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Abstract

In this chapter of the special issue of the journal ”Transport in Porous Media”, on the topic
”Flow and transport above permeable domains”, we present modeling of flow and transport
above permeable domains using the homogenization method. Our goal is to develop a heuristic
approach which can be used by the engineering community for treating this type of problems
and which has a solid mathematical background. The rigorous mathematical justification, of the
presented results, is given in the corresponding articles of the authors. The plan is as follows: We
start with the Introduction were we give an overview and comparison with interface conditions
obtained using other approaches. In Section 2, we give a very short derivation of the Darcy law
by homogenization, using the two-scale expansion in the typical pore size parameter ε. It gives
us the definition of various auxiliary functions and typical effective properties as permeability.
In Section 3, we introduce our approach to the effective interface laws on a simple 1D example.
The approximation is obtained heuristically using the two steps strategy. For the 1D problem
we calculate the approximation and the effective interface law explicitly and show that it is
valid at order O(ε2). Next, in Section 4 we give a derivation of the Beavers-Joseph-Saffman
interface condition and of the pressure jump condition, using homogenization. We construct
the corresponding boundary layer and present a heuristic calculation, leading to the interface
law and being based on the rigorous mathematical result. In addition, we show the invariance

∗The research of A.M. was partially supported by the GDR MOMAS (Modélisation Mathématique et Simulations
numériques liées aux problèmes de gestion des déchets nucléaires) (PACEN/CNRS, ANDRA, BRGM, CEA, EDF,
IRSN).
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of the law with respect to the small variations in the choice of the interface position. Finally,
there is a short concluding section.

1 Introduction

Homogenization is a mathematical tool that allows changing the scale in problems containing several
characteristic scales. Typical examples of its utilisation are finding effective models for composite
materials, in optimal shape design etc. Another important example, which we are interested in, is
the fluid mechanics of the flow through porous media.

A porous medium has at least two length scales: a macroscopic scale (the reservoir scale) and a
microscopic scale (the pore scale). In the practical simulations of flows through porous media, we
use differential equations at the reservoir scale. The pore structure is present only implicitly through
quantities like permeability, porosity, tortuosity etc.

Number of known laws from the dynamics of fluids in porous media was derived using homoge-
nization. The most well known example is Darcy’s law, being the effective equation for one phase
flow through a rigid porous medium. Its formal derivation using the 2-scale expansion goes back
to the classical paper [10] by Ene and Sanchez-Palencia. This derivation was made mathematically
rigorous by Tartar in [25]. For detailed derivation in the case of a periodic porous medium we refer
to the review papers [2] by Allaire and [21] by Mikelić. Rigorous derivation of Darcy’s law for a
random statistically homogeneous porous medium is due to Beliaev and Kozlov (see [5]).

Darcy’s law is valid for a creeping flow through a porous medium. For its derivation, the peri-
odicity of the porous medium was required. The periodicity condition can be relaxed to a kind of
statistical homogeneity and ergodicity, but clearly, such assumptions break down close to the bound-
aries. Deviations from Darcy’s law are expected only in thin layers near the interfaces. Nevertheless,
presence of such interfaces can significantly change the structure of coefficients and the flow could
obey particular effective constitutive laws.

In this article, we are interested in obtaining such laws for one phase viscous creeping laws
through porous media. We will call them interface laws and our plan is to address the topic using
the combination of homogenization and boundary layer approach, introduced by Jäger and Mikelić
in the papers [12], [14], [15], [16] and [17].

The simplest possible problem is to find relationship between the seepage velocity and the pres-
sure gradient for an incompressible viscous flow through a domain consisting of two different periodic
porous media separated by an interface. The argument from derivation of Darcy’s law (see §2) is
local and we get the Darcy law in every porous piece. However, due to the different geometric
structures, the permeability matrices are different. In order to couple the flow we need conditions
at the interface. From the incompressibility condition, we conclude immediately the continuity of
the normal components of the seepage velocities. Another physically natural interface con-
dition is the continuity of the effective pressure field. However, it is usually imposed without
discussion. We note that the form of the homogenized stress tensor around the interface is not clear.
Consequently, the pressure continuity is not a mathematically evident condition. For its rigorous
derivation, we refer to [15], where the pressure continuity was obtained after using the corresponding
boundary layers from [12]. It is interesting to note the deterioration of the error estimate. In general,
the approximation of the pressure is of order O(ε1/8), contrary to the order O(ε) obtained for the
Darcy law in the absence of the boundaries. The same deterioration is present when introducing the
velocity corrector. It is due to the jump of the normal derivatives of the effective pressure at the
interface. For discussion of these interface conditions, sometimes called the refraction at a boundary
between two porous bodies, at physical level of rigor, we refer to [8].
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The above-described cases are obvious from modeling point of view. Study of the simultaneous
flow through both a pure fluid and a porous medium is much more challenging. It occurs in a wide
range of industrial processes and natural phenomena. Here the problem is finding effective boundary
conditions at a naturally permeable wall. Namely, if the flow region contains a porous medium, a
channel with a free flow and an interface between them, then one wishes to have an effective model.
As before we are considering a slow viscous and incompressible flow. Clearly, the effective flow
through a porous medium will be described by the Darcy law. In the channel, the free fluid flow
remains governed by the Stokes system (or by the Navier-Stokes system if the inertia effects in the
free fluid are important). We note that this means that one should couple two systems of partial
differential equations, one being a second order system for the velocity and a first order equation
for the pressure, respectively, and the other being a scalar second order equation for the pressure
and a first order system for the seepage velocity. The coupling conditions should be imposed at the
interface. One coupling condition is very simple. It is a consequence of the incompressibility and
says that we have the continuity of the normal mass flux. This is not enough for determination
of the effective flow and one should specify more conditions. Classically, the tangential velocity of
the free fluid velocity was set to zero at the interface. This condition corresponds to an impervious
boundary and could not be justified, neither from mathematical nor modeling or experimental point
of view.

