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Abstract

It is generally accepted that the effective velocity of a viscous flow over a porous
bed satisfies the Beavers-Joseph slip law. To the contrary, in the case of a forced
infiltration of a viscous fluid into a porous medium the interface law has been a
subject of controversy. In this paper, we prove rigorously that the effective interface
conditions are: (i) the continuity of the normal effective velocities; (ii) zero Darcy’s
pressure and (iii) a given slip velocity. The effective tangential slip velocity is
calculated from the boundary layer and depends only on the pore geometry. In
the next order of approximation, we derive a pressure slip law. An independent
confirmation of the analytical results using direct numerical simulation of the flow at
the microscopic level is given, as well.
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1. Introduction

The aim of this paper is to derive rigorously interface conditions governing the
infiltration of a viscous fluid into a porous medium.

We start from an incompressible 2D flow of a Newtonian fluid penetrating a porous
medium. At the pore scale, the flow is described by the stationary Stokes system,
both, in the unconstrained fluid part and in the pore space. Upscaling of the Stokes
system in a porous medium yields Darcy’s law as the effective momentum equation,
valid at every point of the porous medium. The two models, Stokes system and the
Darcy equation, are partial differential equations of different order and need to be
coupled at the interface of the fluid and the porous medium. The resulting system
should provide an approximation of the starting first principles with error estimate
in the term of the dimensionless pore size ε, being the ratio of the characteristic pore
size and the macroscopic domain length.

The main result of this paper is a rigorous derivation of the effective filtration
equation and the interface condition from the pore scale level description based on
first principles, supported by a direct pore scale simulation of the Stokes equations.

The resulting interface conditions take the form:

(i)

ueff2 = uD2 and PD = 0 on {x2 = 0}, (1)

where {uD, PD} are the Darcy velocity and the pressure and ueff is the uncon-
fined fluid velocity.

(ii)

ueff1 = C2,bl
1

∂PD

∂x2

on {x2 = 0}, (2)

where C2,bl
1 is a boundary layer stabilization constant given by (11). Note that

in general C2,bl
1 6= K12 K being the permeability tensor, and there is a jump of

the effective tangential velocities.

There is vast literature on modeling interface conditions between a free flow and
a porous medium. Most of the references focus on flows which are tangential to
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the porous medium. In such situation, the free fluid velocity is much larger than
the Darcy velocity in the porous medium. The corresponding interface condition
is the slip law by Beavers and Joseph. It was deduced from the experiment in [3],
then discussed and simplified into a generally used form in [30] and justified through
numerical simulations of pore level Navier-Stokes equations in [31], [20] and [7]. A
rigorous justification of the slip law by Beavers and Joseph, starting from the pore
level first principles, was provided by Jäger and Mikelić in [17], using a combination
of homogenization and boundary layers techniques. The slip law is supplemented by
the pressure jump law, what was noticed in [18] and rigorously derived in [25]. A
corresponding numerical validation by solving the Stokes equation at the pore scale
has been recently presented in [7].

Infiltration into a porous medium corresponds to a different situation, in which
the free fluid velocity and the Darcy velocity are of the same order. We refer to the
article by Levy and Sanchez-Palencia [23]. They classify the physical situation as
”Case B: The pressure gradient on the side of the porous body at the interface is
normal to it”. In the ”Case B” the pressure gradient in the porous medium is much
larger than in the free fluid. Using an order-of-magnitude analysis, in [23] it was
concluded that the effective interface conditions have to satisfy conditions (1). Note
that the interface conditions (1) were obtained for low Reynolds number flows.

In order to close the system, one more condition is needed. In [23] an intermedi-
ate boundary layer was introduced and existence of an effective slip velocity at the
interface was postulated. However, the article [23] did not provide the slip velocity.
It was limited to a model of macroscopic isotropy, where the slip is equal to zero.
Therefore, zero tangential velocity was assumed.

A rigorous mathematical study of the interface conditions between a free fluid and
a porous medium was initiated in [16]. Our analysis reposes on the boundary layers
constructed there. For reviews of the models and techniques we refer to [11] and [19].

We note that in a number of articles devoted to numerical simulations, the porous
part was modeled using the Brinkman-extended Darcy law. We refer to [10], [13], [14],
[26], [35] and references therein. In such setting, the authors used general interface
conditions introduced by Ochoa-Tapia and Whitaker in [28]. They consist of (i)
continuity of the velocity and (ii) complex jump relations for the stresses, containing
several parameters to be fitted. We recall that the viscosity in the Brinkman equation
is not known and the use of it seems to be justified only in the case of a high porosity
(see the discussion in [27]). Furthermore, Larson and Higdon undertook a detailed
numerical simulation of two configurations (axial and transverse) of a shear flow over
a porous medium in [21]. Their conclusion was that a macroscopic model based on
Brinkman’s equation gives “reasonable predictions for the rate of decay of the mean
velocity for certain simple geometries, but fails for to predict the correct behavior
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for media anisotropic in the plane normal to the flow direction”. An approach using
the thermodynamically constrained averaging theory was presented in [15]. Darcy-
Navier-Stokes coupling yields also interesting numerical problems, see [22], [29] and
[11] and references therein.

In our work we use a finite element method to obtain a numerical confirmation of
the analytical results. Numerical study of the convergence rates of the macroscopic
problems and effective interface conditions is a challenging task. The first difficulty
is to find a numerical solution of the microscopic problem used as a reference. The
geometry of the porous part has to be resolved with high accuracy. In addition, the
microscopic solution in the vicinity of the surface of the porous medium has large
gradients that can be approximated only by a boundary layer, as shown in this work.
The accuracy needed by the resolution of the interface and porous part requires high
performance computing. In our test cases, we reduce the computational costs by con-
sidering a problem with periodic geometry and periodic boundary conditions. Thus,
we reduce the computations to one column of inclusions in the porous part. Neverthe-
less, even in the simplified example problem all the computations must be performed
with high accuracy. The reason is that the homogenization errors, especially in the
estimates based on correction terms, are small in comparison with numerical errors
even for simulations with millions of degrees of freedom. A further difficulty is that
to check the estimates numerically, we have to solve several auxiliary problems which
are coupled. Therefore the numerical precision of one problem influences the precision
of the other ones. Due to the complexity of the microscopic flow and the boundary
layers, strategies for local mesh adaptivity to reduce the computations of the norms
in the estimates are not effective. We nevertheless apply a goal oriented adaptive
method, based on the dual weighted residual (DWR) method [4], to calculate some
constants needed for the estimates, increasing the overall accuracy of our numerical
tests.

The paper is organized as follows: In Section 2 we formulate the microscopic
problem and the resulting effective equations. We provide theorems on error estimates
of the model approximation. In Section 3 we give a numerical confirmation of the
analytical results based on finite element computations. Sections 4–5 contain the
corresponding proofs. The necessary results on boundary layers and very weak
solutions to the Stokes system will be recalled in the proofs of the main results.

2. Problem setting and main results

2.1. Definition of the geometry

Let L, h and H be positive real numbers. We consider a two dimensional periodic
porous medium Ω2 = (0, L)× (−H, 0) with a periodic arrangement of the pores. The
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Figure 1: Sketch of the geometry (a) the periodicity cell Y (b).

formal description goes along the following lines:
First, we define the geometrical structure inside the unit cell Y = (0, 1)2. Let Ys

(the solid part) be a closed strictly included subset of Ȳ , and YF = Y \Ys (the fluid
part). Now we make a periodic repetition of Ys all over R2 and set Y k

s = Ys + k,
k ∈ Z2. Obviously, the resulting set Es =

⋃
k∈Z2 Y k

s is a closed subset of R2 and
EF = R2\Es in an open set in R2. We suppose that Ys has a boundary of class C∞,
which is locally located on one side of their boundary. Obviously, EF is connected
and Es is not.

Now we notice that Ω2 is covered with a regular mesh of size ε, each cell being a
cube Y ε

i , with 1 ≤ i ≤ N(ε) = |Ω2|ε−2[1 + o(1)]. Each cube Y ε
i is homeomorphic to

Y , by linear homeomorphism Πε
i , being composed of translation and a homothety of

ratio 1/ε.
We define Y ε

Si
= (Πε

i )
−1(Ys) and Y ε

Fi
= (Πε

i )
−1(YF ). For sufficiently small

ε > 0 we consider the set Tε = {k ∈ Z2|Y ε
Sk
⊂ Ω2} and define

Oε =
⋃
k∈Tε

Y ε
Sk
, Sε = ∂Oε, Ωε

2 = Ω2\Oε = Ω2 ∩ εEF

Obviously, ∂Ωε
2 = ∂Ω2∪Sε. The domains Oε and Ωε

2 represent, respectively, the solid
and fluid parts of the porous medium Ω. For simplicity, we suppose L/ε,H/ε, h/ε ∈
N.

We set Σ = (0, L)× {0}, Ω1 = (0, L)× (0, h) and Ω = (0, L)× (−H, h). Further-
more, let Ωε = Ωε

2 ∪Σ ∪Ω1 and Ω = Ω2 ∪Σ ∪Ω1. (See Fig. 1a)
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2.2. The microscopic model

Having defined the geometrical structure of the porous medium, we precise the
flow problem.

