||L2(Ωf )||v(t)||L6(Ωf )||∇c2(t)||
1
2

L2(Ωf )
||∇c2(t)||

1
2

L6(Ωf )

≤ C||∆c2(t)||L2(Ωf )||v(t)||L6(Ωf )||∇c2(t)||
1
2

L2(Ωf )
×

×
{
||c2(t)||

1
2

H1(Ω)
+ ||∆c2(t)||

1
2

L2(Ωs∪Ωf )
+ (c0(t))

1
2

}
To shorten the notation, we introduce the functions

h1(t) = ||v(t)||L6(Ωf )||∇c2(t)||
1
2

L2(Ωf )
||c2(t)||

1
2

H1(Ω)

h2(t) = ||v(t)||L6(Ωf )||∇c2(t)||
1
2

L2(Ωf )
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By Theorem 1, h1 ∈ L2(0, T ) and h2 ∈ L4(0, T ). Thus, the right hand side
in (6.25) can be estimated as∣∣∣∣∣

∫
Ωf

∆c2v∇c2

∣∣∣∣∣ ≤ C (h1(t) + h2(t)) ||∆c2(t)||L2(Ωf )(6.26)

+h2(t)||∆c2(t)||3/2
L2(Ωf∪Ωs)

≤ δ||∆c2(t)||2L2(Ωf∪Ωs)
+ C(δ)h(t)

with δ > 0 and h ∈ L1(Ω). Next

(6.27)

∣∣∣∣∣D2

∫
Ωs

g3∆c2 +D2

∫
Ωf

g2∆c2

∣∣∣∣∣ ≤ ĝ(t)||∆c2(t)||L2(Ωf∪Ωs),

where ĝ ∈ L2(0, T ), due to the Lipschitz property of the nonlinearities g2 and
g3. Finally, the last term on the right hand side in (6.20) can be estimated
using similar arguments as in (5.30) and the fact that by Theorem 3, ∂tv ∈
L∞(0, T ;H1(Ωf ). Thus, we have∣∣∣∣∣

∫
Ωf

∇c2∂tvc2

∣∣∣∣∣ ≤ C||c2(t)||2H1(Ωf )(6.28)

Now, for δ small enough, integrating with respect to time in (6.20) and using
the estimates above, we obtain∫

Ω

{
D2

K
χΩs +D2χΩf

}
|∇c2(t)|2 +

∫ t

0

∫
Ω

{
D2

2

K
χΩs +D2

2χΩf

}
|∆c2|2(6.29)

≤ C

(
1 +

∫
Ωf

∇c2(t)v(t)c2(t)−
∫

∂Ωf∩Γ2

|c2(t)|2v(t) · n

)

We estimate the last two terms on the right hand side in (6.29) using similar
arguments like in (5.30) and (5.31) respectively, and obtain∣∣∣∣∣

∫
Ωf

∇c2(t)v(t)c2(t)

∣∣∣∣∣+
∣∣∣∣∣
∫

∂Ωf∩Γ2

|c2(t)|2v(t) · n

∣∣∣∣∣
≤ δ||∇c2(t)||2L2(Ωf ) + C(δ)||c2(t)||2L2(Ωf )

The first term is absorbed into the left hand side of (6.29), and the second
one can be estimated by C(δ)||c2(t)||2L∞(0,T ;L2(Ωf )). Thus, finally we can
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conclude that

∇c2 ∈ L∞(0, T ;L2(Ω))(6.30)
∆c2 ∈ L2(0, T ;L2(Ωf )) and ∆c2 ∈ L2(0, T ;L2(Ωs))(6.31)

In the last step of the proof, we use the equations for c2 to conclude that

(6.32) ∂tc2 ∈ L2(0, T ;L2(Ω)).

Thus, Theorem 6 is proved.

Now, we switch to the study of c1.

Theorem 7 Let c10 ∈ C2(Ω̄s) and ∇c1 ·n = 0 on ∂Ωs. Then c1 ∈W 2,1
q (Ωs×

(0, T )), for all q > 1.

Proof: By Lemma 4 we have thatD1(c2) is Hölder continuous and takes val-
ues between two positive constants. The reaction term g1(c1, c2) is bounded
due to the Lipschitz-continuity of g1. Hence Theorem 9.1 in ([14], pages
341-342) yields c1 ∈ W 2,1

q (Ωs × (0, T )), for all q > 1, and the theorem is
proved.