Beavers and Joseph concluded experimentally in [4] that the difference, between the slip velocity
of the free fluid and the tangential component of the seepage velocity at the interface, was propor-
tional to the shear stress from the free fluid. This law was justified at a physical level of rigor by
Saffman in [24], where it was observed that the seepage velocity contribution could be neglected and
wrote the law in the form √

kε
∂vτ

∂ν
= αvτ + O(kε). (1)

Here α is a dimensionless parameter depending on the geometrical structure of the porous medium,
ε is the characteristic pore size and kε = ε2k is the (scalar) permeability. ν denotes the unit normal
vector at the interface and vτ is the slip velocity of the free fluid in the channel. Saffman used a
statistical approach to extend Darcy’s law to non-homogeneous porous media. However, it should
be noted that his argument is not entirely satisfactory since he made an ad hoc hypothesis about
the representation of the averaged interfacial forces as a linear integral functional of the velocity,
with an unknown kernel, being equal to Dirac’s measure in a porous medium, zero in the free fluid
and a given function around the interface. A similar argument is developed in [8], where Slattery’s
relationship

∂P

∂xi
= µ

(−
3∑

j=1

r0
ijUj +

3∑

j,l=1

r1
ijl

∂Uj

∂xl
+

3∑

j,l,m=1

r2
ijlm

∂2Uj

∂xl∂xm
+ . . .

)
(2)

between the pressure gradient and a combination of derivatives of the seepage velocity was assumed.
Here r0

ij , r
1
ijl and r2

ijlm are the macroscopic resistivity tensors. The asymptotic matching at the
boundary leads once more to the law (1). Neither paper [24] nor [8] contain construction of the
boundary layers describing the flow behavior close to the interface. The Saffman modification of the
law by Beavers and Joseph is widely accepted.

In the papers [10] and [18], Ene, Lévy and Sanchez-Palencia have undertaken the effort to find
the effective interface laws by a formal asymptotic argument. They have considered two essentially
different cases. The case of the flow in a cavity, lying inside of a porous matrix, was considered in
[18]. By comparing the orders of the magnitude of characteristic quantities, it was found out that
the effective pressure should be constant at the interface. This conclusion was rigorously justified in
[12], after constructing the appropriate boundary layers.
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The second case corresponds to the flow considered by Beavers and Joseph. In the paper [10] the
continuity of the effective pressure was deduced, but without a rigorous argument or an asymptotic
expansion. From modeling point of view, this interface law is acceptable. It can be considered as
an alternative to (1), however it should be noted that the well posedness of the averaged problem is
not clear.

In this review paper we will justify the law (1) by the technique developed in [14] for Laplace’s
operator and then in [12] for the Stokes system. Numerical calculation of the boundary layers in the
conditions of the experiment by Beavers and Joseph is in [17].

The experiment by Beavers and Joseph took into consideration only flows tangential to a naturally
permeable wall (a porous bed). General situation is much more complicated and many types of
interfacial conditions have been used, e.g. continuity of the tangential velocity but discontinuity of
the tangential shear stress introduced in the papers [23] by Ochoa-Tapia and Whitaker, or continuity
of both the tangential velocity and the tangential shear stress from [22] by Neale and Nader, or
discontinuity of both the tangential velocity and the tangential shear stress from [6] by Cieszko and
Kubik. General question of determining of practical and relevant first order interfacial conditions
between a pure fluid and a porous matrix remains an open question that could be treated using the
technique we developed in [12]. The numerical implementation of effective interface couplings is in
[9].

Let us also mention the derivation of the effective laws for flows through sieves and filters. We
mention only the papers [7] and [13]. The paper [13] is on the effective equations for a viscous
incompressible flow through a filter of a finite thickness and it uses the boundary layers developed
in [12]. For the numerical implementing of the interface condition for the industrial filters, we refer
to [11].

2 Homogenization approach to Darcy’s law

We consider a two dimensional periodic porous medium Ω = (0, L)2 with a periodic arrangement of
the pores. The formal description goes along the following lines:

(H1) First, we define the geometrical structure inside the unit cell Y = (0, 1)2. Let Ys (the
solid part) be a closed strictly included subset of Ȳ , and YF = Y \Ys (the fluid part). Now we make
the periodic repetition of Ys all over R2 and set Y k

s = Ys + k, k ∈ Z2. Obviously, the obtained set
Es =

⋃
k∈Z2 Y k

s is a closed subset of R2 and EF = R2\Es in an open set in R2. We suppose that
Ys has a boundary of class C0,1, which are locally located on one side of their boundary. Obviously,
EF is connected and Es is not. For description of the geometry in 3D, we refer to [1].

Now we see that Ω is covered with a regular mesh of size ε, each cell being a cube Y ε
i , with

1 ≤ i ≤ N(ε) = |Ω|ε−2[1 + o(1)]. Each cube Y ε
i is homeomorphic to Y , by linear homeomorphism

Πε
i , being composed of translation and a homothety of ratio 1/ε.

We define Y ε
Si

= (Πε
i )
−1(Ys) and Y ε

Fi
= (Πε

i )
−1(YF ). For sufficiently small ε > 0 we

consider the set Tε = {k ∈ Z2|Y ε
Sk
⊂ Ω} and define

Oε =
⋃

k∈Tε

Y ε
Sk

, Sε = ∂Oε, Ωε = Ω\Oε = Ω ∩ εEF

Obviously, ∂Ωε = ∂Ω∪Sε. The domains Oε and Ωε represent, respectively, the solid and fluid parts
of a porous medium Ω. For simplicity, we suppose L/ε ∈ N.

A very important property of the porous media is a variant of Poincaré’s inequality:
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Lemma 1. Let W ε = {z ∈ H1(Ωε)2, z = 0 on ∂Ωε \ ∂Ω and z is L− periodic }. Then we have
∫

Ω

|w|2dx ≤ ε2

λ1(YF )

∫

Ω

|∇xw|2dx ∀w ∈ W ε, (3)

where λ1(YF ) is the smallest eigenvalue of −∆ on W = {z ∈ H1(YF )2, z = 0 on ∂Ys and z is 1−
periodic }.

In the case of a periodic porous medium, (3) is proved by a simple rescaling argument (see e.g.
[21]).

