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Abstract: In this paper we present a rigorous derivation of the effective model for enhanced diffusion

through a narrow and long 2D pore. The analysis uses the anisotropic singular perturbation technique. Starting

point is a local pore scale model describing the transport by convection and diffusion of a reactive solute. The

solute particles undergo an adsorption process at the lateral tube boundary, with high adsorption rate. The

transport and reaction parameters are such that we have large, dominant Peclet number with respect to the

ratio of characteristic transversal and longitudinal lengths (the small parameter ε). We give a formal derivation

of the model using the anisotropic multiscale expansion with respect to ε. Error estimates for the approximation

of the physical solution, by the upscaled one, are presented in the energy norm as well as in L∞ and L1 norms

with respect to the space variable. They give the approximation error as a power of ε and guarantee the validity

of the upscaled model through the rigorous mathematical justification of the effective behavior for small ε.

1 Introduction

Taylor’s dispersion is one of the most well-known examples of the role of transport in dispersing a flow
carrying a dissolved solute. The simplest setting for observing it, is the injection of a solute into a slit
channel. The solute is transported by Poiseuille’s flow. In fact this problem could be studied in three
distinct regimes: a) diffusion-dominated mixing, b) Taylor dispersion-mediated mixing and c) chaotic
advection.
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Université du Littoral, 50, rue F. Buisson
B.P. 699, 62228 Calais Cedex, FRANCE
E-mail: Carole.Rosier@lmpa.univ-littoral.fr



2

In the first problem, the velocity is small and Peclet’s number of order one or smaller. Molecular
diffusion plays the dominant role in solute dispersion. This case is well-understood even for reactive
flows (see e.g. the papers [4],[5], [9], [3]).

If the flow rate is increased so that Peclet’s number Pe>> 1, then there is a time scale at which
transversal molecular diffusion smears the contact discontinuity into a plug. In the fundamental paper
[18], Taylor found an effective long-time axial diffusivity, proportional to the square of the transversal
Peclet number and occurring in addition to the molecular diffusivity. If Taylor’s effective dispersion
is used in the 1D model, obtained by section averaging, as the effective diffusion coefficient, then the
numerical experiences show good agreement with the solution of the complete physical problem.

In the third regime, we observe the turbulent mixing.
Our goal is the study of reactive flows through slit channels in the regime of Taylor dispersion-

mediated mixing, using anisotropic singular perturbations. Despite a huge literature on the subject,
with over 2000 citations to date, mathematical results on the subject are rare. We mention articles [2],
[10], [14] and [17], but they address the mechanical dispersion in the absence of chemical reactions.

In this article we continue our research from the article [11], where a slit flow under dominant
Peclet and Damkohler numbers was considered in the case of an irreversible, first order, heterogeneous
chemical reaction with equilibrium between the liquid and the concentrations of adsorbed solutes.

Here we concentrate our attention to the case when the adsorption rate constant is infinitely large.
Let us write the precise setting of the problem: We consider the transport of a reactive solute by

diffusion and convection by Poiseuille’s velocity in a semi-infinite 2D channel. The solute particles do
not react among themselves. Instead they undergo an adsorption process at the lateral boundary. We
consider the following model for the solute concentration c∗:

a) transport through channel Ω∗ = {(x∗, y∗) : 0 < x∗ < +∞, |y∗| < H}

∂c∗

∂t∗
+ q(y∗)

∂c∗

∂x∗
−D∗ ∂2c∗

∂(x∗)2
−D∗ ∂2c∗

∂(y∗)2
= 0 in Ω∗, (1)

where q(z) = Q∗(1 − (z/H)2) and where Q∗ (velocity) and D∗ (molecular diffusion) are positive
constants.

b) reaction at channel wall Γ ∗ = {(x∗, y∗) : 0 < x∗ < +∞, |y∗| = H}

−D∗∂y∗c
∗ = Ke

∂c∗

∂t∗
on Γ ∗, (2)

where Ke is the linear adsorption equilibrium constant.
The natural way of analyzing this problem is to introduce appropriate scales. This requires char-

acteristic or reference values for the parameters in variables involved. The obvious transversal length
scale is H. For all other quantities we use reference values denoted by the subscript R. Setting

c =
c∗

ĉ
, x =

x∗

LR
, y =

y∗

H
, t =

t∗

TR
, Q =

Q∗

QR
, D =

D∗

DR
, (3)

where LR is the ” observation distance ”, we obtain the dimensionless equations

∂c

∂t
+

QRTR

LR
Q(1− y2)