We consider the slow viscous incompressible flow of a single fluid through a porous
medium. The flow is caused by the fluid injection at the boundary {x2 = h}. We
suppose the no-slip condition at the boundaries of the pores (i.e. the filtration through
a rigid porous medium). Then, the flow is described by the following non-dimensional
steady Stokes system in Ωε (the fluid part of the porous medium Ω):

−∆vε +∇pε = 0 in Ωε, (3a)

div vε = 0 in Ωε,

∫
Ω1

pε dx = 0, (3b)

vε = 0 on ∂Ωε \Ω, {vε, pε} is L− periodic in x1, (3c)

vε|x2=h = vD, vε2|x2=−H = g,
∂vε1
∂x2

|x2=−H = 0. (3d)

Such flow is possible only under the following compatibility condition

LUB =

∫ L

0

g(x1) dx1 =

∫ L

0

vD2 (x1) dx1. (4)

With the assumption on the geometry from section 2.1, condition (4) and for f ∈
C∞(Ω)2, vD ∈ C∞[0, L]2 and g ∈ C∞[0, L], problem (3a)-(3d) admits a unique
solution {vε, pε} ∈ C∞(Ωε)3, for all ε > 0.

Our goal is to study behavior of solutions to system (3a)-(3d), when ε → 0. In
such limit the equations in Ω1 remain unchanged and in Ωε

2 the Stokes system is
upscaled to Darcy’s equation posed in Ω2. Our contribution is the derivation of the
interface condition, linking these two systems.

2.3. The boundary layers and effective coefficients

Let the permeability tensor K be given by

Kij =

∫
YF

∇yw
i : ∇yw

j dy =

∫
YF

wij dy, 1 ≤ i, j ≤ 2. (5)

where for 1 ≤ i ≤ 2, {wi, πi} ∈ H1
per(YF )2×L2(YF ),

∫
YF
πi(y) dy = 0, are solutions to

−∆yw
i(y) +∇yπ

i(y) = ei in YF
divyw

i(y) = 0 in YF
wi(y) = 0 on (∂YF \ ∂Y ).

(6)
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Figure 2: The boundary layer geometry

(See Fig. 1b). Obviously, these problems always admit unique solutions and K
is a symmetric positive definite matrix (the dimensionless permeability tensor). In
addition

Kj2 = K2j =

∫ 1

0

wj2(y1, 0) dy1. (7)

In order to formulate the result we need the viscous boundary layer problem
connecting free fluid flow and a porous medium flow:

In the Fig. 2, the interface is S = (0, 1) × {0}, the free fluid slab is Z+ =
(0, 1)× (0,+∞) and the semi-infinite porous slab is Z− = ∪∞k=1(YF − {0, k}) , where
YF − {0, k} denotes the translation of the pore YF for k in the negative y2 direction.
The flow region is then ZBL = Z+ ∪ S ∪ Z−.

We consider the following problem:
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Find {βj,bl, ωj,bl}, j = 1, 2, with square-integrable gradients satisfying

−∆yβ
j,bl +∇yω

j,bl = 0 in Z+ ∪ Z− (8a)

div yβ
j,bl = 0 in Z+ ∪ Z− (8b)[

βj,bl
]
S
(·, 0) = K2je

2 −wj on S (8c)[
{∇yβ

j,bl − ωj,blI}e2
]
S
(·, 0) = −{∇yw

j − πjI}e2 on S (8d)

βj,bl = 0 on ∪∞k=1 (∂Ys − {0, k}), {βj,bl, ωj,bl} is 1− periodic in y1. (8e)

By Lax-Milgram’s lemma, there exists a unique βj,bl ∈ L2
loc(ZBL)2, ∇yβ

j,bl ∈ L2(Z+∪
Z−)4 satisfying (8a)-(8e) and ωj,bl ∈ L2

loc(ZBL), which is unique up to a constant and
satisfying (8a). After the results from [16], the system (8a)-(8e) describes a boundary
layer, i.e. βj,bl and ωj,bl stabilize exponentially towards constants, when |y2| → ∞:
There exist γ0 > 0 and Cj,bl and Cj

π such that

|βj,bl −Cj,bl|+ |ωj,bl − Cj
π| ≤ Ce−γ0y2 , y2 > 0, (9)

e−γ0y2∇yβ
j,bl, e−γ0y2βj,bl, e−γ0y2ωj,bl ∈ L2(Z−), (10)

Cj,bl = (Cj,bl
1 , 0) = (

∫
S

βj,bl1 (y1,+0) dy1, 0), (11)

Cj
π =

∫ 1

0

ωj,bl(y1,+0) dy1. (12)

The case j = 2 is of special importance. If we suppose the mirror symmetry of
the solid obstacle Ys with respect to y1, then it is easy to prove that w2

1 is uneven
in y1 with respect to the line {y1 = 1/2}, and w2

2 and π2 are even. Consequently,
K12 = K21 = 0 and the permeability tensor K is diagonal. Next we see that β2,bl

1 is
uneven in y1 with respect to the line {y1 = 1/2}, and β2,bl

2 and ω2 are even. Using
formula (11) yields C2,bl

1 = 0 in the case of the mirror symmetry of the solid obstacle
Ys with respect to y1.

2.4. The macroscopic model

Now we introduce the effective problem in Ω. It consists of two problems, which
are to be solved sequentially. The first problem is posed in Ω2 and reads:

Find a pressure field PD which is the L− periodic in x1 function satisfying

uD = −K∇PD and div

(
K∇PD

)
= 0 in Ω2 (13a)

PD = 0 on Σ; −K∇PD|{x2=−H} · e2 = g. (13b)

We note that the value PD|Σ of pressure field at the interface Σ is equal to zero.
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Problem (13a)-(13b) admits a unique solution {uD, PD} ∈ C∞(Ω2)3.

Next, we study the situation in the unconfined fluid domain Ω1:
Find a velocity field ueff and a pressure field peff such that

−4ueff +∇peff = 0 in Ω1, (14a)

div ueff = 0 in Ω1,

∫
Ω1

peff dx = 0, (14b)

ueff = vD on (0, L)× {h}; ueff and peff are L− periodic in x1, (14c)

ueff2 = −K∇PD · e2 = −K22
∂PD

∂x2

and ueff1 = C2,bl
1

∂PD

∂x2

on Σ. (14d)

The constant C2,bl
1 is given by (11) and requires solving problem (8a)-(8e).

Again, using the compatibility condition (4) we obtain easily that problem (14a)-
(14d) has a unique solution {ueff , peff} ∈ C∞(Ω1)3.

2.5. The main result

In this section we formulate the approximated model. We expect that the Stokes
system remains valid in Ω1.

Since UB = O(1) 6= 0, the filtration velocity has to be of order O(1). Therefore,
after [1], [19] and [32], the asymptotic behavior of the velocity and pressure fields in
the porous part Ω2, in the limit ε→ 0, is given by the two-scale expansion

vε ≈ u0(x, y) + εu1(x, y) +O(ε2), y =
x

ε
,

pε ≈ 1

ε2
PD(x) +

1

ε
p1(x, y) +O(1), y =

x

ε
,

u0(x, y) = −
2∑
j=1

wj(y)
∂PD(x)

∂xj
, p1(x, y) = −

2∑
j=1

πj(y)
∂PD(x)

∂xj
.

The boundary layers given by (8a)-(8e) will be used to link the above approximation
on Σ with the solution of the Stokes system. With such strategy, at the main order
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approximation reads

vε = H(x2)(ueff − C2,bl
1

∂PD

∂x2

|Σe1)−H(−x2)
2∑

k=1

∂PD

∂xk
wk(

x

ε
)+

∂PD

∂x2

|Σβ2,bl(
x

ε
) +O(ε) + outer boundary layer, (15)

pε = H(x2)peff +H(−x2){ε−2PD − 1

ε

2∑
k=1

(
∂PD

∂xk
πk(

x

ε
) +Akπδ2k)}+

1

ε
(ω2,bl(

x

ε
)− C2

πH(x2))
∂PD

∂x2

|Σ + o(
1

ε
) + outer boundary layers, (16)

where H(t) is the Heaviside function. We will see that Akπ = C2
π

∂PD

∂x2

|Σ.

Next we follow references [1] and [24] and extend the pressure pε to Ω2 by

p̃ε(x) =


pε(x) for x ∈ Ωε;

1

ε2|YF |

∫
ε(YF−(k1,k2))

pε(y) dy in each ε(Ys − (k1, k2)). (17)

wi, i = 1, 2 and β2,bl are extended by zero to the solid structure YS and vε by zero to
Ω \Ωε.