For the case of a stochastic porous medium we refer to the article [5] by Beliaev and Kozlov.
Having defined the geometrical structure of the porous medium, we precise the flow problem.

Here we consider the slow viscous incompressible flow of a single fluid through a porous medium.
We suppose the no-slip condition at the boundaries of the pores (i.e. a rigid porous medium). Then
we describe it by the following non-dimensional steady Stokes system in Ωε (the fluid part of the
porous medium Ω):

−∆vε +∇pε = f in Ωε (4)
div vε = 0 in Ωε (5)

vε = 0 on ∂Ωε \ ∂Ω, {vε, pε} is L− periodic (6)

Here the non-dimensional f stands for the effects of external forces or an injection at the boundary
or a given pressure drop, and it corresponds to the physical forcing term multiplied by the ratio
between Reynolds’ number and Froude’s number squared. vε denotes the non-dimensional velocity
and pε is the non-dimensional pressure.

The variational form of the problem (4)-(6) is:
Find vε ∈ W ε, div vε = 0 in Ωε and pε ∈ L2(Ωε) such that

∫

Ωε

∇vε∇ϕ dx−
∫

Ωε

pε div ϕdx =
∫

Ωε

fϕ dx ∀ϕ ∈ W ε. (7)

Then for f ∈ L2(Ωε)2, the elementary elliptic variational theory gives the existence of the unique
velocity field vε ∈ W ε , div vε = 0 in Ωε, which solves (7) for every ϕ ∈ W ε, div ϕ = 0 in Ωε. The
construction of the pressure field goes through De Rham’s theorem (see e.g. book [26]).

We are interested in behavior of the solutions with respect to ε. First, we extend the velocity
field after extension by zero to the solid part. Furthermore, it would be more comfortable to work
with the pressure field pε defined on Ω. Following the approach from [19], we define the pressure
extension p̃ε by

p̃ε =

{
pε in Ωε

1
|Y ε

Fi
|

∫
Y ε

Fi

pε in the Y ε
Si

for each i (8)

where Y ε
Fi

is the fluid part of the cell Y ε
i . Note that solid part of the porous medium is a union of

all Y ε
Si

.
Then after [25], [19], [2] and [21], we have

Theorem 2. (a priori estimates for the velocity and the pressure fields in Ω). Let the velocity
field vε be extended by zero to the solid part. Then we have

‖vε‖L2(Ωε)2 + ε‖∇vε‖L2(Ωε)4 ≤ Cε2. (9)
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Let p̃ε be defined by (8). Then it satisfies the estimates

‖p̃ε − 1
|Ω|

∫

Ω

p̃εdx‖L2(Ω) ≤
1
|YF | ‖p

ε − 1
|Ω ∩ εEF |

∫

Ω∩εEF

pεdx‖L2(Ω∩εEF ) ≤ C. (10)

Theorem 2 gives a priori estimates for the velocity and the pressure. As a consequence of (9)
and (10), we postulate the following asymptotic expansion

vε(x) = ε2v0(x, y) + ε3v1(x, y) + . . . , y =
x

ε
(11)

pε(x) = p0(x, y) + εp1(x, y) + . . . , y =
x

ε
. (12)

This expansion takes care of the disparity of the two length scales in the problem. Furthermore,
since the geometry is periodic, it is natural to suppose a periodic dependence on the fast scale y.

Having two scales we should transform the derivatives. We have

∇ = ∇x +
1
ε
∇y; div = divx +

1
ε

divy and ∆ = ∆x +
2
ε

divx∇y +
1
ε2

∆y,

where the subscript indicates the variable involved in the differentiation.

Substituting the expansions (11)-(12) into (4)-(6), the following equations are obtained:

• O(ε−1) :
∇yp0(x, y) = 0 in Ω× YF (13)

• O(1) :
−∆yv0(x, y) +∇yp1(x, y) +∇xp0(x, y) = f(x) in Ω× YF (14)

• O(ε) :

divyv0(x, y) = 0 in Ω× YF (15)

−∆yv1(x, y) +∇yp2(x, y) +∇xp1(x, y) = 0 in Ω× YF (16)

• O(ε2) :

divxv0(x, y) + divyv1(x, y) = 0 in Ω× YF (17)

v0(x, y) = 0 on Ω× (∂YF \ ∂Y ); (18)

{v0(x, y), p1(x, y)} is 1− periodic in y, (19)

−∆yv2(x, y) +∇yp3(x, y) +∇xp2(x, y) = 0 in Ω× YF (20)

• O(ε3) : . . .

We are interested only in the lowest order approximation, corresponding to the homogenized
problem. First, we note that (13) is equivalent to p0 = p0(x), i.e. the zeroth order approxima-
tion of the pressure does not depend on y .
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Next, there is v1 satisfying (17) if and only if

divx

∫

YF

v0(x, y) dy = 0 in Ω. (21)

We can now summarize the conditions that {v0, p0, p1} should satisfy in Ω×YF . We take (13), (14),
(15), (18) and (21) and obtain the following problem





−∆yv0(x, y) +∇yp1(x, y) +∇xp0(x) = f(x) in Ω× YF

divyv0(x, y) = 0 in Ω× YF

v0(x, y) = 0 on Ω× (∂YF \ ∂Y )
{v0(x, y), p1(x, y)} is 1− periodic in y

divx

∫
YF

v0(x, y) dy = 0 in Ω

(22)

The quantity q0(x) =
∫

YF
v0(x, y) dy is the seepage velocity (or the specific discharge) for the

filtration through the porous medium Ω. |YF | is the porosity of Ω and the average velocity is the
seepage velocity divided by the porosity.

We still miss another boundary condition in x-variable. It is reasonable to impose

{p0,

∫

YF

v0 dy} is L− periodic . (23)

In general fixing the boundary conditions at the outer boundary ∂Ω is a difficult problem. The
detailed study of the boundary layers for the homogenization of the Stokes flow in a porous medium,
with a general boundary, is in [20]. In this paper we do not discuss those questions and this is the
reason why we have chosen the periodic conditions at the outer boundary, for the ε-problem.