By Sobolev’s embedding, see Lemma 3.3 in ([13], page 80), we obtain

Corollary 8 c1 and ∇c1 are Hölder continuous.

7 Stability and uniqueness results

In this section, we give the stability and uniqueness of the regular so-
lutions to the problem (4.1)-(4.22). To this end, we consider solutions
(u(j), c

(j)
1 , c

(j)
2 ), j = 1, 2, corresponding to the data (S(j)

1 ,S(j)
2 ,S(j)

3 ), j = 1, 2
for the displacements and g

(j)
1 , g

(j)
2 , g

(j)
3 , c(j)2D, c

(j)
10 , and c

(j)
20 , j = 1, 2, for the

concentrations.
Let us start with the calculations for the displacements. We introduce

δu := u(1) − u(2). δc1 and δ(S1,S2,S3) are defined analogously. Then, δu is
a solution of the following problem∫

Ω

∂2δu

∂t2
(t)ϕdx+ 2

∫
Ωf

D(
∂δu

∂t
(t)) : D(ϕ) dx+(7.1) ∫

Ωs

A(F(c(1)
1 ))D(δu(t)) : D(ϕ) =

∫
Γ2

δ(S1,S2,S3)ϕdS,

−
∫

Ωs

{
A(F(c(1)

1 ))−A(F(c(2)1 ))
}
D(u(2)(t)) : D(ϕ)
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for all ϕ ∈ V , a.e. in (0, T ), and

∇ ·
(
∂δu

∂t

)
= 0, in Ωf × (0, T ),(7.2)

δu(x, 0) = 0,
∂δu

∂t
(x, 0) = 0, in Ω.(7.3)

Theorem 9 The following estimates hold for all t ∈ [0, T ] :

||∂tδu||L∞(0,t;L2(Ω))3 + ||D(∂tδu)||L2(0,t;L2(Ωf ))9 +(7.4)
||D(δu)||L∞(0,t;L2(Ωs))9

≤ C
{
||δ(S1,S2,S3)||H1(0,T ;L2(Γ2))3 + ||δc1||L1(0,t;L∞(Ωs))

}
and

||∂ttδu||L∞(0,t;L2(Ω))3 + ||D(∂ttδu)||L2(0,t;L2(Ωf ))9 +(7.5)
||D(∂tδu)||L∞(0,t;L2(Ωs))9

≤ C
{
||δ(S1,S2,S3)||H2(0,T ;L2(Γ2))3 + ||δc1||L1(0,t;L∞(Ωs))

}
.

Proof: We test equation (7.1) by ϕ = ∂
∂tδu and as in the second step of the

proof of Theorem 1, we get∫
Ω
|∂tδu(t)|2dx+

∫ t

0

∫
Ωf

|D(∂tδu)|2 dxdτ +(7.6) ∫
Ωs

A(F(c(1)
1 ))D(δu)(t) : D(δu)(t)dx

≤ ||δ(S1,S2,S3)||2H1(0,T ;L2(Γ2))3 +∣∣∣∣∫ t

0

∫
Ωs

{
A(F(c(1)1 ))−A(F(c(2)

1 ))
}
D(u(2)) : D(∂tδu)dxdτ

∣∣∣∣
To estimate the last term on the right hand side, we first transform it as
follows: ∫ t

0

∫
Ωs

{
A(F(c(1)

1 ))−A(F(c(2)1 ))
}
D(u(2)) : D(∂tδu)dxdτ(7.7)

=
∫

Ωs

{
A(F(c(1)

1 ))−A(F(c(2)1 ))
}
D(u(2)(t)) : D(δu(t))dx

−
∫ t

0

∫
Ωs

{
A(F(c(1)

1 ))−A(F(c(2)1 ))
}
D(∂tu

(2)) : D(δu)dxdτ

−
∫ t

0

∫
Ωs

{
dA

dF
|
c
(1)
1

dF
dt

(c(1)1 )− dA

dF
|
c
(2)
1

dF
dt

(c(2)1 )
}
D(u(2)) : D(δu)
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Now, we estimate the three terms on the right hand side of (7.7) separately.∣∣∣∣∫
Ωs