Theorem 1. Let O be a neighborhood of x2 = −H. Let us suppose the geometry and
data smoothness as above and the compatibility condition (4). Let pε be extended to
Ω2 by formula (17).Then we have

||vε − ueff ||L2(Ω1) ≤ C
√
ε (18)

||vε +
∂PD

∂x2

|Σ(K22e
2 − β2,bl(

x1

ε
, 0+))||L2(Σ) ≤ C

√
ε (19)

||vε +
2∑

k=1

∂PD

∂xk
wk(

x

ε
)− ∂PD

∂x2

|Σβ2,bl(
x

ε
)||L2(Ω2\O) ≤ Cε (20)

||p̃ε −H(−x2)ε−2PD||L2(Ω) ≤
C

ε
. (21)

Inspection of the proof of theorem (1) shows that we can obtain slightly better
estimates by rearranging the term

1

ε
(ω2,bl(

x

ε
)− C2

πH(x2))
∂PD

∂x2

|Σ.

We obtain
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Theorem 2. Let O be a neighborhood of x2 = −H. Let us suppose the geometry and
data smoothness as above and the compatibility condition (4). Let pε be extended to
Ω2 by formula (17).Then we have

||vε − ueff + C2,bl
1

∂PD

∂x2

|Σe1 − ∂PD

∂x2

|Σβ2,bl(
x

ε
)||L2(Ω1) ≤ Cε (22)

||vε +
∂PD

∂x2

|Σ(wk(
x1

ε
, 0−)− β2,bl(

x1

ε
, 0−))||L2(Σ) =

||vε +
∂PD

∂x2

|Σ(K22e
2 − β2,bl(

x1

ε
, 0+))||L2(Σ) ≤ Cε (23)

||vε +
2∑

k=1

∂PD

∂xk
wk(

x

ε
)− ∂PD

∂x2

|Σβ2,bl(
x

ε
)||L2(Ω2\O) ≤ Cε (24)

||p̃ε −H(−x2)(ε−2PD − ε−1(C2
π

∂PD

∂x2

|Σ +
2∑
j=1

π̃j(
x

ε
)
∂PD

∂xj
))||L2(Ω) ≤

C√
ε
. (25)

Remark 3. We took as correction to PD the quantity −C2
π∂x2P

D|Σ. In fact the
better choice would be to take a function satisfying equations (13a)-(13b), with value
on Σ being −C2

π∂x2P
D|Σ, instead of zero. Since the order of approximation does not

change, we make the simplest possible choice.
If the effective porous medium pressure is PD,eff = PD − εC2

π∂x2P
D|Σ, then the

requirement that we can only have an O(1) normal stress jump on Σ yields

PD,eff + εC2
π∂x2P

D,eff = O(ε2) on Σ. (26)

The relation (26) indicates presence of an effective pressure slip at the interface Σ.
Since ε is related to the square root of the permeability, in the dimensional formulation,
our result compares to the numerical experiments by Sahraoui and Kaviany in [20]
and [31]. They found it being small for parallel flows. We find it small but of order
of the corrections in the law by Beavers and Joseph in the case of the transverse flow.

Remark 4. We obtain an expression for the tangential slip velocity. Since it is zero
in the isotropic case, we do not confirm formulas like (86), page 2645, from [28] or
like formula (31) for oblique flows from [31], which generalize the law by Beavers and
Joseph.

In [28], formula (71), page 2643, expresses the continuity of the averaged velocities.
By construction, we have the trace continuity for our approximation. Nevertheless,
one usually does not keep the boundary layers in the macroscopic model. If we elimi-
nate the boundary layers and all low order terms, the effective velocity at the interface
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Σ is

ueff = C2,bl
1

∂PD

∂x2

e1 −K22
∂PD

∂x2

e2,

(see (14d) ) and from the porous media side

uD = −K12
∂PD

∂x2

e1 −K22
∂PD

∂x2

e2.

Therefore we find out that there is an effective tangential velocity jump at the interface.

3. Numerical confirmation of the effective interface conditions

This section is dedicated to the numerical confirmation of the analytical results
shown above. We solve the problems needed to numerically compare the microscopic
with the macroscopic problem by the finite element method (FEM). For the FEM
theory we refer to standard literature, e.g., [8] or [5].

For the discretization of the Stokes system we use the Taylor-Hood element, which
is inf-sup stable [6], therefore it does not need stabilization terms. In particular, since
the homogenization error in some of the proposed estimates is small in comparison
with the discretization error even for meshes with a number of elements in the order
of millions, we have used higher order finite elements (polynomial of third degree
for the velocity components and of second degree for the pressure) to reduce the
discretization error.

The flow properties depend on the geometry of the pores. In particular there is
a substantial difference between the case with symmetric inclusions with respect to
the axis orthogonal to the interface and the case with asymmetric inclusions. We
use therefore two different types of inclusion in the porous part, circles and rotated
ellipses, i.e. ellipses with the major principal axis non parallel to the flow. The
increased accuracy using higher order finite elements in the numerical solutions was
necessary, as shown later, especially for the case with symmetric inclusions. The
geometries of the unit cells Y = (0.1)2, see Figure 3, for these two cases are as
follows:

1. the solid part of the cell Ys is formed by a circle with radius 0.25 and center
(0.5, 0.5).

2. Ys consists of an ellipse with center (0.5, 0.5) and semi-axes a = 0.4 and b = 0.2,
which are rotated anti-clockwise by 45◦.

In addition, since the considered domains have curved boundaries we use cells of the
FEM mesh with curved boundaries (a mapping with polynomial of second degree was
used for the geometry) to obtain a better approximation.

All computations are done using the toolkit DOpElib ([12]) based upon the C++-
library deal.II ([2]).
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(a) Circle (b) Ellipse

Figure 3: Mesh of the fluid part of the unit cell for the two types of inclusions: circles and ellipses

3.1. Numerical setting

In this subsection we describe the setting for the numerical test. To confirm the
estimates of Theorem 1 and 2 we have to solve the microscopic problem (3) to get
vε and pε, the macroscopic problems (13) and (14) to get ueff , peff and PD, the
cell problem (6) to calculate the permeability tensor K, the velocity vector w and
pressure π, and the boundary layer (8) for the velocity βbl and pressure ωbl.

To reduce the discretization errors we consider a test case, described below, for
which it is easy to derive the exact form of the macroscopic solution. As we will show
below, the analytical solution of the macroscopic problem can be expressed in terms
of the solution of the cell and boundary layer problems. The discretization error of the
macroscopic problem in this case depends on the discretization error of the cell and
boundary layer problems and does not imply therefore an additional discretization
error.

We consider the following domains Ω = [0, 1]×[−1, 1] and Ωε = Ω\‘the obstacles’,
where the obstacles are either circles or ellipses as described in the subsection above.
In our example we consider the in- and outflow condition

vD = (0,−1) and g = −1. (27)

in the microscopic problem (3)
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The macroscopic solution in this setting is

ueff
1 =

C2,bl
1

K22

(1− x2), (28a)

ueff
2 = −1, (28b)

peff = 0, (28c)

PD =
1

K22

x2. (28d)

The macroscopic solution depends on the solution of the cell problem though the
permeability K, see expressions (28a) and (28d). Furthermore it depends on the
solution of the boundary layer though the constant C2,bl

1 . The macroscopic problems
(13) and (14) are therefore not numerically solved.

The microscopic problem (3) is solved with around 10–15 million degrees of free-
dom, the cell problem uses around 7 million degrees of freedom. The permeability
constant has been precisely calculated using the goal oriented strategy for mesh adap-
tivity described in [7].

In the boundary layer problem, due to the interface condition (8c), the velocity as
well as the pressure is discontinuous on the interface S. Since with the H1 conform
finite elements chosen for the discretization the discontinuity cannot be properly
approximated, we have decided to transform the problem so that the solution variables
are continuous across S. The values of βbl and πbl needed to check the estimates are
recovered by post-processing. For the numerical solution, as explained in detail in the
appendix of our previous work [7], we use a cut-off domain, which is justified by the
exponential decaying of the boundary layer solution. The solution of the boundary
layer problem is obtained with a mesh of around 4 million degrees of freedom and
the constants C2,bl

1 and Cbl
π are calculated by the goal oriented strategy for mesh

adaptivity described in [7] where we have made sure that the cut-off error is smaller
than the discretization error. We note that in the computation of C2

π we do not use
the formula given in (12) but the equivalent one∫ 1

0

ωj,bl(y1, 1) dy1 (29)

as this proved to be advantageous numerically.
In table 1 the computed constants K,C2,bl

1 and Cbl
π for the two different inclusions

are listed. As the permeability tensor K has for the given cases the form

K =

(
K11 K12

K12 K11

)
,
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circular inclusions oval inclusions

K11 0.0199014353519271 ±2 · 10−12 0.0122773324576884 ±2 · 10−13

K12 0 0.00268891986291451 ±2 · 10−13

C2,bl
1 0 -0.003336740001686 ±4 · 10−10

Cbl
π 0.025777570627281 ±3 · 10−8 -0.004429782196436 ±1 · 10−8

Table 1: Computed constants for the computations in the example.

i.e. it holds K11 = K22 and K12 = K21, we state only K11 and K12. Additionally, we
give an estimation of the discretization error.

3.2. Numerical results

In this section we present the numerical confirmation of the convergence rates of
the homogenization errors (18–21) and (22–25).