System (22)-(23) is called the Stokes system with two pressures. We are going to show that
it has a unique solution {v0, p0, p1} in an appropriate functional space. Then it is natural to consider
it as the homogenized problem corresponding to (4)-(6) and we shall justify the approximation in
the next subsection. Furthermore, one should find a relationship between (22)-(23) and Darcy’s law
in theories of groundwater flows, stating that the seepage velocity q0 is proportional to the pressure
gradient ∇xp0. We start with the study of the problem (22)-(23). We start with elimination of
two pressures.

We consider the following auxiliary problems in YF :
For 1 ≤ i ≤ 2, find {wi, πi} ∈ H1

per(YF )2 × L2(YF ),
∫

YF
πi(y) dy = 0, such that




−∆ywi(y) +∇yπi(y) = ei in YF

divywi(y) = 0 in YF

wi(y) = 0 on (∂YF \ ∂Y )
(24)

Obviously, these problems always admit a unique solution. Let us introduce the permeability
matrix K by

Kij =
∫

YF

∇ywi∇ywj dy =
∫

YF

wi
j dy, 1 ≤ i, j ≤ 2. (25)

Permeability tensor K is symmetric and positive definite. Consequently, the drag tensor K−1 is
also positive definite.
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Theorem 3. (Darcy’s law). We have

v0(x, y) =
2∑

j=1

wj(y)(fj(x)− ∂p0(x)
∂xj

) x ∈ Ω, y ∈ YF (26)

q0(x) =
∫

YF

v0(x, y) dy = K(f(x)−∇xp0(x)) (Darcy’s law), (27)

where {wj , πj} are given by (24) and the permeability matrix K by (25).

Approximation order obtained by the 2-scale extension indicates that the L2-norm of rε =
vε/ε2−v0(x, x/ε) should be bounded as Cε. The idea is to estimate it using the Stokes equations with
appropriate forces. However, the presence of bad incompressibility effects in the velocity v0(x, x/ε)
forces us to add a corrector for div v0 as in [12] and in [20]. Now we suppose f ∈ C∞per(Ω)2 and set

v0,ε(x) = v0(x, x/ε); x ∈ Ωε; v0,ε(x) = 0 x ∈ Ω \ Ωε (28)

Let C∞per(Ω)2 be the space of infinitely derivable L-periodic functions on Ω and L2
0(Ω) = {z ∈

L2(Ω) | ∫
Ω

z dx = 0}. Now we can state the result :

Theorem 4. (see [21]) Let f ∈ C∞per(Ω)2 and div f = 0. Then we have

‖vε

ε2
− v0,ε‖L2(Ω) ≤ Cε, (29)

where vε is a solution for (4)-(6) extended by zero to Ω. Furthermore, there exists an extension Π̃ε

of Πε = pε − p0 such that
||Π̃ε||L2

0(Ω) = inf
C∈R

||Π̃ε + C||L2(Ω) ≤ Cε. (30)

3 Interface conditions for a 1D example

In this section we try to explain our approach to interface laws on a simple 1D example.
Let Ω1 = (−∞, 0) and Ω2 = (0,∞). Interface between Ω1 and Ω2 is the point Σ = {0}. Let Y =

(0, 1) and Z∗ = (0, a), 0 < a < 1. Then the ”fluid” part of Ω1 is given by Ωε
1F = ∪∞k=1ε(a−k, 1−k).

The 1D ”pore space” is now Ωε = Ωε
1F ∪ Σ ∪ Ω2.

Let f ∈ C∞0 (R) be a given function. We consider the problem




−d2uε

dx2
= f(x), in Ωε

uε = 0 on ∂Ωε, lim
|x|→+∞

duε

dx
= 0.

(31)

Following the calculations from Section §2, we expect the following behavior of uε:




uε = −ε2f(x)
2

(
x

ε
+ k)(

x

ε
+ k + 1− a) + O(ε3), for − k + a− 1 ≤ x

ε
≤ −k, k = 0, 1, . . .

uε =
∫ x

0

tf(t) dt + x

∫ ∞

x

f(t) dt + Cε, in Ω2,

(32)
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where Cε is an unknown constant. The corresponding ”permeability” is k = ε2(1 − a)3/12. Two
domains are linked through the interface Σ = {0}. Without an interface condition, the approxima-
tion in Ω2 is not determined. We search for effective interface conditions at Σ, leading to a good
approximation of uε by some ueff .

Classical way of finding interface conditions is by using matched asymptotic expansions (MMAE).
A recent reference in asymptotic methods and boundary layers in fluid mechanics is the book [27] by
Zeytounian and for the detailed explications, we invite reader to consult it and references therein.

In the language of the MMAE, expansions in Ω1 and Ω2 give us the outer expansions. We should
supplement it by an (local) inner expansion in which the independent variable is stretched out in
order to capture the behavior in the neighborhood of the interface.

The MMAE approach uses the limit matching rule, by which asymptotic behavior of the outer
expansion in the neighborhood of the interface has to be equal to asymptotic behavior of the inner
expansion outside interface.

The stretched variable is ξ =
x

εα
, α > 0. The geometry of Ωε

1F obliges us to take α ≥ 1. Then
the zero order term in the expansion is linear in ξ and the limit matching rule implies that, at the
leading order,

u0 = 0 at the interface Σ = {0}. (33)

Equations in the outer regions read




u0 = 0, in Ω1;

−d2u0

dx2
= f, in Ω2;

du0

dx
→ 0, as x → +∞.

(34)

The system (33)-(34) determines u0.
It is easy to find out that

u0(x) =





∫ x

0

tf(t) dt + x

∫ ∞

x

f(t) dt, x ≥ 0;

u0 = 0, in Ω1;

(35)

and

uε(x) =
∫ x

ε(a−1)

(t + ε(1− a))f(t) dt + (x + ε(1− a))
∫ ∞

x

f(t) dt, for x ≥ −ε(1− a)); (36)

uε(x) =
∫ x

ε(a−1)−kε

(t + ε(1− a + k))f(t) dt + (x + ε(k + 1− a))
( ∫ −εk

x

f(t) dt−

1
ε(1− a)

∫ −εk

ε(a−1)

(t + ε(1− a))f(t) dt
)
, for − kε ≥ x ≥ ε(a− 1)− kε, k = 1, 2, . . . (37)

Now we see that
uε(x) = u0(x) + O(ε) in Ω1. (38)
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Nevertheless in the neighborhood of the interface Σ = {0} approximation for
duε

dx
is not good and

it differs at order O(1).
Why the approximation deteriorates around the interface? It is due to the fact that the MMAE

method, as it is used in classical textbooks, does not suit interface problems. It matches only the
function values at the interface, but not the values of the normal derivative. This difficulty is not
easy to circumvent because imposing matching of the values of the function and its normal derivative
leads to an ill posed problem for our 2nd order equation.