∂c

∂x
− DRTR

L2
R

D
∂2c

∂x2
− DRTR

H2
D

∂2c

∂y2
= 0 in Ω (4)

and
−DDRTR

HKe

∂c

∂y
=

∂c

∂t
on Γ, (5)

where
Ω = (0,+∞)× (−1, 1) and Γ = (0, +∞)× {−1, 1}. (6)

The equations involve the time scales:

TL = characteristic longitudinal time scale =
LR

QR
,

TT = characteristic transversal time scale =
H2

DR
,
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TC = superficial chemical reaction time scale =
Ke

εQR
,

and the non-dimensional number Pe =
LRQR

DR
(Peclet number). In this paper we fix the reference time

by setting TR = TC = TL and K = Ke/H = TC/TL = O(1). K is the transversal Damkohler number.

We are going to investigate the behavior of (4)-(5) with respect to the small parameter ε =
H

LR
.

Specifically, as in [11], we will derive expressions for the effective values of the dispersion coefficient
and velocity, and an effective 1-D convection-diffusion equation for small values of ε. To carry out
the analysis need to compare the dimensionless numbers with respect to ε. For this purpose we set
Pe = ε−α. Introducing the dimensionless numbers in equations (4)-(5) and considering constant
initial/boundary conditions yields the problem :

∂cε

∂t
+ Q(1− y2)

∂cε

∂x
= Dεα ∂2cε

∂x2
+ Dεα−2 ∂2cε

∂y2
in Ω+ × (0, T ) (7)

−Dεα−2 ∂cε

∂y
= −D

1
ε2Pe

∂cε

∂y
= K

∂cε

∂t
on Γ+ × (0, T ) (8)

cε(x, y, 0) = 1 for (x, y) ∈ Ω+, (9)
cε(0, y, t) = 0 for (y, t) ∈ (0, 1)× (0, T ), (10)

∂cε

∂y
(x, 0, t) = 0, for (x, t) ∈ (0,+∞)× (0, T ). (11)

The later condition results from the y−symmetry of the solution. Further

Ω+ = (0, +∞)× (0, 1), Γ+ = (0, +∞)× {1},
and T is an arbitrary chosen positive number.

We study the behavior of this problem as ε ↘ 0, while keeping the coefficients Q, D and K all
O(1).

We note that more realistic boundary conditions at the inlet boundary are discussed in [7]. Never-
theless, our effective equation does not depend on the inlet boundary conditions.

In this paper we prove that the correct upscaling of the problem (7)-(11) gives the 1D parabolic
problem :

(EFF )





∂tc +
2Q

3(1 + K)
∂xc = (Dεα+

8
945

Q2

D
ε2−α +

4Q2

135D

K(7K + 2)
(1 + K)2

ε2−α)
∂xxc

1 + K
in (0, +∞)× (0, T )

c|x=0 = 0, c|t=0 = 1, ∂xc ∈ L2((0, +∞)× (0, T )).

We note that for K = 0 and α = 1 this is exactly the effective model of Taylor [18].
What is known concerning the derivation of the effective problem (EFF), with or without chemical

reactions? Below we give a short overview.
¦ In the absence of chemical reactions, R. Aris [1] presented a formal derivation using the method

of moments.
¦ For the case of reactive flows with a first order equilibrium chemical reaction with adsorbed

solutes, we refer to [11], where the problem is rigorously solved. It covers also the classical Taylor’s
dispersion, which corresponds to K = 0.

¦ Flow with chemistry, as described by equation (2), is considered by M.A. Paine, R.G. Carbonell
and S. Whitaker [13]. They noted that the equation for the difference between the physical and av-

eraged concentrations is not closed, since it contains a dispersive source term
∂

∂x
< qxc >. Then

they multiplied the equation for c by qx and got an equation for < qxc >. Nevertheless, a dispersive

transport term
∂

∂x
< q2

xc > and clearly the procedure enters the same difficulty as the method of
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moments: there is an infinite system of equations. Paine et al used the ”single-point” closure schemes
of turbulence modeling by Launder to obtain a closed model for the averaged concentration. We note
that their effective equations contain non-local terms depending of the solution and in fact the effective
coefficients aren’t really given.