For our test we set Ω2 \ O = [0, 1] × [−0.6, 0], and we use a computation of
the boundary layer on a cut-off domain ranging from −4 to 4. This means that to
compute the norms we evaluate the terms involving the boundary layer only for x ∈ Ω
with −4ε < x2 < 4ε. Outside of this region we assume the difference between the
boundary layer components and their respective asymptotic values to be sufficiently
small.

In the case of inclusions symmetric in the sense explained above, e.g. circles,
the homogenization errors are much smaller than the numerical error even for large
epsilon such as 0.1 as can be observed in Figure 4. The lines with markers represent
the results of the computations for ε ∈ {1, 1

3
, 0.1, 1

31
, 0.01}, the solid lines are reference

values for various convergence rates and are plotted only to compare the respective
slopes.

The case of circles is shown in Figure 4. For the velocity in the fluid part of
the domain the estimate (18) can be verified. For the better estimate (22), that
uses correction terms to improve the estimation, the homogenization error is so small
that the curve shows only the numerical error, that in our case is only due to the
discretization error since the quadrature error and the tolerance of the solver are
smaller. In Figure 4b we can confirm (24) only for values of epsilon not bigger than
1
31

, for ε = 0.01 the numerical error dominates the homogenization error. In the
estimates for circles on the interface (Figure 4c) we can observe only the numerical
error for the same reason explained above. Notice that the error for circles shown in
Figure 4 is much smaller than the error for ellipses shown in Figure 5. In addition,
we could verify both estimates for the pressure (21) and (25) as shown in Figure 4d.
Note that the pressure estimates have been scaled multiplying by ε2.
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(a) Velocity estimates Ω1

(24)
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(b) Velocity estimate in Ω2

(23)
ε
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(c) Velocity on Σ.

ε2(21)
ε2(25)
ε1.5

ε

0.001

0.01

0.1

1

10

1 0.1 0.01
ε

(d) Pressure estimates multiplied by ε2

Figure 4: Convergence results for circles.

The case of ellipses is shown in Figure 5. As it can be observed, all estimates
could be numerically verified, since the discretization error in this case was smaller
than the homogenization error. Also in this case the pressure estimates have been
scaled multiplied by ε2. Note, that we observe for the velocity in the porous domain a
convergence rate of 1.5 instead of the predicted first order convergence, see Figure 5b.

In conclusion, we show in Figure 6 and Figure 7 pictures of the flow for the
case ε = 1

3
. Since we use periodic boundary conditions in the x1-direction, constant

in- and outflow data as well as a periodic geometry, the computations have been
performed on a stripe of one column of inclusions to reduce the computational effort.
In Figure 6a and 6c we see streamline plots of the velocity, Figure 6b and 6d show
the corresponding pressures. Both pressures are nearly constant in the fluid part and
show then a linear descent to the outflow boundary, similar to the effective pressure
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(22)
(18)
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(a) Velocity estimates in Ω1

(24)
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(b) Velocity estimate in Ω2

(23)
ε

0.0001
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(c) Velocity components on Σ

ε2(21)
ε2(25)
ε1.5

ε

0.001
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0.1

1
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1 0.1 0.01
ε

(d) Pressure estimates multiplied by ε2

Figure 5: Convergence results for elliptical inclusions.

(28c) and (28d).
Figure 7 shows only the values of the tangential velocity component. In the case

of circular inclusions (figure 7a), the velocity is nearly zero throughout the fluid
region and shows some oscillations around the mean value zero on the position of the
interface. Note that the effective model prescribes here a no slip condition because it
holds C2,bl

1 = 0. In Figure 7b) we see the corresponding solution for oval inclusions.
We notice a linear descent from the inflow boundary (which lies in this picture on the
left hand side) to the interface, which leads to the slip condition for the tangential
velocity component of the effective flow in this case. Both behaviors are predicted
from the effective interface condition for this velocity component, see (14d).
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(a) Streamlines of vε (b) pε (c) Streamlines of vε (d) pε

Figure 6: Visualization of the solution to the microscopic problem for ε = 1
3 . Subfigures (a)and (b)

show the results for circular inclusions, (c)and (d) for elliptical inclusions.

4. Proof of Theorem 1 via incremental accuracy correction

In the proofs which follow we will frequently use the space

Vper(Ω
ε) = {z ∈ H1(Ωε)2 : z = 0 on ∂Ωε \ ∂Ω, z = 0 on {x2 = h},

z2 = 0 on {x2 = −H} and z is L-periodic in x1 variable }. (30)

We will follow the strategy from [16], write a variational equation for the errors
in velocity and in pressure and reduce the forcing term in several steps. We will
frequently use the notation

wj,ε(x) = wj(
x

ε
) and πj,ε(x) = πj(

x

ε
), (31)

where {wj, πj} is given by (6).
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vε1

(a) Circular inclusions.

vε1

(b) Elliptical inclusions.

Figure 7: Visualization of vε1 for ε = 1
3 .

4.1. Incremental accuracy correction, the 1st part

Proposition 5. Let PD given by (13a)-(13b), {ueff , peff} be the solution for (14a)-
(14d) and {wj,ε, πj,ε} defined by (31). Let {vε, pε} be the solution for (3a)-(3d). Then
for every ϕ ∈ Vper(Ωε) we have

|〈Lε, ϕ〉| = |
∫
Ωε

{∇vε − H(x2)∇ueff+

H(−x2)∇
2∑
j=1

wj,ε∂P
D

∂xj
}∇ϕ dx−

∫
Ωε

{pε −H(x2)peff−

H(−x2)(ε−2PD − ε−1

2∑
j=1

πj,ε
∂PD

∂xj
)} div ϕ dx+

∫
{x2=−H}

2∑
j=1

∂

∂x2

(wj,ε1

∂PD

∂xj
)ϕ1 dS

−
∫
Σ

(
σ0ϕ+

2∑
j=1

(∇wj,ε − ε−1πj,εI)
∂PD

∂xj
e2ϕ
)
dS| ≤ C‖∇ϕ‖L2(Ωε

2)4 , (32)

where σ0 = (∇ueff − peffI)e2 on Σ.

19



Proof of proposition 5 We start with the weak formulation corresponding to
(3a)-(3d): ∫

Ωε

∇vε∇ϕ−
∫
Ωε

pε div ϕ = 0, ∀ϕ ∈ Vper(Ωε). (33)

As a first step we eliminate the boundary conditions. The weak formulation corre-
sponding to system (14a)-(14d) is∫

Ω1

∇ueff∇ϕ−
∫
Ω1

peff div ϕ = −
∫
Σ

σ0ϕ dS, ∀ϕ ∈ Vper(Ωε). (34)

Next the weak formulation corresponding to the correction in the pore space Ωε
2 is∫

Ωε
2

(−∇
2∑
j=1

wj,ε∂P
D

∂xj
− ε−2PDI + ε−1

2∑
j=1

πj,ε
∂PD

∂xj
I)∇ϕ dx =

∫
Ωε

2

(wj,ε∆
∂PD

∂xj
+

2∇wj,ε∇∂P
D

∂xj
− ε−1πj,ε∇∂P

D

∂xj
) · ϕ dx−

∫
Σ

2∑
j=1

{
(∇wj,ε − ε−1πj,εI)

∂PD

∂xj
e2+

∂2PD

∂x2∂xj
wj,ε

}
· ϕ dS +

∫
{x2=−H}

2∑
j=1

∂

∂x2

(wj,ε1

∂PD

∂xj
)ϕ1 dS, ∀ϕ ∈ Vper(Ωε). (35)

We observe that difference between (33) and (34)-(35) is equivalent to

〈Lε, ϕ〉 =

∫
Ωε

2

ϕ
2∑
j=1

Ajε +

∫
Σ

2∑
j=1

wj,ε ∂
2PD

∂x2∂xj
· ϕ dS, (36)

where quantities Ajε are given by

Ajε = −wj,ε∆
∂PD

∂xj
− 2∇wj,ε∇∂P

D

∂xj
+ ε−1πj,ε∇∂P

D

∂xj
=

wj,ε∆
∂PD

∂xj
+ ε−1πj,ε∇∂P

D

∂xj
− 2 div {∇∂P

D

∂xj
⊗wj,ε}, j = 1, 2. (37)

We note that

−∇
2∑
j=1

wj(
x

ε
)
∂PD

∂xj
= −

2∑
j=1

∇wj(
x

ε
)
∂PD

∂xj
−

2∑
j=1

∇∂P
D

∂xj
⊗wj,ε.
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and a straightforward calculation yields

|
∫
Ωε

2

ϕ
∑
j

Ajε| ≤ C‖∇ϕ‖L2(Ωε
2)4 (38)

|
∫
Σ

2∑
j=1

wj(
x

ε
)
∂2PD

∂x2∂xj
· ϕ dS| ≤ C

√
ε‖∇ϕ‖L2(Ωε

2)4 . (39)

Remark 6. Now we see why it is necessary to impose PD = 0 at the interface Σ.

Without it there would be a term

∫
Σ

ε−2PDϕ2 dS at the right hand side of (35).