In order to circumvent the difficulty, we propose the following strategy, introduced in the papers
[12], [13], [14], [15], [16] and [17] by Jäger and Mikelić:

1. STEP: We match the function values, as when using the MMAE method. In our particular
example this means that the first approximation u0,eff is given by the problem (33)-(34).

2. STEP: At Σ = {0} we have the derivative jump equal to
du0

dx
=

∫ +∞

0

f(t) dt. Natural

stretching variable is given by the geometry and reads y =
x

ε
. Therefore, the correction w is given

by




−d2w

dy2
= 0, in (0, +∞);

[w]Σ = w(+0)− w(−0) = 0; [
dw

dy
]Σ =

dw

dy
(+0)− dw

dy
(−0) = −du0

dx
(+0), on Σ

−d2w

dy2
= 0, in (a− 1, 0);

w(a− 1) = 0;
dw

dy
→ 0, when y → +∞.

(39)

For this simple problem we find easily that the solution is given by

w(y) =





du0

dx
(+0)(1− a), for y > 0;

du0

dx
(+0)(1− a + y), for a− 1 < y ≤ 0.

0, for y ≤ −1.

(40)

We add this correction to u0 and obtain u1,eff (x) = u0(x) + εw(
x

ε
). It is easy to see that





uε(x) = u0(x) + εw(
x

ε
) + O(ε2);

duε

dx
(x) =

du0

dx
(x) +

dw

dy
(
x

ε
) + O(ε).

(41)

Next we find out that u0(+0) + εw(+0) = ε(1 − a)
du0

dx
(+0) and

du0

dx
(+0) +

dw

dy
(+0) =

du0

dx
(+0).

Consequently, we impose the following effective interface condition :

ueff (+0) = ε(1− a)
dueff

dx
(+0) =

√
12k

1− a

dueff

dx
(+0). (42)

10



In (0, +∞), ueff satisfies the original PDE:

−d2ueff

dx2
= f, in Ω2;

dueff

dx
→ 0, as x → +∞. (43)

By easy direct calculation, we calculate the solution ueff for (42)-(43) and find out that

||uε − ueff ||L∞(0,+∞) = sup
x≥0

|uε(x)− ueff (x)| ≤ Cε2, (44)

proving the pointwise O(ε2) approximation of uε by the solution of the problem with effective
interface condition (42)-(43).

Clearly, in the case of a porous medium things are more complicated and w should be calculated
using the corresponding boundary layer problem.

4 Law by Beavers and Joseph

In this section we are going to justify the law (1) by the technique developed in [14] for Laplace’s
operator and then in [12] for the Stokes system and presented in Section §3. We suppose the
conditions of the experiment from [4], i.e. we consider the 2D laminar stationary incompressible
viscous flow over a porous bed. The flow is governed by the pressure drop pb − p0 over the bed
of length b. The mathematical justification of the law (1) for the Navier-Stokes system and the
boundary conditions for the pressure on the inlet and outlet boundaries is in [16]. Since the inertia
effects and the outer boundary layers effects, due to the choice of the pressure boundary conditions,
are not of the fundamental importance for the study of the interface boundary conditions, we will
make some non-essential simplifications. First, we neglect the inertial term. We note that anyhow
we are not able to find the boundary behavior for the turbulent free flow. The nonlinear stability
results for the laminar Navier-Stokes system are in [16]. Second, we suppose that the boundary is
sufficiently long and one can suppose the periodic boundary conditions at inlet/outlet boundary.

The flow is then governed by a force coming from the pressure drop and equal to
pb − p0

b
e1.

This section is organized as follows: In §4.1 we construct the necessary boundary layer and in
§4.2 the law (1) is justified.

4.1 Navier’s boundary layer

As observed in hydrology, the phenomena relevant to the boundary occur in a thin layer surrounding
the interface between a porous medium and a free flow. In this subsection we are going to present
a sketch of the construction of the main boundary layer, used for determining the coefficient α in
(1) and for a rigorous justification of the law by Beavers and Joseph. Since the law by Beavers and
Joseph is an example of the Navier slip condition, we call it Navier’s boundary layer.

Let Y = (0, 1)2 and Ys = Z∗ a Lipschitz domain strictly contained in Y . We introduce the pore
space YF by YF = Y \ Z̄∗, S = (0, 1)×{0}, Z+ = (0, 1)× (0,+∞) and the semi-infinite porous slab
Z− = ∪∞k=1(YF − {0, k}). The flow region is then ZBL = Z+ ∪ S ∪ Z−.

We consider the following problem:

11



Find {βbl, ωbl} with square-integrable gradients satisfying

−4yβbl +∇yωbl = 0 in Z+ ∪ Z− (45)

divyβbl = 0 in Z+ ∪ Z− (46)[
βbl

]
S
(·, 0) = 0 and

[{∇yβbl − ωblI}e2

]
S
(·, 0) = e1 on S (47)

βbl = 0 on ∪∞k=1 (∂Z∗ − {0, k}), {βbl, ωbl} is 1− periodic in y1 (48)

By Lax-Milgram’s lemma, there is a unique βbl ∈ L2
loc(ZBL)2, ∇yz ∈ L2(ZBL)4 satisfying (45)-(48)

and ωbl ∈ L2
loc(Z

+ ∪ Z−), unique up to a constant and satisfying (45).
The goal of this subsection is to establish that the system (45)-(48) describes a boundary layer,

i.e. that βbl and ωbl stabilize exponentially towards constants, when |y2| → ∞.
Since we are studying an incompressible flow, it is useful to prove properties of the conserved

averages.