It should be noted that the real interest is to derive dispersion equations for reactive flows through
porous media and our results are just the first step in that direction. Our technique is strongly motivated
by the paper by J. Rubinstein and R. Mauri [17], where effective dispersion and convection in porous
media is studied using the homogenization technique.

Averaging the concentration in a tube with dissolution/precipitation occurring on the wall and
with Pe= O(1), is considered in [5].

Plan of the paper is the following : In the Section 2 we study the homogenized problem. It turns
out that it has an explicit solution having the form of moving Gaussian as the 1D boundary layers of
parabolic equations, when viscosity goes to zero (see [8]). Its behavior with respect to ε and t is very
singular.

Then in Section 3 we give a justification of a lower order approximation, using a simple energy
argument. In fact such approximation doesn’t use Taylor’s dispersion formula and gives an error of the
same order in L∞(L2) as the solution to the linear transport equation.

In the Section 4 we give a formal derivation of the upscaled problem (EFF), using the approach
from [17].

Then in Section 5 we prove that the effective concentration satisfying the corresponding 1D
parabolic problem, with Taylor’s diffusion coefficient and the reactive correction, is an approxima-
tion in L∞(L2) for the physical concentration.

The validation of our result by numerical simulations is in the preprint [6].
To satisfy the curiosity of the reader not familiar with singular perturbation techniques, we give

here the simplified version of the results stated in Theorem 3. For simplicity, we compare only the
physical concentration cε with c. Throughout the paper H(x) is Heaviside’s function:

H(x) = 1, x > 0, H(x) = 0, x ≤ 0. (12)

Furthermore, using the elementary parabolic theory one concludes that the problem (7)-(11) has a
unique bounded variational solution cε, with square integrable gradient in x and y. cε belongs to C∞

for x > 0 and it stabilizes to 1 exponentially fast when x →∞.

Theorem 1 Let c be given by (EFF). Then we have

‖t3(cε − c
)‖L2(0,T ;L2

loc(Ω
+)) ≤ C

(
ε2−5α/4H(1− α) + ε3/2−3α/4H(α− 1)

)
(13)

‖t3∂ycε‖L2(0,T ;L2
loc(Ω

+)) ≤ C
(
ε2−5α/4H(1− α) + ε3/2−3α/4H(α− 1)

)
(14)

‖t3∂x

(
cε − c

)‖L2(0,T ;L2
loc(Ω

+)) ≤ C
(
ε2−7α/4H(1− α) + ε3/2−5α/4H(α− 1)

)
(15)

Note that in estimate (14) c has disappeared since it is only x and t dependent. This estimate is
better than estimate (15) because of the large O(εα−2) transversal diffusivity. After doing additional
estimates, as in [11], we get

Corollary 1

‖t3(cε − c)‖L∞((0,T )×Ω+) ≤
{

Cε2−3α/2, if α < 1,
Cε3/2−α−δ, ∀δ > 0, if 2 > α ≥ 1.

(16)

‖t3(cε − c
)‖L2(0,T ;L1

loc(Ω
+)) ≤ Cε2−α (17)

Our result could be restated in dimensional form:

Theorem 2 Let us suppose that LR > max{DR/QR, QRH2/DR,H}. Then the upscaled dimensional
approximation for (1) reads

(1 + K)
∂c∗,eff

∂t∗
+

2
3
Q∗

∂c∗,eff

∂x∗
= D∗

(
1 + (

8
945

+
4

135
K(7K + 2)
(1 + K)2

)Pe2
T

)∂2c∗,eff

∂(x∗)2
, (18)

where PeT =
Q∗H
D∗ is the transversal Peclet number and K = Ke/H is the transversal Damkohler

number.
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One could try to get even higher order approximations. Unfortunately, our procedure from Section
4 then leads to higher order differential operators and it is not clear if they are easy to handle. In
the absence of the boundaries, determination of the higher order terms using the computer program
REDUCE was undertaken in [10].