{
A(F(c(1)

1 ))−A(F(c(2)
1 ))

}
D(u(2)(t)) : D(δu(t))dx

∣∣∣∣(7.8)

≤ ||D(δu(t))||L2(Ωs)9 ||D(u(2))||L∞(0,T ;L2(Ωs))9 ×
×C||K ?t δc1||L∞(0,T ;L∞(Ωs))

≤ C||D(δu(t))||L2(Ωs)9 ||δc1||L1(0,t;L∞(Ωs))

∣∣∣∣∫ t

0

∫
Ωs

{
A(F(c(1)1 ))−A(F(c(2)

1 ))
}
D(∂tu

(2)) : D(δu)dxdτ
∣∣∣∣(7.9)

≤ ||D(δu)||L2(0,t;L2(Ωs))9 ||D(∂tu
(2))||L2(0,T ;L2(Ωs))9 ×

×C||K ?t δc1||L∞(0,T ;L∞(Ωs))

≤ C||D(δu)||L2(0,t;L2(Ωs))9 ||δc1||L1(0,t;L∞(Ωs))

∣∣∣∣∫ t

0

∫
Ωs

{
dA

dF
|
c
(1)
1

dF
dt

(c(1)1 )− dA

dF
|
c
(2)
1

dF
dt

(c(2)1 )
}
D(u(2)) : D(δu)

∣∣∣∣(7.10)

≤
∫ t

0

∫
Ωs

∣∣∣∣dAdF |c(1)1

∣∣∣∣ ∣∣∣K′
?τ (F (c(1)1 )− F (c(2)

1 ))
∣∣∣×

×|D(u(2))(τ)||D(δu)(τ)|dxdτ +∫ t

0

∫
Ωs

∣∣∣∣dAdF |c(1)1

− dA

dF
|
c
(2)
1

∣∣∣∣ ∣∣∣∣dFdt (c(2)1 )
∣∣∣∣ |D(u(2))(τ)||D(δu)(τ)|dxdτ +

≤ C||D(δu)||L2(0,t;L2(Ωs))9 ||D(u(2))||L2(0,T ;L2(Ωs))9 ||δc1||L1(0,t;L∞(Ωs))

After plugging (7.8) - (7.10) into (7.7), we obtain∫
Ω
|∂tδu(t)|2dx+

∫ t

0

∫
Ωf

|D(∂tδu)|2 dxdτ +(7.11) ∫
Ωs

A(F(c(1)
1 ))D(δu)(t) : D(δu)(t)dx

≤ C
{
||δ(S1,S2,S3)||2H1(0,T ;L2(Γ2))3 + ||δc1||L1(0,t;L∞(Ωs))

}
which proves (7.4). Next, we differentiate (7.1) with respect to time. It
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yields ∫
Ω
∂3

t δu(t)ϕdx+ 2
∫

Ωf

D(∂2
t δu(t)) : D(ϕ) dx+(7.12) ∫

Ωs

A(F(c(1)
1 ))D(∂tδu(t)) : D(ϕ)dx =

∫
Γ2

∂tδ(S1,S2,S3)ϕdS,

−
∫

Ωs

dA

dF
|
(c

(1)
1 )

dF
dt

(c(1)
1 )D(δu(t)) : D(ϕ)dx

−
∫

Ωs

{
A(F(c(1)

1 ))−A(F(c(2)
1 ))

}
D(∂tu

(2)(t)) : D(ϕ)dx

−
∫

Ωs

{
dA

dF
|
(c

(1)
1 )

dF
dt

(c(1)1 )− dA

dF
|
(c

(2)
1 )

dF
dt

(c(2)1 )
}
D(u(2)(t)) : D(ϕ)dx

Now, we test (7.12) by ∂2
t δu and, as in the second step of the proof of

Theorem 1, we find out∫
Ω
|∂2

t δu(t)|2dx+
∫ t

0

∫
Ωf

|D(∂2
t δu)|2 dxdτ +(7.13) ∫

Ωs

A(F(c(1)
1 ))D(∂tδu)(t) : D(∂tδu)(t)dx

≤ ||δ(S1,S2,S3)||2H2(0,T ;L2(Γ2))3 +∣∣∣∣∫ t

0

∫
Ωs

{
A(F(c(1)