Remark 7. The candidate for the approximation of {vε, pε} is
vε ≈ H(x2)ueff −H(−x2)

2∑
j=1

wj,ε∂P
D

∂xj
;

pε ≈ H(x2)peff +H(−x2)(ε−2PD − ε−1

2∑
j=1

πj,ε
∂PD

∂xj
).

(40)

Unfortunately, with such approximation we do not have continuity of the trace of the
velocity approximation on the interface Σ.

4.2. Incremental accuracy correction, the 2nd part

The idea is to insert the correction to vε as the test function ϕ in equation (36).
Therefore the correction should be an element of Vper(Ω

ε) and in this step we eliminate
the trace jump on Σ. As in [16], fixing the traces on Σ requires using the boundary
layers defined by (8a)-(8e). At this stage we introduce the error functions

Uε = vε −H(x2)(ueff − e1C2,bl
1

∂PD

∂x2

|Σ)+

H(−x2)
2∑
j=1

wj,ε∂P
D

∂xj
− β2,bl,ε∂P

D

∂x2

|Σ; (41)

P ε = pε −H(x2)peff −H(−x2)(ε−2PD − ε−1

2∑
j=1

πj,ε
∂PD

∂xj
)

−ε−1(ω2,bl,ε − C2
π)
∂PD

∂x2

|Σ, (42)

where {β2,bl,ε, ω2,bl,ε}(x) = {β2,bl, ω2,bl}(x
ε
) are defined by (8a)-(8e) and (C2,bl, C2

π) by
(9).
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Proposition 8. Uε ∈ H1(Ωε)2 and for all ϕ ∈ Vper(Ωε) we have

|
∫
Ωε

∇Uε∇ϕ dx−
∫
Ωε

P ε div ϕ dx+

∫
{x2=−H}

2∑
j=1

∂

∂x2

(wj,ε1

∂PD

∂xj
)ϕ1 dS| ≤

C‖∇ϕ‖L2(Ωε
2)4 + ‖ϕ‖H1(Ω1)2 . (43)

Proof of proposition 8 . We have the following variational equation for {Uε, P ε},
for all ϕ ∈ Vper(Ωε),:∫

Ωε

∇Uε∇ϕ dx−
∫
Ωε

P ε div ϕ dx =

∫
Σ

(
σ0 +

2∑
j=1

Bj
ε

)
e2ϕ dS−

∫
{x2=−H}

C1
εϕ1 dS +

∫
Ωε

2

ϕ(
2∑
j=1

Ajε − A22
ε ) dx− 2

∫
Ωε

A12
ε ∇ϕ dx

−
∫
Ω1

(A32
ε + A42

ε )ϕ dx, (44)

where

Bj = −wj,ε ⊗∇∂P
D

∂xj
, (45)

A12
ε = − d

dx1

(
∂PD

∂x2

|Σ)e1 ⊗ (β2,bl,ε −H(x2)C2,bl), (46)

A22
ε = −β2,bl,ε d

2

dx2
1

(
∂PD

∂x2

|Σ)− ε−1(ω2,bl,ε − C2
π)

d

dx1

(
∂PD

∂x2

|Σ)e1, (47)

A32
ε = −(β2,bl,ε − C2,bl

1 e1)
d2

dx2
1

(
∂PD

∂x2

|Σ), (48)

A42
ε = −ε−1(ω2,bl,ε − C2

π)
d

dx1

(
∂PD

∂x2

|Σ)e1, (49)

C1
ε =

∂U ε
1

∂x2

|{x2=−H} =
2∑
j=1

∂

∂x2

(wj,ε1

∂PD

∂xj
)|{x2=−H} + exponentially small terms. (50)

Then we have

|
∫
Σ

2∑
j=1

Bje2ϕ |≤ Cε1/2‖∇ϕ‖L2(Ωε
2)4 . (51)
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Now we turn to the volume terms. We have

|
∫
Ωε

∑
j

A12
ε ∇ϕ dx |≤ Cε1/2‖∇ϕ‖L2(Ωε)4 (52)

|
∫
Ωε

2

∑
j

A22
ε ϕ dx |≤ C‖∇ϕ‖L2(Ωε

2)4 (53)

|
∫
Ω1

∑
j

A32
ε ϕ dx |≤ C

√
ε‖ϕ‖L2(Ω1)2 . (54)

Finally, we estimate the term involving A42
ε . Let Q2 be defined by

∂Q2

∂y1

= ω2,bl − C2
π, on (0, 1)× (0,+∞);

Q2 is y1 − periodic.
(55)

By definition of C2
π, the function

Q2(y1, y2) =

∫ y1

0

ω2,bl(t, y2)dt− C2
πy1, y ∈ (0, 1)× (0,+∞) (56)

is a solution for (55) and, using the results from [16], page 459, there exists a constant
γ0 > 0 such that eγ0y2Qj ∈ L2(Z+).

We set Q2,ε(x) = εQ2(x/ε), x ∈ Ω1. Then we obtain
∂Q2,ε

∂x1

= ω2,bl,ε(x)− C2
π;

‖Q2,ε‖L2(Ω1) ≤ Cε3/2.
(57)

Therefore we have

|
∫
Ω1

A42
ε ϕ dx |=|

∫
Ω1

ε−1Q2,ε(ϕ1
d2

dx2
1

(
∂PD

∂x2

|Σ) +
∂ϕ1

∂x1

∂

∂x1

(
∂PD

∂x2

|Σ)) |

≤ Cε1/2‖ϕ‖H1(Ω1)2 . (58)

Now the estimates (51) - (58) show that the right hand side in (44) is bounded by

C‖∇ϕ‖L2(Ωε
2)4 + Cε1/2‖ϕ‖H1(Ω1)2 .

Remark 9. We would like to use Uε as a test function in the variational equation
(44). The difficulty with Uε is that the boundary condition at {x2 = −H} is not
satisfied. Hence we have to adjust its values at that boundary.
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4.3. Incremental accuracy correction, the 3rd part: correction of the outer boundary
effects

First we calculate values of U ε
2 and

∂

∂x2

U ε
1 at the lower outer boundary {x2 =

−H}. We have

U ε
2 (x1,−H) = vε2(x1,−H) +

2∑
j=1

∂PD

∂xj
(x1,−H)K2j +

2∑
j=1

∂PD

∂xj
(x1,−H)(wj2(

x1

ε
, 0)−K2j)

+O(eCx2/ε) =
2∑
j=1

∂PD

∂xj
(x1,−H)(wj2(

x1

ε
, 0)−K2j) + exponentially small terms,

∂

∂x2

U ε
1 (x1,−H) =

1

ε

2∑
j=1

∂PD

∂xj
(x1,−H)

∂wj1
∂y2

(
x1

ε
, 0) +

2∑
j=1

∂2PD

∂xj∂x2

(x1,−H)wj1(
x1

ε
, 0)

+ exponentially small terms.

We follow again [16] and correct the outer boundary effects using the correspond-
ing boundary layer:

−4qj,bl +∇zj,bl = 0 in Z− (59)

div qj,bl = 0 in Z− (60)

qj,bl2 = K2j − wj2 and
∂qj1
∂y2

= −∂w
j
1

∂y2

on S (61)

qj,bl = 0 on ∪∞k=1 {∂YF \ ∂Y − (0, k)}, {qj,bl, zj,bl} is y1 − periodic. (62)

Following the theory from [16], problem (59)-(62) admits a unique solution qj,bl ∈
H1(Z−)2, smooth in Z−. Furthermore, there is γ0 > 0 such that eγ0|y2|qj,bl ∈ L2(Z−)2

and, after adjusting a constant, eγ0|y2|zj,bl ∈ L2(Z−). The new error functions read

U1,ε = Uε +
2∑
j=1

∂PD

∂xj
(x1,−H)qj,bl(

x1

ε
,−x2 +H

ε
), (63)

P 1,ε = P ε +
1

ε

2∑
j=1

∂PD

∂xj
(x1,−H)zj,bl(

x1

ε
,−x2 +H

ε
). (64)
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Variational equation (44) becomes∫
Ωε

∇U1,ε∇ϕ dx−
∫
Ωε

P 1,ε div ϕ dx =

∫
Σ

(
σ0 +

2∑
j=1

Bj
ε

)
e2ϕ dS−

∫
{x2=−H}

2∑
j=1

wj,ε1 ϕ1
∂2PD

∂xj∂x2

dS +

∫
Ωε

2

ϕ(
2∑
j=1

Ajε − A22
ε ) dx− 2

∫
Ωε

A12
ε ∇ϕ dx

−
∫
Ω1

(A32
ε + A42

ε )ϕ dx− 2

∫
Ωε

2

2∑
j=1

∇qj,bl(
x1

ε
,−x2 +H

ε
)∇∂P

D

∂xj
(x1,−H)ϕ dx−

∫
Ωε

2

2∑
j=1

(∆
∂PD

∂xj
(x1,−H)qj,bl(

x1

ε
,−x2 +H

ε
)+

1

ε
∇∂P

D

∂xj
(x1,−H)zj,bl(

x1

ε
,−x2 +H

ε
))ϕ dx. (65)

The form of the right hand side of variational equation (65) yields

Proposition 10. We have U1,ε ∈ Vper(Ωε) and ∀ϕ ∈ Vper(Ωε) we have

|
∫
Ωε

∇U1,ε∇ϕ dx−
∫
Ωε

P 1,ε div ϕ dx| ≤ C(‖∇ϕ‖L2(Ωε
2)4 + ‖ϕ‖H1(Ω1)2). (66)

Remark 11. It remains to estimate the pressure through the velocity and then to
use the velocity error as a test function in equation (44). However at this stage the

difficulties are coming from the compressibility effects in the term

∫
Ωε

P ε div Uε dx.