2 Study of the upscaled diffusion-convection equation on the half-line

For Q̄, D̄ and ε > 0, we consider the problem





∂tu + Q̄∂xu = γD̄∂xxu in (0, +∞)× (0, T ),
∂xu ∈ L2((0,+∞)× (0, T )),
u(x, 0) = 1 in (0,+∞), u(0, t) = 0 at x = 0.

(19)

The unique solution is obtained using the Laplace transform and reads

u(x, t) = 1− 1√
π


e

Q̄x

γD̄
∫ +∞

x + tQ̄

2
√

γD̄t

e−η2
dη +

∫ +∞
x− tQ̄

2
√

γD̄t

e−η2
dη


 (20)

The explicit formula allows us to find the exact behavior of u with respect to γ. We note that for
α ∈ [0, 1], we will set γ = εα. For α ∈ [1, 2), we choose γ = ε2−α. The derivatives of u are found using
the computer program MAPLE and then their norms are estimated. Since the procedure is standard,
we don’t give the details. In more general situations there are no explicit solutions and these estimates
could be obtained using the technique and results from [8].

First, by the maximum principle we have

0 ≤ u(x, t) ≤ 1 (21)

Next we estimate the difference between χx<Q̄t and u. We have

Lemma 1 Function u satisfies the estimates

∫ ∞

0

|χ{x>Q̄t} − u(t, x)| dx = 3
√

γD̄t + Cγ (22)

‖χ{x>Q̄t} − u‖L∞(0,T ;Lp((0,+∞))) ≤ Cγ1/(2p), ∀p ∈ (1, +∞). (23)

Proof We estimate the difference between χx<Q̄t and 1− u. We have

∫ ∞

0

|χ{x<Q̄t} − 1 + u(t, x)| dx =
1√
π

(I1 + I2 + I3 + I4) (24)

I1 =
∫ ∞

tQ̄

∫ +∞
x− tQ̄

2
√

εD̄t

e−η2
dηdx =

√
εD̄t

∫ ∞

0

2ηe−η2
dη =

√
εD̄t (25)

I2 =
∫ ∞

tQ̄

∫ +∞
x + tQ̄

2
√

εD̄t

eQ̄x/(εD̄)−η2
dηdx =

εD̄

Q̄

∫ ∞

Q̄
√

t/(εD̄)

(
exp{ Q̄

εD̄
(2

√
εD̄tη − tQ̄)}

− exp{ Q̄2t

εD̄
})e−η2

dη ≤ εD̄
√

π

2Q̄
(26)



6

I3 =
∫ tQ̄

0

(√
π −

∫ +∞
x− tQ̄

2
√

εD̄t

e−η2
dη

)
dx ≤

∫ +∞
−√tQ̄

2
√

εD̄

2
√

εD̄te−η2
ηdη ≤

√
εD̄t (27)

I4 =
∫ tQ̄

0

∫ +∞
x + tQ̄

2
√

εD̄t

eQ̄x/(εD̄)−η2
dηdx =

εD̄

Q̄

( ∫ +∞√
tQ̄√
εD̄

(exp{ Q̄2t

εD̄
} − 1)e−η2

dη+

∫
√

tQ̄√
εD̄√
tQ̄

2
√

εD̄

(exp{ Q̄

εD̄
(2

√
εtD̄η − tQ̄)} − 1)e−η2

dη

)
≤

√
εD̄t +

εD̄
√

π

2Q̄
(28)

and the estimate (22) is proved.
We prove (23) analogously. ut

For the derivatives of u the following estimates hold

Lemma 2 Let ζ be defined by

ζ(t) =





( t

D̄γ

)r for 0 ≤ t ≤ D̄γ,

1 otherwise,
(29)

with r ≥ q ≥ 1. Then we have

‖ζ(t)(|∂tu|+ |∂xu|)‖Lq((0,T )×(0,+∞)) ≤ C(γD̄)min{1/(2q)−1/2,2/q−1}, q 6= 3 (30)

‖ζ(t)(|∂tu|+ |∂xu|)‖L3((0,T )×(0,+∞)) ≤ C
(
(γD̄)−1 log(

1
γD̄

)
)1/3 (31)