1 ))−A(F(c(2)1 ))
}
D(∂tu

(2)) : D(∂2
t δu)dxdτ

∣∣∣∣+∣∣∣∣∫
Ωs

{
dA

dF
|
(c

(1)
1 )

dF
dt

(c(1)
1 )− dA

dF
|
(c

(2)
1 )

dF
dt

(c(2)1 )
}
D(u(2)(t)) : D(∂2

t δu)
∣∣∣∣

Let us estimate the last two terms on the right hand side. First, proceeding
as in (7.8) - (7.10) and using the estimates from section 5 for the displace-
ments, we obtain∣∣∣∣∫ t

0

∫
Ωs

{
A(F(c(1)

1 ))−A(F(c(2)1 ))
}
D(∂tu

(2)) : D(∂2
t δu)dxdτ

∣∣∣∣(7.14)

≤
∣∣∣∣∫

Ωs

{
A(F(c(1)

1 ))−A(F(c(2)1 ))
}
D(∂tu

(2)(t)) : D(∂tδu(t))dx
∣∣∣∣

+
∣∣∣∣∫ t

0

∫
Ωs

{
A(F(c(1)

1 ))−A(F(c(2)1 ))
}
D(∂2

t u
(2)) : D(∂tδu)dxdτ

∣∣∣∣
+
∣∣∣∣∫ t

0

∫
Ωs

{
dA

dF
|
(c

(1)
1 )

dF
dt

(c(1)1 )− dA

dF
|
(c

(2)
1 )

dF
dt

(c(2)1 )
}
×

× D(u(2)(t)) : D(∂tδu)
∣∣∣ ≤ C||D(∂tδu(t))||L2(Ωs)||δc1||L1(0,t;L∞(Ωs))
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Next ∣∣∣∣∫ t

0

∫
Ωs

{
dA

dF
|
(c

(1)
1 )

dF
dt

(c(1)1 )− dA

dF
|
(c

(2)
1 )

dF
dt

(c(2)1 )
}
×(7.15)

×D(u(2)(t)) : D(∂2
t δu)

∣∣∣ ≤ ∣∣∣∣∫
Ωs

{
dA

dF
|
(c

(1)
1 )

dF
dt

(c(1)1 )

−dA
dF

|
(c

(2)
1 )

dF
dt

(c(2)
1 )
}
D(u(2)(t)) : D(∂tδu(t))

∣∣∣
+
∣∣∣∣∫ t

0

∫
Ωs

{
dA

dF
|
(c

(1)
1 )

dF
dt

(c(1)1 )− dA

dF
|
(c

(2)
1 )

dF
dt

(c(2)1 )
}
×

× D(∂tu
(2)) : D(∂tδu)

∣∣∣
+
∣∣∣∣∫ t

0

∫
Ωs

{
d2A

dF2
|
(c

(1)
1 )

(
dF
dt

(c(1)1 )
)2

− d2A

dF2
|
(c

(2)
1 )

(
dF
dt

(c(2)
1 )
)2

dA

dF
|
(c

(1)
1 )

d2F
dt2

(c(1)
1 )− dA

dF
|
(c

(2)
1 )

d2F
dt2

(c(2)1 )
}
×

× D(u(2)) : D(∂tδu)
∣∣∣

≤ C
{
||D(∂tδu(t))||L2(Ωs) + ||D(∂tδu)||L2(0,t;L2(Ωs))

}
×

×||δc1||L1(0,t;L∞(Ωs))

After plugging (7.14)-(7.15) into (7.13), we get∫
Ω
|∂2

t δu(t)|2dx+
∫ t

0

∫
Ωf

|D(∂2
t δu)|2 dxdτ +(7.16) ∫

Ωs

A(F(c(1)
1 ))D(∂tδu)(t) : D(∂tδu)(t)dx

≤ C
{
||δ(S1,S2,S3)||2H2(0,T ;L2(Γ2))3 + ||δc1||L1(0,t;L∞(Ωs))

}
,

which proves (7.5).

Now, we continue with estimates for δc1. Using the initial-boundary-
value problem (4.12)-(4.14) for c1, we obtain the following problem for δc1.