Lemma 5. ([12]). Any solution {βbl, ωbl} satisfies

∫ 1

0

βbl
2 (y1, b) dy1 = 0, ∀b ∈ IR and

∫ 1

0

ωbl(y1, b1) dy1 =
∫ 1

0

ωbl(y1, b2) dy1, ∀b1 > b2 ≥ 0 (49)
∫ 1

0

βbl
1 (y1, b1) dy1 =

∫ 1

0

βbl
1 (y1, b2) dy1 = −

∫

ZBL

|∇βbl(y)|2 dy, ∀b1 > b2 ≥ 0. (50)

Proposition 6. ([12]). Let

Cbl
1 =

∫ 1

0

βbl
1 (y1, 0)dy1. (51)

Then for every y2 ≥ 0 and y1 ∈ (0, 1), |βbl(y1, y2)− (Cbl
1 , 0)| ≤ Ce−δy2 , ∀δ < 2π. (52)

Corollary 7. ([12]). Let

Cbl
ω =

∫ 1

0

ωbl(y1, 0) dy1. (53)

Then for every y2 ≥ 0 and y1 ∈ (0, 1), we have | ωbl(y1, y2)− Cbl
ω |≤ e−2πy2 . (54)

In the last step we study the decay of βbl and ωbl in the semi-infinite porous slab Z−.

Proposition 8. ([12]). Let βbl and ωbl be defined by (45)-(48). Then there exist positive constants
C and γ0, such that

|∇βbl(y1, y2)|+ |∇βbl(y1, y2)| ≤ Ce−γ0|y2|, for every (y1, y2) ∈ Z−. (55)

Furthermore, the limit κ∞ = lim
k→−∞

1
| YF |

∫

Zk

ωbl(y) dy exists and we have

|ωbl(y1, y2)− κ∞| ≤ Ce−γ0|y2|, for every (y1, y2) ∈ Z−. (56)

Remark 9. Without loosing generality we take κ∞ = 0. If the geometry of Z− is axially symmetric
with respect to reflections around the axis y1 = 1/2, then Cbl

ω = 0. For the proof, we refer to [17]. In
[17] a detailed numerical analysis of the problem (45)-(48) is given. Through numerical experiments
it is shown that for a general geometry of Z−, Cbl

ω 6= 0.
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4.2 Justification of the law by Beavers and Joseph

We consider the laminar viscous two-dimensional incompressible flow through a domain Ω consisting
of the porous medium Ω2 = (0, b) × (−L, 0) , the channel Ω1 = (0, b) × (0, h) and the permeable
interface Σ = (0, b) × {0} between them. We assume that the structure of the porous medium is
periodic and generated by translations of a cell Y ε = εY , defined in subsection §4.1. Let χ be the
characteristic function of YF , extended by periodicity to IR2. We set χε(x) = χ(

x

ε
), x ∈ IR2, and

define Ωε
2 by Ωε

2 = {x | x ∈ Ω2, χε(x) = 1}. Furthermore, Ωε = Ω1 ∪ Σ ∪ Ωε
2 is the fluid part of Ω.

It is supposed that (b/ε, L/ε) ∈ IN2.
Therefore, our porous medium is supposed to consist of a large number of periodically distributed

channels of characteristic length ε, being small compared with a characteristic length of the macro-
scopic domain. The flow is supposed to be slow and governed by the following equations

−µ4vε +∇pε = −pb − p0

b
e1 in Ωε, (57)

div vε = 0 in Ωε, (58)
vε = 0 on ∂Ωε \ ∂Ω and on (0, b)× ({−L} ∪ {h}), (59)

{vε, pε} is b− periodic in x1 (60)

where µ > 0 is the viscosity and p0 and pb are given constants. ε > 0 is the characteristic pore size,
vε is the velocity and pε is the pressure field. Problem (57)-(60) has a unique solution {vε, pε} ∈
H1(Ωε)2 × L2

0(Ω
ε) (see e.g. book [26]).

Now one would like to study of the effective behavior of the velocities vε and pressures pε as
ε → 0.

We follow the decomposition approach from [16] as presented in Section §3.
Following the two-scale expansions from Section §2, we expect the following behavior of uε:

In Ωε
2:

uε(x) =
ε2

µ

2∑

j=1

wj(
x

ε
)(−pb − p0

b
δ1j − ∂p0(x)

∂xj
) + O(ε3), x ∈ Ω; (61)

pε(x) = p0(x) + O(ε), x ∈ Ω, (62)

where wj , j = 1, 2 are given by (24). Furthermore, let the permeability tensor K be given by (25).
Then we have

div
(
K∇p0

)
= 0 in Ω2, (63)

K∇p0 · e2 = 0 on (0, b)× {−L} and p0 is b-periodic in x1. (64)

In Ω1: We keep the equations (57)-(60) for {u0, p0}.
Obviously, without setting interface conditions at Σ, functions {u0, p0} are not determined.
Let us apply the strategy presented in Section §3:
1. STEP: We match the function values, as when using the MMAE method. It comes out

immediately that for the lowest order approximation {v0, π0} we have on Σ the no-slip condition

v0 = 0 on Σ. (65)
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Now {v0, π0} satisfies equations (57)-(60) in Ω1, supplemented by the condition (65).
We observe that the unique solution for this problem in H1(Ω1)2×L2

0(Ω1) is the classic Poiseuille
flow in Ω1, satisfying the no-slip conditions at Σ. It is given by

v0 =
(

pb − p0

2bµ
x2(x2 − h), 0

)
for 0 ≤ x2 ≤ h; π0 = 0 for 0 ≤ x1 ≤ b. (66)

We extend this solution to Ω2 by setting v0 = 0 for −L ≤ x2 ≤ 0 and keeping the same form of π0.
Does this solution approximate in some sense the solution {uε, pε} for the original problem (57)-

(60)? The idea is to construct the solution to (57)-(60) as a small perturbation to the Poiseuille flow
(66). By uniqueness, this would give us the approximation result.