Proof Here we should estimate the derivatives of u. We have

∫ ∞

0

|∂xu|q dx =
∫ ∞

0

(εD̄tπ)−q/2 exp{−q(x− tQ̄)2

4εD̄t
}·

| Q̄
√

t√
εD̄

exp{q(x + tQ̄)2

4εD̄t
}

∫ ∞
x + tQ̄

2
√

εD̄t

e−η2
dη − 1|q dx ≤

∫ ∞

0

(εD̄tπ)−q/2 exp{−q(x− tQ̄)2

4εD̄t
} dx ≤ 2(εD̄tπ)(1−q)/2q−1/2 (32)

∫ ∞

0

|∂tu|q dx = (4εD̄π)−q/2t−3q/2

∫ ∞

0

xq exp{−q(x− tQ̄)2

4εD̄t
} dx

≤ C0,q(εD̄)(1−q)/2t1/2−q max{t, D̄ε}q/2 (33)

and (30)-(31) follows. ut

Now we estimate the second derivatives :

Lemma 3 Let ζ be defined by (29). Then the second derivatives of u satisfy the estimates

‖ζ(t)utt‖Lq((0,T )×(0,+∞)) + ‖ζ(t)utx‖Lq((0,T )×(0,+∞)) + ‖ζ(t)uxx‖Lq((0,T )×(0,+∞))

≤ Cq(γD̄)min{1/(2q)−1,2/q−2}, q 6= 3/2 (34)
‖ζ(t)utt‖L3/2((0,T )×(0,+∞)) + ‖ζ(t)utx‖L3/2((0,T )×(0,+∞)) + ‖ζ(t)uxx‖L3/2((0,T )×(0,+∞))

≤ C
(
(γD̄)−1 log(

1
γD̄

)
)2/3 (35)



7

Proof Now we estimate the second derivatives :

∫ ∞

0

|∂ttu|q dx = (8
√

π)−q(εD̄)−3q/2t−7q/2

∫ +∞

0

xq|x2 − t2Q̄2 − 6εD̄t|q·

exp{−q(x− tQ̄)2

4εD̄t
} dx =

{
x− tQ̄ = 2z

√
εD̄t/q

dx = 2
√

εD̄t/q dz

}
= (8

√
π)−q(εD̄)−3q/2t−7q/2·

∫ +∞

− Q̄

2

√
tq/(εD̄)

(tQ̄ + 2z
√

εD̄t/q)q|2z
√

εD̄t/q(2Q̄t + 2z
√

εD̄t/q)− 6εD̄t|q·

2e−z2
√

εD̄t/q dz ≤ Cq(εD̄)1/2−qt1/2−2q max{t, D̄ε}q (36)

∫ ∞

0

|∂txu|q dx = (4
√

π)−q(εD̄)−3q/2t−5q/2

∫ +∞

0

|x(x− Q̄t)− 2εD̄t|q exp{−q(x− tQ̄)2

4εD̄t
} dx

=

{
x− tQ̄ = 2z

√
εD̄t/q

dx = 2
√

εD̄t/q dz

}
= (4

√
π)−q(εD̄)−3q/2t−5q/2

∫ +∞

− Q̄

2

√
tq/(εD̄)

e−z2 ·

|(2Q̄t + 2z
√

εD̄t/q)2z
√

εD̄t/q − 2εD̄t|q2
√

εD̄t/q dz ≤
Cq(εD̄)1/2−qt1/2−3q/2 max{t, D̄ε}q/2 (37)

Estimating ∂xxu is slightly more complicated. We analyse the expression for ∂xxu and find out that
for x ≤ Q̄t

x(x− Q̄t)
2t
√

t(x + Q̄t)
− 2Q̄2Dεt

√
t

(x + Qt)3
≤ Q2

√
εD̄

exp{ (x + tQ̄)2

4εD̄t
}

∫ +∞
x + tQ̄

2
√

εD̄t

e−η2
dη+

x

2t
√

t
− Q̄√

t
≤ x(x− Q̄t)

2t
√

t(x + Q̄t)
≤ 0

and for x > Q̄t

0 ≤ Q̄

2
√

t
− Q2

√
εD̄

exp{ (x + tQ̄)2

4εD̄t
}

∫ +∞
x + tQ̄

2
√

εD̄t

e−η2
dη ≤ Q̄(x− Q̄t)

2
√

t(x + Q̄t)
+

2Q̄2Dεt
√

t

(x + Qt)3
.