∂tδc1 −∇ ·
(
D1(c

(1)
2 )∇(δc1)

)
= g1(c

(1)
1 , c

(1)
2 )(7.17)

− g1(c
(2)
1 , c

(2)
2 ) +

(
D1(c

(1)
2 )−D1(c

(2)
2 )
)
∆c(2)1

+∇c(2)
1

(
D

′
1(c

(1)
2 )∇c(1)2 −D

′
1(c

(2)
2 )∇c(2)2

)
=: R in Ωs × (0, T )

∇(δc1) · ν = 0 on ∂Ωs × (0, T )(7.18)
δc1(0) = δc10 in Ωs(7.19)
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The following theorem holds.

Theorem 10 Let c(j)10 ∈ C2(Ω̄s) and ∇c(j)10 ·ν = 0 on Ωs×(0, T ), for j = 1, 2.
Then, there exists α ≥ α0 > 0, such that

||δc1||W 2,1
2 (Qs

t )
≤ C

{
||δc2||W 2,1

2 (Qs
t )
tα + ||δc10||H1(Ωs)

}
(7.20)

for all t ∈ (0, T ).

Proof: We argue as in the proof of Theorem 7. We note that c(1)2 is Hölder
continuous. Then, Theorem 9.1 in ([14], pages 341-342) yields

||δc1||W 2,1
2 (Qs

t )
≤ C

{
||R||L2(Qs

t )
+ ||δc10||H1(Ωs)

}
(7.21)

Now, it remains to estimate F . Let R = R1 +R2 +R3 +R4, where

R1 = g1(c
(1)
1 , c

(1)
2 )− g1(c

(2)
1 , c

(2)
2 )

R2 =
(
D1(c

(1)
2 )−D1(c

(2)
2 )
)
∆c(2)1

R3 = ∇c(2)1 D
′
1(c

(1)
2 )∇δc2

R4 = ∇c(2)1 ∇c(2)2

(
D

′
1(c

(1)
2 )−D

′
1(c

(2)
2 )
)

Now, using the regularity properties from section 6, we estimate

||R1||L2(Qs
t ))
≤ C

(
||δc1||L2(Qs

t ))
+ ||δc2||L2(Qs

t ))

)
(7.22)

||R2||L2(Qs
t ))
≤ C||∆c(2)1 ||Ll(Qs

T ))||δc2||L10(Qs
t ))
tα(7.23)

||R3||L2(Qs
t ))
≤ C||∇c(2)1 ||Ll(Qs

t ))
||∇δc2||L10/3(Qs

t ))
tα(7.24)

||R4||L2(Qs
t ))
≤ C||∇c(2)1 ||Ll(Qs

T ))||δc2||L10(Qs
t ))
||∇c(2)

2 ||L10/3(Qs
t ))
tα(7.25)

for α > 0 and l sufficiently big. Hence, we obtain

||δc1||W 2,1
2 (Qs

t )
≤ C

{
||δc1||L2(Qs

t )
+ ||∇δc2||L10/3(Qs

t )
tα(7.26)

+ ||δc2||L10(Qs
t )
||tα + ||δc10||H1(Ωs)

}
Since the straightforward energy estimate for c1 gives

||δc1||L∞(0,t;L2(Ωs)) + ||∇(δc1)||L2(0,t;L2(Ωs))(7.27)

≤ C
{
||δc2||L10(0,t;L10(Ωs))t

α + ||δc10||L2(Ωs)

}
,
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after inserting (7.27) into (7.26), we obtain

||δc1||W 2,1
2 (Qs

t )
≤ C

{
||δc10||H1(Ωs)(7.28)

+ ||∇δc2||L10/3(Qs
t )
tα + ||δc2||L10(Qs

t )
||tα
}

Now the embedding theorem, see Lemma 3.3 in ([13], page 80), implies that

(7.29) ||∇δc2||L10/3(Qs
t )

+ ||δc2||L10(Qs
t )
≤ C||δc2||W 2,1

2 (Qs
t )

and we get (7.20).