In order to establish it, we first need the following simple auxiliary result:

Lemma 10. Let ϕ ∈ H1(Ωε
2) be such that ϕ = 0 on ∂Ωε

2 \ ∂Ω2. Then we have

‖ϕ‖L2(Ωε
2)

+ ε1/2‖ϕ‖L2(Σ) ≤ Cε‖∇ϕ‖L2(Ωε
2)

2 (67)

Direct consequence of Lemma 10 is the following result, proved in [16], which establishes the non-
linear stability of the Poiseuille flow with respect to the perturbation by changing the impermeable
boundary to a porous bed:

Proposition 11. Let {vε, pε} be the solution for (57)-(60) and {v0, π0} defined by (66). Then we
have

√
ε‖∇(vε − v0)‖L2(Ωε)4 +

√
ε‖pε − π0‖L2(Ω1) + ‖vε‖L2(Σ) + ‖vε − v0‖L2(Ω1)2 ≤ Cε (68)

Therefore, we have obtained the uniform a priori estimates for {vε, pε}. Moreover, we have found
that Poiseuille’s flow in Ω1 is an O(ε) L2-approximation for vε. Beavers and Joseph’s law should
correspond to the next order velocity correction. Since the Darcy velocity is of order O(ε2), we will
in fact justify Saffman’s version of the law.

2. STEP: At the interface Σ we have the shear stress jump equal to −µ
∂v0

1

∂x2
|Σ. Again, natural

stretching variable is given by the geometry and reads y =
x

ε
. The correction {w, pw} is given by

−µ4yw +∇ypw = 0 in Ω1/ε ∪ Ωε
2/ε, (69)

divyw = 0 in Ω1/ε ∪ Ωε
2/ε, (70)

[
w

]
(·, 0) = 0 and

[
µ

∂w1

∂y2

]
(·, 0) = µ

∂v0
1

∂x2
|Σ on Σ/ε, (71)

w = 0 on ∂(Ωε
2 \ Ω2)/ε, {w, pw} is b/ε− periodic in y1. (72)

Using periodicity of the geometry and independence of
∂v0

1

∂x2
|Σ on y, we have

w(y) =
∂v0

1

∂x2
|Σβbl(y) and pw(y) = µ

∂v0
1

∂x2
|Σωbl(y), (73)

where {βbl, ωbl} is given by (45)-(48).
Now we set

βbl,ε(x) = εβbl(
x

ε
) and ωbl,ε(x) = ωbl(

x

ε
), x ∈ Ωε, (74)
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βbl,ε is extended by zero to Ω \ Ωε. Let H be Heaviside’s function. Then for every q ≥ 1 we have

1
ε
‖βbl,ε − ε(Cbl

1 , 0)H(x2)‖Lq(Ω)2 + ‖ωbl,ε − Cbl
ω H(x2)‖Lq(Ωε) + ‖∇βbl,ε‖Lq(Ω1∪Σ∪Ω2)4 = Cε1/q. (75)

Hence, our correction is not concentrated around the interface and there are some stabilization
constants. We will see that these constants are closely linked with our effective interface law.

As in [12] stabilization of βbl,ε towards a nonzero constant velocity ε
(
Cbl

1 , 0
)
, at the upper bound-

ary, generates a counterflow. It is given by the homogeneous Stokes system (57)-(58) in Ω1, the
periodicity condition (60), on Σ the counter velocity d is zero and on (0, b) × {h} it is equal to
ε
(
Cbl

1 , 0
)
. Obviously the unique solution is the two dimensional Couette flow d = εCbl

1

x2

h
e1.

Now, we expected that

vε = v0 − βbl,ε ∂v0
1

∂x2
|Σ + εCbl

1

∂v0
1

∂x2
|ΣH(x2)

x2

h
e1 + O(ε2), (76)

Contrary to the scalar case considered in Section §3, here we have additional complications due
to the stabilization of the boundary layer pressure to Cbl

ω , when y2 → +∞. Consequently, the

correction in Ω1 is ωbl,ε −H(x2)Cbl
ω

)
µ

∂v0
1

∂x2
|Σ. At the flat interface Σ, the normal component of the

normal stress reduces to the pressure field. Subtraction of the stabilization pressure constant at
infinity leads to the pressure jump on Σ:

[p0]Σ = π0(x1, +0)− p0(x1,−0) = −p0(x1,−0) = −Cbl
ω µ

∂v0
1

∂x2
|Σ for x1 ∈ (0, b) (77)

Now we are able to calculate the leading order porous media pressure. It satisfies the equa-
tions (63)-(64) and the condition (77). We see immediately that in our particular situation p0 =

H(−x2)Cbl
ω µ

∂v0
1

∂x2
|Σ. Therefore the pressure approximation is

pε(x) = p0H(−x2)−
(
ωbl,ε(x)−H(x2)Cbl

ω

)
µ

∂v0
1

∂x2
|Σ + O(ε) =

(
Cbl

ω − ωbl,ε(x)
)
µ

∂v0
1

∂x2
|Σ + O(ε). (78)

Follow the ideas from [12], these heuristic calculations could be made rigorous. Let us introduce
the errors in velocity and in the pressure:

Uε(x) = vε − v0 + βbl,ε ∂v0
1

∂x2
|Σ − εCbl

1

∂v0
1

∂x2
|ΣH(x2)

x2

h
e1 (79)

Pε(x) = pε − p0H(−x2) +
(
ωbl,ε −H(x2)Cbl

ω

)
µ

∂v0
1

∂x2
|Σ (80)

Then, after [16], we have the required higher order error estimate:

Theorem 12. Let Uε be defined by (79) and Pε by (80). Then we have the following estimates

ε‖Pε‖L2(Ω1) + ε‖∇Uε‖L2(Ωε)4 + ‖Uε‖L2(Ωε
2)

2 + ε1/2(‖Uε‖L2(Σ)2 + ‖Uε‖L2(Ω1)2) ≤ Cε2 (81)

The estimate (81) allows justifying Saffman’s modification of the Beavers and Joseph law (1):

vε = v0 −
(

βbl,ε − ε
(
Cbl

1 , 0
)
H(x2)

)
∂v0

1

∂x2
|Σ − εCbl

1

∂v0
1

∂x2
|ΣH(x2)(1− x2

h
)e1 + O(ε2)
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where v0 is the Poiseuille velocity in Ω1 and the third term corresponds to the counterflow generated
by the boundary layer stabilization constant tangential velocity at infinity. Then on the interface Σ

∂vε
1

∂x2
|Σ =

∂v0
1

∂x2
|Σ − ∂βbl

1

∂y2
|Σ,y=x/ε + O(ε) and

vε
1

ε
= −βbl

1 (x1/ε, 0)
∂v0

1

∂x2
|Σ + O(ε).