In fact

div U1,ε = H(−x2)
2∑
j=1

wj,ε∇∂P
D

∂xj
+ (β2,bl,ε

1 −H(x2)C2,bl
1 )

d

dx1

(
∂PD

∂x2

|Σ)

+
2∑
j=1

d

dx1

∂PD

∂xj
(x1,−H)qj,bl1 (

x1

ε
,−x2 +H

ε
)

and the estimate of the divergence is ‖ div U1,ε‖L2(Ωε) ≤ C. To solve the problem, we
need to obtain the estimate of order epsilon for div U1,ε in L2(Ωε).
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4.4. Incremental accuracy correction, the 4th step: correction of the compressibility
effects

We start by introducing the compressibility effects correction: divyγ
j,i = wji −

Kij

| YF |
in YF ;

γj,i = 0 on ∂YF \ ∂Y, γj,i is 1− periodic.
(67)

The existence of at least one γj,i ∈ H1(YF )2 ∩C∞loc
(
∪k∈N(YF − (0, k))2

)
, satisfying

(67) is straightforward.
We introduce γj,i,ε by

γj,i,ε(x) = εγj,i(x/ε), x ∈ Ωε
2 (68)

and extend it by zero to Ω2 \Ωε
2.

γj,i,ε is defined only in the porous part Ω2 and an auxiliary boundary layer velocity
and pressures, correcting its values of on Σ, is needed.

First we construct {γj,i,bl, πj,i,bl} satisfying

−4yγ
j,i,bl +∇yπ

j,i,bl = 0 in Z+ ∪ Z−, (69)

divyγ
j,i,bl = 0 in Z+ ∪ Z−, (70)[

γj,i,bl
]
S
(·, 0) = γj,i(·, 0) on S, (71)[

{∇yγ
j,i,bl − πj,i,blI}e2

]
S
(·, 0) = ∇yγ

j,i(·, 0)e2 on S, (72)

γj,i,bl = 0 on ∪∞k=1 {∂YF \ ∂Y − (0, k)}, {γj,i,bl, πj,i,bl} is y1 − periodic. (73)

Proposition 3.19 from [16] gives the existence of a solution {γj,i,bl, πj,i,bl} ∈ V ∩
C∞loc(Z+ ∪ Z−)2 × C∞loc(Z+ ∪ Z−) to equations (69)-(73), where γj,i,bl is uniquely

determined and πj,i,bl is unique up to a constant. γj,i,bl(·,±0) ∈ W 2−1/q,q(S)2 and
{∇γj,i,bl − πj,i,blI}(·,±0)e2 ∈ W 1−1/q,q(S)2, ∀q ∈ [1,∞[, but the limits from two sides
of S are in general different. Furthermore, it is proved that there exist constants
γ0 ∈]0, 1[, Cj,i

π , and a constant vector Cj,i,bl such that

eγ0|y2|∇yγ
j,i,bl ∈ L2(Z+ ∪ Z−)4, eγ0|y2|γj,i,bl ∈ L2(Z−)2, eγ0|y2|(πj,i,bl − Cj,i

π ) ∈ L2(Z+)

and {
| γj,i,bl(y1, y2)−Cj,i,bl |≤ Ce−γ0y2 , y2 > y∗;
| πj,i,bl(y1, y2)− Cj,i

π |≤ Ce−γ0y2 , y2 > y∗.
(74)

We define

γj,i,bl,ε(x) = εγj,i,bl(
x

ε
) and πj,i,bl,ε(x) = πj,i,bl(

x

ε
), x ∈ Ωε, (75)
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and extend γj,i,bl,ε by zero to Ω \Ωε.
Next, we need a correction for the compressibility effects coming from the bound-

ary layer term β2,bl,ε∂P
D

∂x2

|Σ: We look for θbl satisfying


div θbl = β2,bl

1 − C2,bl
1 H(y2) in Z+ ∪ Z−;[

θbl
]
S

= (

∫
ZBL

(C2,bl
1 H(y2)− β2,bl

1 ) dy)e2 on S;

θbl = 0 on ∪∞k=1{∂YF \ ∂Y − (0, k)}, θbl is y1 − periodic.

(76)

After proposition 3.20 from [16], problem (76) has at least one solution θbl ∈ H1(Z+∪
Z−)2 ∩C∞loc(Z+ ∪Z−)2. Furthermore, θbl ∈ W 1,q((0, 1)2)2 and θbl ∈ W 1,q(Y − (0, 1))2,
∀q ∈ [1,∞) and there is γ0 > 0 such that eγ0|y2|θj,i,bl ∈ H1(Z+ ∪ Z−)2.

Let γj,i,ε be defined by (68) and γj,i,bl,ε, πj,i,bl,ε, Cj,i
π ,C

j,i,bl by (74)-(75). We modify
{ueff , peff} by adding to it ε{u1,eff , p1,eff}, satisfying (14a)-(14c) and with (14d)
replaced by

u1,eff
2 = −

2∑
j,k=1

Cj,k,bl
2

∂2PD

∂xj∂xk
|Σ − θbl2 (

x

ε
)
d

dx1

∂PD

∂x2

|Σ on Σ, (77)

u1,eff
1 = −

2∑
j,k=1

Cj,k,bl
1

∂2PD

∂xj∂xk
|Σ − θbl1 (

x

ε
)
d

dx1

∂PD

∂x2

|Σ on Σ. (78)

The pair {u1,eff , p1,eff} is uniquely defined by (14a)-(14c), (77)-(78).
Finally we correct the compressibility effects coming from the boundary layer

around {x2 = −H}. We introduce Zj,bl, j = 1, 2, satisfying
divy Zj,bl = qj,bl1 in Z−;[
Zj,bl

]
S

= −(

∫
Z−
qj,bl1 dy)e2 on S;

Zj,bl = 0 on ∪∞k=1{∂YF \ ∂Y − (0, k)}, Zj,bl is y1 − periodic.

(79)

After proposition 3.20 from [16], problem (76) has at least one solution Zj,bl ∈
H1(Z+ ∪ Z−)2 ∩ C∞loc(Z+ ∪ Z−)2. Furthermore, Zj,bl ∈ W 1,q((0, 1)2)2 and Zj,bl ∈
W 1,q(Y − (0, 1))2, ∀q ∈ [1,∞). Furthermore, there is γ0 > 0 such that eγ0|y2|Zj,bl ∈
H1(Z+ ∪ Z−)2. Note that

∫
Z−
qj,bl2 dy = 0, j = 1, 2. Next we set

Zj,bl,ε(x) = εZj,bl(
x1

ε
,−x2 +H

ε
), x ∈ Ωε.
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Now we introduce new velocity-pressure error functions by

U2,ε = U1,ε −H(−x2)
2∑

i,j=1

γj,i,ε
∂2PD

∂xi∂xj
−

2∑
i,j=1

(
γj,i,bl,ε − εCj,i,blH(x2)

) ∂2PD

∂xi∂xj
|Σ

−H(x2)εu1,eff − εθbl(x
ε

)
d

dx1

∂PD

∂x2

|Σ −
2∑
j=1

d

dx1

∂PD

∂xj
(x1,−H)(Zj,bl,ε+

ε(

∫
Z−
qj,bl1 dy)Rε(e

2)); (80)

P 2,ε = P 1,ε −H(x2)εp1,eff −
2∑

i,j=1

(
πj,i,bl,ε − Cj,i

π

) ∂2PD

∂xi∂xj
|Σ, (81)

where Rε is Tartar’s restriction operator (see [33]), defined after (106).