Finally, we have to derive an estimate for δc2. We note that δc2 is the
solution to the following problem:

â∂tδc2 +∇ · (v(1)δc2 + δvc
(2)
2 )χΩf

= ∇ · (âD2∇(δc2)) + δf in Ω× (0, T )[
χΩf

(v(1)δc2 + δvc
(2)
2 )− âD2∇c2

]
· ν = 0 on Γ× (0, T )

δc2χΩf
= δc2χΩs on Γ× (0, T )

δc2 = δc2D := c
(1)
2n − c

(2)
2D on Γ1 × (0, T )

∇(δc2) · e1 = 0 on Γ2 × (0, T )(
χΩf

(v(1)δc2 + δvc
(2)
2 )− âD2∇c2

)
· ν = 0 on Γ3 × (0, T )

δc2(0) = δc20 := c
(1)
20 − c

(2)
20 in Ω

where â is defined as in (5.63) and

δf =

{
δg2 := g2(c

(1)
2 )− g2(c

(2)
2 ) in Ωf

δg3 := g3(c
(1)
1 , c

(1)
2 )− g3(c

(2)
1 , c

(2)
2 ) in Ωs

¿From the estimate (7.20), it is clear that we need higher order estimates
for δc2. The following theorem holds.

Theorem 11 Let c(j)20 ∈ H1(Ω) and c
(j)
2D ∈ H2(Γ1 × (0, T )) for j = 1, 2.

Then, we have the estimate

||δc2||W 2,1
2 (Qs

t )
+ ||δc2||W 2,1

2 (Qf
t )
≤ C

{
||δv||L∞(0,t;H1(Ωf ))(7.30)

+||∂tδv||L2(0,t;H1(Ωf )) + ||δc2D||H2(Γ1×(0,T )) + ||δc20||H1(Ω)

+ ||δc2||W 2,1
2 (Qs

t )
tα + ||δc10||H1(Ωs)

}
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Proof: The proof follows the lines of the regularity Theorem 6. We first
multiply the above equation for δc2 in Ωs by D2∆(δc2) and in Ωf by ∇ ·
(D2∇(δc2)− v(1)δc2 − δvc

(2)
2 ), and integrate with respect to x. We obtain

D2

K

∫
Ωs

∂tδc2∆(δc2)−
D2

2

K

∫
Ωs

|∆(δc2)|2 = D2

∫
Ωs

δg3∆(δc2)(7.31) ∫
Ωf

∂tδc2∇ · (D2∇(δc2)− v(1)δc2 − δvc
(2)
2 )(7.32)

−
∫

Ωf

|∇ · (D2∇(δc2)− v(1)δc2 − δvc
(2)
2 )|2

=
∫

Ωf

δg2∇ · (D2∇(δc2)− v(1)δc2 − δvc
(2)
2 )

In (7.31) and (7.32) we integrate by parts in the terms containing the time
derivative and add the two equations to get

D2

K

∫
Ωs

∂t∇(δc2)∇(δc2) +D2

∫
Ωf

∂t∇(δc2)∇(δc2)(7.33)

+
D2

2

K

∫
Ωs

|∆(δ(c2)|2 +D2
2

∫
Ωf

|∆(δ(c2)|2 =
D2

K

∫
∂Ωs

∂tδc2∇(δc2) · n

+
∫

∂Ωf

∂tδc2(D2∇(δc2)− v(1)δc2 − δvc
(2)
2 ) · n

+
∫

Ωf

∂t∇(δc2)(v(1)δc2 + δvc
(2)
2 )

+2D2

∫
Ωf

∆(δc2)(v(1)∇(δc2) + δv∇c(2)2 )

−D2

∫
Ωs

δg3∆(δc2)−D2

∫
Ωf

δg2∆(δc2)

+
∫

Ωf

δg2(v(1)∇(δc2) + δv∇c(2)2 )−
∫

Ωf

|v(1)∇(δc2) + δv∇c(2)2 |2

The term on the right hand side containing ∂t∇(δc2) has to be transformed
as follows∫

Ωf

∂t∇(δc2)(v(1)δc2 + δvc
(2)
2 ) =

d

dt

∫
Ωf

∇(δc2)(v(1)δc2 + δvc
(2)
2 )(7.34)

−
∫

Ωf

∇(δc2)(∂tv
(1)δc2 + ∂tδvc

(2)
2 )−

∫
Ωf

∇(δc2)(v(1)∂tδc2 + δv∂tc
(2)
2 )
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Now, we use the equation for δc2 to replace ∂tδc2 in (7.34) and then insert
the result in (7.33). We obtain