Hence
∫ ∞

0

|∂xxu|q dx =
∫ Q̄t

0

|∂xxu|q dx +
∫ +∞

Q̄t

|∂xxu|q dx and

∫ Q̄t

0

|∂xxu|q dx ≤ 2q−1(
√

π)−q(εD̄)−3q/2t−3q/2

∫ ∞

0

exp{−q(x− tQ̄)2

4εD̄t
}·

(xq(Q̄t− x)q

2q(x + Q̄t)q
+

Q̄2q2q(D̄ε)q

(x + Q̄t)3q

)
dx =

{
x− tQ̄ = 2z

√
εD̄t/q

dx = 2
√

εD̄t/q dz

}
≤ Cq(εD̄t)1/2−3q/2

∫ 0

−
√

qtQ̄

2
√

εD̄

e−η2
(
(εD̄t)q/2 + (D̄ε)q

)
dη =

Cq(εD̄)1/2−qt1/2−3q/2

(
max{D̄ε, t}

)q/2

(38)
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Furthermore
∫ +∞

Q̄t

|∂xxu|q dx ≤ Cq(εD̄)−3q/2

∫ +∞

Q̄t

exp{−q(x− tQ̄)2

4εD̄t
}
(
|x− Q̄t

t
√

t
|q+

| Q̄

2
√

t
− Q2

√
εD̄

exp{ (x + tQ̄)2

4εD̄t
}

∫ +∞
x + tQ̄

2
√

εD̄t

e−η2
dη|q

)
dx ≤

C(εD̄)1/2−qt1/2−3q/2

(
max{D̄ε, t}

)q/2

(39)

and (34)-(35) now follows. ut
For the 3rd order derivatives we have :

Lemma 4 Let ζ be defined by (29) . Then

‖∂xxx(ζ(t)u)‖Lq((0,T )×(0,+∞)) + ‖ζ(t)∂xxtu‖Lq((0,T )×(0,+∞))

+‖ζ(t)∂xttu‖Lq((0,T )×(0,+∞)) ≤ Cq(γD̄)2/q−3, q > 1 (40)

‖∂xxx(ζ(t)u)‖L1((0,T )×(0,+∞)) + ‖ζ(t)∂xxtu‖L1((0,T )×(0,+∞))

+‖ζ(t)∂xttu‖L1((0,T )×(0,+∞)) ≤ C1(γD̄)−1 log
1

γD̄
(41)

Proof For the third derivatives we have:
∫ ∞

0

|∂xxxu|q dx = (
√

π)−q(εD̄t)−5q/2

∫ ∞

0

exp{−q(x− tQ̄)2

4εD̄t
}·

| Q̄
3t5/2

√
εD̄

exp{q(x + tQ̄)2

4εD̄t
}

∫ ∞
x + tQ̄

2
√

εD̄t

e−η2
dη − Q̄2t2 + 3xQ̄t/4− x2/4 + εD̄t/2|q dx ≤

C(εD̄t)−5q/2

∫ ∞

0

exp{−q(x− tQ̄)2

4εD̄t
}
(
|x− Q̄t|2q + (D̄εt)q

)
dx =

{
x− tQ̄ = 2z

√
εD̄t/q

dx = 2
√

εD̄t/q dz

}
≤ Cq(εD̄t)1/2−3q/2 and (42)

∫ ∞

0

|∂xxtu|q dx ≤ Cq(εD̄)−3q/2t−5q/2

∫ ∞

0

exp{−q(x− tQ̄)2

4εD̄t
}
{
|Q̄t− 2x|q+

|x(Q̄t− x) + 2εD̄t|q|x− Q̄t|q(εD̄)−qt−q

}
dx ≤ Cq(εD̄)1/2−3q/2t1/2−2q max{εD̄, t}q/2 (43)

Similarly, ∫ ∞

0

|∂xttu|q dx ≤ Cq(εD̄)1/2−3q/2t1/2−5q/2 max{εD̄, t}q (44)