Proposition 12. We have U2,ε ∈ Vper(Ωε) and for all ϕ ∈ Vper(Ωε) we have

|
∫
Ωε

∇U2,ε∇ϕ dx−
∫
Ωε

P 2,ε div ϕ dx| ≤ C‖∇ϕ‖L2(Ωε
2)4 + ‖ϕ‖H1(Ω1)2 , (82)

‖div U2,ε‖L2(Ωε) ≤ Cε. (83)

Proof of proposition 12 : We prove that U2,ε ∈ Vper(Ωε) by a direct verification.
Furthermore,

div U2,ε = −H(−x2)
2∑

i,j=1

γj,i,ε∇ ∂2PD

∂xi∂xj
−

2∑
i,j=1

(
γj,i,bl,ε1 − εCj,i,bl

1 H(x2)
) d

dx1

∂2PD

∂xi∂xj
|Σ

−εθbl1 (
x

ε
)
d2

dx2
1

∂PD

∂x2

|Σ −
2∑
j=1

d2

dx2
1

∂PD

∂xj
(x1,−H)(Zj,bl,ε

1 + ε(

∫
Z−
qj,bl1 dy)(Rε(e

2))1), (84)

which yields (83).
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It remains to estimate the right hand side and prove (82):∫
Ωε

∇U2,ε∇ϕ−
∫
Ωε

P 2,ε div ϕ =

∫
Σ

(
σ0 + εσ1 +

2∑
j=1

Bj
ε

)
e2ϕ dS−

∫
{x2=−H}

2∑
j=1

wj,ε1 ϕ1
∂2PD

∂xj∂x2

dS +

∫
Ωε

2

ϕ(
2∑
j=1

Ajε − A22
ε ) dx− 2

∫
Ωε

A12
ε ∇ϕ dx

−
∫
Ω1

(A32
ε + A42

ε )ϕ dx− 2

∫
Ωε

2

2∑
j=1

∇qj,bl(
x1

ε
,
x2 +H

ε
)∇∂P

D

∂xj
(x1,−H)ϕ dx−

∫
Ωε

2

2∑
j=1

(∆
∂PD

∂xj
(x1,−H)qj,bl(

x1

ε
,
x2 +H

ε
)+

1

ε
∇∂P

D

∂xj
(x1,−H)zj,bl(

x1

ε
,
x2 +H

ε
))ϕ dx+

∫
Ωε

2

2∑
j,i=1

A1,j,i
ε ∇ϕ dx+

∫
Ωε

2∑
j,i=1

A2,j,i
ε ϕ dx+

2∑
j,i=1

∫
Ωε

{A3,j,i
ε + A4,j,i

ε }∇ϕ dx−
2∑

i,j=1

∫
Σ

(
B1,j,i
ε +B2,j,i

ε

)
e2ϕ dS,

−
∫
Ωε

∇(
2∑
j=1

d

dx1

∂PD

∂xj
(x1,−H)(Zj,bl,ε + ε(

∫
Z−
qj,bl1 dy)Rε(e

2)))∇ϕ dx+

∫
Ωε

(
2∑

i,j=1

(
πj,i,bl,ε − Cj,i

π

) ∂2PD

∂xi∂xj
|Σ) div ϕ dx, (85)

where

A1,j,i
ε = −∇γj,i,ε ∂

2PD

∂xi∂xj
− γj,i,ε ⊗∇ ∂2PD

∂xi∂xj
, (86)

A2,j,i
ε = −(γj,i,bl,ε − εH(x2)Cj,i,bl)

d2

dx2
1

∂2PD

∂xi∂xj
|Σ−

(πj,i,bl,ε − Cj,i
π H(x2))

d

dx1

∂2PD

∂xi∂xj
|Σe1, (87)

A3,j,i
ε = −2{(γj,i,bl,ε − εH(x2)Cj,i,bl)⊗∇ ∂2PD

∂xi∂xj
|Σ}, (88)

A4,j,i
ε = −ε∇θbl(x

ε
)
d

dx1

∂PD

∂x2

|Σe1 − εθbl(x
ε

)⊗∇ ∂2PD

∂x1∂x2

|Σ (89)
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B1,j,i
ε = −γj,i,ε(·,−0)⊗∇ ∂2PD

∂xi∂xj
|Σ −∇γj,i,ε|Σ

∂2PD

∂xi∂xj
|Σ (90)

B2,j,i
ε = −εCj,i,bl ⊗∇ ∂2PD

∂xi∂xj
|Σ. (91)

Then

|
2∑

j,i=1

∫
Ωε

2

A1,j,i
ε ∇ϕ dx |≤ Cε1/2‖∇ϕ‖L2(Ωε

2)4 (92)

|
2∑

j,i=1

∫
Ωε

2

A2,j,i
ε ϕ dx |≤ Cε3/2‖∇ϕ‖L2(Ωε

2)4 (93)

|
2∑

j,i=1

∫
Ω1

A2,j,i
ε ϕ dx |≤ Cε1/2‖ϕ‖L2(Ω1)2 (94)

|
2∑

j,i=1

∫
Ωε

A3,j,i
ε ∇ϕ dx |≤ Cε3/2‖∇ϕ‖L2(Ωε)4 (95)

|
2∑

j,i=1

∫
Ωε

A4,j,i
ε ∇ϕ |≤ Cε1/2‖∇ϕ‖L2(Ωε)4 . (96)

and

|
2∑

j,i=1

∫
Σ

B1,j,i
ε e2ϕ dS |≤ Cε1/2‖∇ϕ‖L2(Ωε

2)4 (97)

|
2∑

j,i=1

∫
Σ

B2,j,i
ε e2ϕ dS |≤ Cε3/2‖∇ϕ‖L2(Ωε

2)4 . (98)

Proposition 12 is proved.

Corollary 13. We have∫
Ωε

|∇U2,ε|2 dx ≤ Cε||P 2,ε||L2(Ωε) + C‖∇U2,ε‖L2(Ωε
2)4 + ‖U2,ε‖H1(Ω1)2 , (99)

Hence at this point we need to estimate the pressure error P 2,ε using the velocity
error U2,ε.
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4.5. Pressure estimates

Following [16] we consider the Stokes system

−∆aε +∇ζε = M1
ε + div M2

ε in Ωε; (100)

div aε = 0 in Ωε; (101)

aε = 0 on ∂Ωε \ ∂Ω and on {x2 = h}; (102)

aε2 = 0 and
∂aε1
∂x2

= Gε on {x2 = −H}; (103)

{aε, ζε} is L− periodic in x1; (104)

[aε]Σ = 0 and [(∇aε − ζεI)e2]Σ = Gε
Σ. (105)

We have ∫
Ωε

ζε div ϕ dx =

∫
Ωε

∇aε∇ϕ dx−
∫
Ωε

M1
εϕ dx+

∫
Ωε

M2
ε∇ϕ dx+∫

Σ

Gε
Σϕ dS +

∫
{x2=−H}

Gεϕ dS, ∀ϕ ∈ V (Ωε),

which yields

|
∫
Ωε

ζε div ϕ dx| ≤ C

{
‖∇aε‖L2(Ωε)4 + ||M1

ε||L2(Ω1)2 + ε||M1
ε||L2(Ωε

2)2 + ||M2
ε ||L2(Ωε)4

+
√
ε

(
||Gε

Σ||L2(Σ) + ||Gε||L2({x2=−H})

)}
||∇ϕ||L2(Ωε)4 . (106)

At this point we need Tartar’s restriction operator Rε (see [1], [32] and [33]). It is
constructed for every pore on the following way:

Let γ be a smooth curve, strictly contained in the cell Y , and enclosing the solid
part Ys. Let YM be the domain between γ and ∂Ys. Then using an intermediary
nonhomogeneous Stokes system in YM a linear operator R : H1(Y )2 → H1(YF )2 is
constructed, such that

Ru(y) = u(y) for y ∈ Y \ (Ȳs ∪ YM), Ru(y) = 0 for y ∈ Ys,
u = 0 on Ys ⇒ Ru = u on Y, div u = 0 on Y ⇒ div (Ru) = 0 on Y,

||Ru||H1(YF )2 ≤ C||u||H1(Y )2 , ∀u ∈ H1(Y )2.

Next the operator Rε : H1(Ω)2 → H1(Ωε)2 is defined by applying the operator R
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to each ε(Y + k) cell. After [1], [32] and [33], we have

Rεu(x) = 0 for x ∈ Ω \Ωε, u = 0 on Ω \Ωε ⇒ Rεu = u on Ωε,

div u = 0 on Ω ⇒ div (Rεu) = 0 on Ωε,

||Rεu||L2(Ωε)2 ≤ C||u||L2(Ω)2 + Cε||∇u||L2(Ω)4 , ∀u ∈ H1(Ω)2, (107)

||∇Rεu||L2(Ωε)2 ≤
C

ε
||u||L2(Ω)2 + C||∇u||L2(Ω)4 , ∀u ∈ H1(Ω)2. (108)

Next we extend ζε to ζ̃ε using formula (17), proposed by Lipton and Avellaneda.
The calculation of Lipton and Avellaneda gives∫

Ω

ζ̃ε div ϕ dx =

∫
Ωε

ζε div (Rεϕ) dx, ∀ϕ ∈ V (Ωε). (109)

Proposition 14. We have

||ζ̃ε||L2(Ω) ≤
C

ε

{
‖∇aε‖L2(Ωε)4 + ||M1

ε||L2(Ω1)2 + ε||M1
ε||L2(Ωε

2)2 + ||M2
ε ||L2(Ωε)4

+
√
ε

(
||Gε

Σ||L2(Σ) + ||Gε||L2({x2=−H})

)}
. (110)

Proof of proposition 14: Let g ∈ L2(Ω). We set h = g − 1

|Ω|

∫
Ω

g dx.