D2

K

∫
Ωs

∂t∇(δc2)∇(δc2) +D2

∫
Ωf

∂t∇(δc2)∇(δc2)(7.35)

+
D2

2

K

∫
Ωs

|∆(δ(c2)|2 +D2
2

∫
Ωf

|∆(δ(c2)|2 =
D2

K

∫
∂Ωs

∂tδc2∇(δc2) · n

+
∫

∂Ωf

∂tδc2(D2∇(δc2)− v(1)δc2 − δvc
(2)
2 ) · n

+
d

dt

∫
Ωf

∇(δc2)(v(1)δc2 + δvc
(2)
2 )−

∫
Ωf

∇(δc2)(∂tv
(1)δc2 + ∂tδvc

(2)
2 )

+D2

∫
Ωf

∆(δc2)v(1)∇(δc2) + 2D2

∫
Ωf

∆(δc2)δv∇c(2)
2

−D2

∫
Ωs

δg3∆(δc2)−D2

∫
Ωf

δg2∆(δc2)

+
∫

Ωf

δg2δv∇c(2)
2 −

∫
Ωf

v(1)∇(δc2)δv∇c(2)2 −
∫

Ω
|δv∇c(2)2 |2

We note that in comparison to (6.18) on the right hand side of (7.35) the
following new terms appear:∫

∂Ωf∩Γ1

∂tδc2Dδvc
(2)
2 · n+

∫
∂Ωf∩Γ2

∂tδc2δvc
(2)
2 · n(7.36)

+
d

dt

∫
Ωf

∇(δc2)δvc
(2)
2 −

∫
Ωf

∇(δc2)∂tδvc
(2)
2

−
∫

Ωf

∇(δc2)δv∂tc
(2)
2 + 2D2

∫
Ωf

∆(δc2)δv∇c(2)2 +
∫

Ωf

δg2δv∇c(2)2

−
∫

Ωf

v(1)∇(δc2)δv∇c(2)2 −
∫

Ω
|δv∇c(2)2 |2

We estimate three of the terms in (7.36) which are more difficult. All others
can be estimated using similar techniques as before. Thus, we first transform
the second term as follows∫

∂Ωf∩Γ2

∂tδc2δvc
(2)
2 · n = ∂t

∫
∂Ωf∩Γ2

δc2δvc
(2)
2 · n(7.37)

−
∫

∂Ωf∩Γ2

δc2∂tδvc
(2)
2 · n−

∫
∂Ωf∩Γ2

δc2δv∂tc
(2)
2 · n
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Now, using the embedding theorem for traces, see [14], and the regularity
of c(2)

2 , we can estimate∣∣∣∣∣
∫

∂Ωf∩Γ2

δc2(t)δv(t)c
(2)
2 (t)dx

∣∣∣∣∣ ≤ C||δc2(t)||H1(Ωf )||δv(t)||H1(Ωf )||c
(2)
2 (t)||L∞(Ω̄f )

∣∣∣∣∣
∫ t

0

∫
∂Ωf∩Γ2

δc2∂tδvc
(2)
2

∣∣∣∣∣
≤ C||δc2||L2(0,t;H1(Ωf ))||δv||L2(0,t;H1(Ωf ))||c

(2)
2 ||

L∞(Ωf
t )

≤ C||δc2||L2(0,t;H1(Ωf ))||δv||L2(0,t;H1(Ωf
t ))
||c(2)2 ||

W 2,1
2 (Ωf

t )
tα

∣∣∣∣∣
∫ t

0

∫
∂Ωf∩Γ2

δc2δv∂tc
(2)
2

∣∣∣∣∣
≤ C||δc2||L2(0,t;H1(Ωf ))||δv||L2(0,t;H1(Ωf ))||∂tc

(2)
2 ||

L∞(Ω̄f
t )

≤ C||δc2||L2(0,t;H1(Ωf ))||δv||L2(0,t;H1(Ωf ))

To estimate the fourth term we proceed as follows∣∣∣∣∣
∫ t

0

∫
Ωf

∇(δc2)∂tδvc
(2)
2

∣∣∣∣∣
≤ C||∇δc2||L4(0,t;L2(Ωf ))||∂tδv||L5/4(0,t;L2(Ωf ))||c

(2)
2 ||

L∞(Ω̄f
t )