After averaging over Σ with respect to y1, we obtain the familiar form of the Saffman version of the
law by Beavers and Joseph

ueff
1 = −εCbl

1

∂ueff
1

∂x2
on Σ, (82)

where ueff is the average over the characteristic pore opening at the naturally permeable wall. The
higher order terms are neglected.

Now we introduce the effective flow equations in Ω1 through the following boundary value prob-
lem:

Find a velocity field u0 and a pressure field peff such that

−µ4ueff +∇peff = −pb − p0

b
e1 in Ω1, (83)

div ueff = 0 in Ω1, (84)

ueff = 0 on (0, b)× {h}; ueff and peff are b− periodic , (85)

ueff
2 = 0 and ueff

1 + εCbl
1

∂ueff
1

∂x2
= 0 on Σ. (86)

Problem (83)-(86) has a unique solution

ueff =
(

pb − p0

2bµ

(
x2 − εCbl

1 h

h− εCbl
1

)
(x2 − h), 0

)
for 0 ≤ x2 ≤ h; peff = 0 for 0 ≤ x1 ≤ b. (87)

The effective mass flow rate through the channel is then

Meff = b

∫ h

0

ueff
1 (x2) dx2 = −pb − p0

12µ
h3 h− 4εCbl

1

h− εCbl
1

, (88)

where Cbl
1 < 0.

Let us estimate the error made when replacing {vε, pε,Mε} by {ueff , peff , Meff}.
Proposition 13. We have

√
ε‖∇(vε − ueff )‖L1(Ω1)4 + ‖vε − ueff‖L2(Ω1)2 + |Mε −Meff | ≤ Cε3/2. (89)

Our interface is a mathematical one and it does not exist as a physical boundary. It is clear
that we can take any straight line at the distance O(ε) from the rigid parts as an interface. Hence,
it remains to prove that the law by Beavers and Joseph does not depend on the position of the
interface. We have the following auxiliary result

Lemma 14. Let a < 0 and let βa,bl be the solution for (45)-(48) with S replaced by Sa = (0, 1)×{a},
Z+ by Z+

a = (0, 1)× (a,+∞) and Z−a = ZBL \ (Sa ∪ Z+
a ). Then we have

Ca,bl
1 = Cbl

1 − a. (90)
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This simple result will imply the invariance of the obtained law on the position of the interface.

Remark 15. Let Ωaε = (0, b)× (aε, h) for a < 0 and let {ua,eff , pa,eff} be a solution for (83)-(86)
in Ωaε, with (86) replaced by

ua,eff
2 = 0 and ua,eff

1 + εCa,bl
1

∂ua,eff
1

∂x2
= 0 on Σa = (0, b)× aε. (91)

The unique solution {ua,eff , pa,eff} for (83)-(85), (91) is given by

ua,eff =
(pb − p0

2bµ

(
(x2 − aε)2 − (x2 − aε− εCa,bl

1 )
(h− aε)2

h− aε− εCa,bl
1

)
, 0

)

for aε ≤ x2 ≤ h and pa,eff = p0 =
pb − p0

b
x1 + p0 for 0 ≤ x1 ≤ b. By Lemma 14, Ca,bl

1 = Cbl
1 − a

and ua,eff (x) = ueff (x) + O(ε2). Therefore, a perturbation of the interface position for an O(ε)
implies a perturbation in the solution of O(ε2). Consequently, there is a freedom in fixing position
of Σ. It influences the result only at the next order of the asymptotic expansion.

5 Conclusion

We presented a derivation of the interface law by Beavers and Joseph, describing the viscous flow
over a porous bed. Using a combination of the homogenization and boundary layer approach we
obtain the effective equations first heuristically and then justify them rigorously. Main results are
the following:

1. We derive Saffman’s form of the law by Beavers and Joseph. We note that the physical
permeability is kε = ε2K and the proportionality constant in (82) is proportional to

√
kε. The

error is of order kε, as remarked by Saffman in [24]. It is important to point out that the
parameter α from the expression (1) is determined through the auxiliary problems (45)-(48)

and (51) by α = − 1
εCbl

1

> 0.

2. Interface between the unconfined flow and the porous bed is an artificial mathematical bound-
ary and there is a liberty to choose it in a layer having the pore size thickness. We have
shown that a perturbation of the interface position of order O(ε) implies a perturbation in the
solution of order O(ε2).

3. In what concerns the pressure approximation, after extending it as in Section §2, we get the

uniform bound on it. Hence the effective pressure in Ω2 is µCbl
ω

∂v0
1

∂x2
|Σ and in Ω1 it is zero.

In our effective approximation (78) the two values are linked by a pressure boundary layer
and for the full approximation effective pressure is continuous. In practice, one would like to
neglect the pressure boundary layer. This leads to the discontinuity of the effective pressure
field at Σ and does not confirm the effective pressure interface continuity law proposed in [10].
The price to pay for neglecting the boundary layer pressure is a bad approximation for the
pressure in the neighborhood of the interface Σ. Proving the error estimate for the pressure
approximation in the porous bed Ωε

2 remains an open problem.
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4. We do not address here derivation of the interface conditions for flows through porous media,
containing two subdomains with different microstructures. The problem could be treated
by the same technique used for deriving the law by Beavers and Joseph. For details we
refer to [15]. In contrast with the law by Beavers and Joseph, in this case we do not have
contribution of effective parameters from the corresponding boundary layers to the leading
order approximation.

Acknowledgement: The authors are grateful to the (anonymous) referees for their careful
reading of the manuscript and helpful remarks.
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