Obviously
∫
Ω
h dx = 0. Let

Vper(Ω) = {z ∈ H1(Ω)2 : z = 0 on {x2 = h}, z2 = 0 on {x2 = −H}
and z is L-periodic in x1 variable }. (111)

Then there exists ϕ ∈ Vper(Ω) such that div ϕ = h in Ω and ||ϕ||H1(Ω)2 ≤ C||h||L2(Ω),
for all h ∈ L2

0(Ω).
Therefore we have∫

Ω

ζ̃εh dx =

∫
Ω

ζ̃ε div ϕ dx =

∫
Ωε

ζε div (Rεϕ) dx

and using (106) and (107), (108) yields

|
∫
Ω

ζ̃ε h dx| ≤ C

ε

{
‖∇aε‖L2(Ωε)4 + ||M1

ε||L2(Ω1)2 + ε||M1
ε||L2(Ωε

2)2 + ||M2
ε ||L2(Ωε)4

+
√
ε

(
||Gε

Σ||L2(Σ) + ||Gε||L2({x2=−H})

)}
||∇ϕ||L2(Ω)4 . (112)
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Since ∫
Ω

(ζ̃ε − 1

|Ω|

∫
Ω

ζ̃ε dy)g dx =

∫
Ω

(ζ̃ε − 1

|Ω|

∫
Ω

ζ̃ε dy)h dx =

∫
Ω

ζ̃εh dx,

we conclude that ζ̃ε − 1

|Ω|

∫
Ω

ζ̃ε dy satisfies bound (110).

For the mean we have

0 =

∫
Ω1

ζ̃ε dx =

∫
Ω1

(ζ̃ε − 1

|Ω|

∫
Ω

ζ̃ε dy) dx+

∫
Ω

|Ω1|
|Ω|

ζ̃ε dx

and

| 1

|Ω|

∫
Ω

ζ̃ε dx| ≤ 1

|Ω|1/2
||ζ̃ε − 1

|Ω|

∫
Ω

ζ̃ε dy||L2(Ω1)2 . (113)

Estimate (113) implies bound (110) for ζ̃ε.

4.6. Global energy estimate and proof of theorem 1

Proof of theorem 1: Now we choose ϕ = U2,ε as test function in (85). Using
estimates (92) - (98) and estimate (110) from proposition 14, we obtain

|
∫
Ωε

∇U2,ε∇U2,ε |≤ C

ε
{‖∇U2,ε‖L2(Ωε

2)4 + C}‖ div U2,ε‖L2(Ωε
2)+

C‖∇U2,ε‖L2(Ωε
2)4 , (114)

which yields

||∇U2,ε||L2(Ωε)4 ≤ C, (115)

|| div U2,ε||L2(Ωε)4 + ||U2,ε||L2(Ωε
2)2 ≤ Cε (116)

||P 2,ε||L2(Ωε) ≤
C

ε
(117)

Hence estimates (20)-(21) are proved.
It remains to prove estimates (18)-(19).
First (115)-(116) imply

||U2,ε||L2(Σ)2 ≤ C
√
ε (118)

and estimate (19) is proved.
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Next we remark that in Ω1 the error functions U2,ε and P 2,ε satisfy the system

−∆U2,ε +∇P 2,ε = G1,ε + div G2,ε in Ω1;

div U2,ε = Λε in Ω1;

U2,ε = ξε on Σ; U2,ε = 0 on {x2 = h};

{U2,ε, P 2,ε} is L-periodic in x1,

(119)

where, after neglecting the boundary layer tails,

Λε = −
2∑

i,j=1

(
γj,i,bl,ε1 − εCj,i,bl

1

) d

dx1

∂2PD

∂xi∂xj
|Σ − εθbl1 (

x

ε
)
d2

dx2
1

∂PD

∂x2

|Σ (120)

G1,ε = (
Q2,ε

ε
e1 + β2,bl,ε − C2,bl

1 e1)
d2

dx2
1

(
∂PD

∂x2

|Σ) +
2∑

j,i=1

A2,j,i
ε , (121)

G2,ε =
d

dx1

(
∂PD

∂x2

|Σ)e1 ⊗ (2β2,bl,ε − 2C2,bl
1 e1 − Q2,ε

ε
e1) +

2∑
j,i=1

(A3,j,i
ε + A4,j,i

ε ). (122)

The function Q2,ε is given by (56) and, for i, j = 1, 2, A2,j,i
ε , A3,j,i

ε and A4,j,i
ε by

(87)-(89).
After (84), we have ||Λε||L2(Ω1) ≤ Cε3/2 . Using the basic theory of the Stokes

system (see e.g. [34]) there exists {b, κ} ∈ H1(Ω1)2 × L2(Ω1), such that

−∆b +∇κ = 0 in Ω1;

div b = Λε in Ω1;

b is given on ΣT = Σ ∪ {x2 = h} and ||b||H1/2(ΣT )2 ≤ Cε3/2;

{b, κ} is L-periodic in x1,

(123)

Now we see that the pair {U2,ε − b, P 2,ε − κ} satisfies system (119) with Λε = 0.
Such system admits the notion of a very weak solution, introduced by transposition.
We refer to [9] , pages 61-68, and [25] for the definition and properties of a very weak
solution. Note that

∫
Σ

(ξε2 − b2) dS = 0.
Let Hk

p (Ω1)2 = {z ∈ Hk(Ω1)2 | z is L-periodic and z = 0 on {x2 = h} },
k = 1, 2. Then the q = r = 2-version of proposition 4.2., page 302, from [25], gives
the estimate

||U2,ε − b||L2(Ω1)2 ≤ C{||G1,ε||(H2
p(Ω1)2)′ + ||G2,ε||(H1

p(Ω1)4)′ + ||ξε − b||L2(ΣT )2} (124)

34



Using estimates (52), (54) and (94)-(96), choosing Q2,ε with zero mean and repeating
calculations analogous to ones from (58) to other terms, yield

||G1,ε||(H1
p(Ω1)2)′ + ||G2,ε||(H1

p(Ω1)4)′ ≤ Cε3/2. (125)

Now we are able to conclude that

||U2,ε||L2(Ω1)2 ≤ C
√
ε (126)

and estimate (18) is proved.

5. Proof of theorem 2

The proof is in fact a slight modification of the proof of theorem 1. Our goal is to
gain a

√
ε in estimate (115).

By inspecting the proof of proposition 5, we find out that the origin of the ”bad”

estimate is the term ε−1πj,ε∇∂P
D

∂xj
in (37). So we have to correct it in Ωε

2. Next,

the same type of difficulty arises with the term ε−1C2
π

d

dx1

(
∂PD

∂x2

|Σ)H(−x2) in (47).

We handle it by modifying {Uε, P ε}. We include into the new velocity-pressure error
pair the correction for the pressure term in (37). The constant C2

π corresponds to the
behavior of ω2,bl for y2 > 0 and we erase it in Ωε

2. Erasing it creates a pressure jump
of order O(ε−1) and we compensate it by introducing a Darcy pressure field of such
order in Ω2.

We start by introducing an auxiliary problem correcting the singular pressure in
(47): 

−∆yw
i,k
π (y) +∇yκ

i,k
π (y) = πi(y)ek in YF
divyw

i,k
π (y) = 0 in YF

wi,k
π (y) = 0 on (∂YF \ ∂Y )

(127)

where πi is given by (6) and
∫
YF
κi,kπ (y) dy = 0.
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Modified {Uε, P ε} now read

Ũε = vε −H(x2)(ueff − e1C2,bl
1

∂PD

∂x2

|Σ) +H(−x2){
2∑
j=1

wj,ε∂P
D

∂xj
−

εC2
πw

1,ε d

dx1

∂PD

∂x2

|Σ − ε
2∑

j,k=1

wj,k
π (

x

ε
)
∂2PD

∂xj∂xk
} − β2,bl,ε∂P

D

∂x2

|Σ; (128)

P̂ ε = pε −H(x2)peff −H(−x2){ε−2PD − ε−1(C2
π

∂PD

∂x2

|Σ +
2∑
j=1

πj,ε
∂PD

∂xj
)+

C2
ππ

1,ε d

dx1

∂PD

∂x2

|Σ +
2∑

j,k=1

κj,kπ (
x

ε
)
∂2PD

∂xj∂xk
)} − ε−1(ω2,bl,ε − C2

πH(x2))
∂PD

∂x2

|Σ. (129)

Now all force-type terms are estimated as C
√
ε‖ϕ‖H1(Ωε)2 . Furthermore, all normal

stress jumps are of order O(1).
Continuity of traces fails, but we correct it on the same way as in the original

construction in subsection 4.2. The correction is of the order O(ε3/2) in L2 for the
velocity and of order O(

√
ε) in L2 for the pressure and does not contribute to the re-

sult. Next we correct the effects on the boundary {x2 = −H} and the compressibility
effects. They are all of the next order and do not contribute to result.

The calculations yield the following estimates

||∇Ũ2,ε||L2(Ωε)4 ≤ C
√
ε, (130)

|| div Ũ2,ε||L2(Ωε)4 ≤ Cε (131)

||Ũ2,ε||L2(Ωε
2)2 ≤ Cε3/2 (132)

||P̂ 2,ε||L2(Ωε) ≤
C√
ε

(133)

Now (130)-(132) imply
||Ũ2,ε||L2(Σ)2 ≤ Cε (134)

The rest of the proof is identical to the proof of theorem 1. Only difference is that
we have gained a

√
ε in the estimates.
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