≤ C(η)||∂tδv||2L5/4(0,t;L2(Ωf ))
+ η||∇δc2||2L4(0,t;L2(Ωf ))

Finally, for the sixth term in (7.36) can be estimated as follows∣∣∣∣∣
∫ t

0

∫
Ωf

∆(δc2)δv∇c(2)
2

∣∣∣∣∣
≤
∫ t

0
||∆(δc2)||L2(Ωf )||δv||L6(Ωf )||∇c

(2)
2 ||L3(Ωf )

≤ C||∆(δc2)||L2(0,t;L2(Ωf ))||δv||L∞(0,t;L6(Ωf ))

Now, using the above estimates, the estimate which was already established
in the proof of Theorem 6, as well as the estimate (7.20), we obtain estimate
(7.39).

Now, we can state our stability result.

46



Theorem 12 The initial-boundary-value problem (4.1)-(4.22) is stable with
respect to the perturbations of the data, i.e.

||∂ttδu||L∞(0,t;L2(Ω))3 + ||D(∂ttδu)||L2(0,t;L2(Ωf ))9(7.38)
+||D(δu)||L∞(0,t;L2(Ω))9 + ||D(∂tδu)||L∞(0,t;L2(Ωs))9

+||δc1||W 1,2
2 (Ωs

t ))
+ ||δc2||W 1,2

2 (Ωs
t ))

+ ||δc2||W 1,2
2 (Ωf

t ))

≤ C
{
||δc10||H1(Ωs) + ||δc20||H1(Ω) + ||δc2D||H2(Γ1×(0,T ))

+ ||δ(S1,S2,S3)||H2(0,T ;L2(Γ2))3
}

Proof: First we note that for 0 < t ≤ T0 = T0(α), the estimate (7.20) from
the statement of Theorem 11 gives

||δc2||W 2,1
2 (Qs

t )
+ ||δc2||W 2,1

2 (Qf
t )
≤ C

{
||∂tδu||L∞(0,t;H1(Ωf ))(7.39)

+||∂ttδu||L2(0,t;H1(Ωf )) + ||δc2D||H2(Γ1×(0,T )) + ||δc20||H1(Ω)

+||δc10||H1(Ωs)

}
Next, we start with the estimates (7.4)-(7.5) and plug inside the estimate
(7.20) for ||δc1||L1(0,t;L∞(Ωs)). This gives us an estimate of the quantities at
the left hand side of (7.4) and (7.5) in terms of ||δc2||W 2,1

2 (Qs
t )
tα. Finally, we

replace ||δc2||W 2,1
2 (Qs

t )
by the estimate (7.39) and obtain

||∂ttδu||L∞(0,t;L2(Ω))3 + ||D(∂ttδu)||L2(0,t;L2(Ωf ))9(7.40)
+||D(δu)||L∞(0,t;L2(Ω))9 + ||D(∂tδu)||L∞(0,t;L2(Ωs))9

≤ C
{
||δc10||H1(Ωs) + ||δc20||H1(Ω) + ||δc2D||H2(Γ1×(0,T ))

||δ(S1,S2,S3)||H2(0,T ;L2(Γ2))3

+ tα
(
||∂tδu||L∞(0,t;H1(Ωf ))9 + ||∂ttδu||L2(0,t;H1(Ωf ))9

)}
Now, for 0 < t ≤ T1 = T1(α) ≤ T0(α), we conclude the estimate (7.38).
Since T0 and T1 do not depend on the data, we can repeat the procedure
and arrive at t = T after a finite number of steps.

Corollary 13 The initial-boundary-value problem (4.1)-(4.22) has a unique
solution (u, c1, c2), with

u ∈W 3,∞(0, T ;L2(Ω)) ∩W 2,∞(0, T ;H1(Ω)) ∩H3(0, T ;H1(Ωf )),

c1 ∈W 2,1
2 (Qs

T ), and c2 ∈W 1,1
2 (Q) ∩W 2,1

2 (Qs
T ∪ Ωf

T ).
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[8] Ferrin, J. L., Mikelić, A., Homogenizing the acoustic properties of a
porous matrix containing an incompressible inviscid fluid, Math. Meth-
ods Appl. Sci. 26, (2003), pp. 831-859 .
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