Hence we have proved (40)-(41). ut

3 A simple L2 error estimate

The simplest way to average the problem (7)-(11) is to take the mean value with respect to y. Supposing
that the mean of the product is the product of the means, which is in general wrong, we get the following
problem for the ” averaged ” concentration ceff

0 (x, t) :




(1 + K)
∂ceff

0

∂t
+

2Q

3
∂ceff

0

∂x
= εαD

∂2ceff
0

∂x2
in (0,+∞)× (0, T ),

∂xceff
0 ∈ L2((0,+∞)× (0, T )), ceff

0 |t=0 = 1, ceff
0 |x=0 = 0.

(45)
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This is the problem (19) with Q̃ =
2
3

Q

1 + K
and D̄ =

D

1 + K
. We will call this problem the ”simple

closure approximation”. The small parameter γ is equal to εα. Let the operator Lε be given by

Lεζ =
∂ζ

∂t
+ Q(1− y2)

∂ζ

∂x
−Dεα

(
∂2ζ

∂x2
+ ε−2 ∂2ζ

∂y2

)
(46)

The non-dimensional physical concentration cε satisfies (7)-(11), i.e.

Lεcε = 0 in (0, +∞)× (0, 1)× (0, T ) (47)
cε(0, y, t) = 0 on (0, 1)× (0, T ) (48)

∂ycε(x, 0, t) = 0 on (0,+∞)× (0, T ) (49)

−Dεα−2∂ycε(x, 1, t) = K∂tc
ε(x, 1, t) on (0, +∞)× (0, T ) (50)

cε(x, y, 0) = 1 on (0, +∞)× (0, 1) (51)

We want to approximate cε by ceff
0 . Then

Lε(ceff
0 ) = −K∂tc

eff
0 + Q∂xceff

0 (1/3− y2) = Rε

Lε(cε − ceff
0 ) = −Rε in (0, +∞)× (0, 1)× (0, T ) and (52)

−Dεα−2∂y(cε(x, 1, t)− ceff
0 ) = K∂tc

ε(x, 1, t) on (0, +∞)× (0, T ) (53)

Let Ψ(x) = 1/(x+1). Then (∂xΨ)2/Ψ2 ≤ 4Ψ2. We have the following proposition, which will be useful
in getting the estimates :
Proposition 1 Let gε, ξε

0 and Rε be such that Ψgε ∈ H1(Ω+ × (0, T )), Ψξε
0 ∈ L2(Ω+) and ΨRε ∈

L2(Ω+ × (0, T )). Let ξ be a bounded function, such that Ψξ ∈ C([0, T ];L2(Ω+)), Ψ∇x,yξ ∈ L2(Ω+ ×
(0, T )), and satisfying the system

Lε(ξ) = −Rε in Ω+ × (0, T ) (54)

−Dεα−2∂yξ|y=1 = K∂tξ|y=1 + gε|y=1 and ∂yξ|y=0 = 0 on (0, +∞)× (0, T ) (55)

ξ|t=0 = ξε
0 on Ω+ and ξ|x=0 = 0 on (0, 1)× (0, T ). (56)

Then we have the following energy estimate

E(ξ, t) =
1
2

∫

Ω+
Ψ(x)2ξ2(t) dxdy +

D

2
εα

∫ t

0

∫

Ω+
Ψ(x)2

{
ε−2|∂yξ|2+

|∂xξ|2
}

dxdydτ +
K

2

∫ +∞

0

ξ2(t)|y=1Ψ
2(x) dx ≤ −

∫ t

0

∫

Ω+
Ψ(x)2Rεξ dxdydτ−

∫ t

0

∫ +∞

0

gε|y=1ξ|y=1Ψ
2(x) dxdτ + 2Dεα

∫ t

0

∫

Ω+
Ψ(x)2ξ2 dxdydτ +

1
2

∫

Ω+
Ψ(x)2(ξε

0)
2(t) dxdy. (57)

Proof See [11] .

This simple proposition allows us to prove
Proposition 2 In the setting of this Section we have

‖Ψ(x)(cε − ceff
0 )‖L∞(0,T ;L2((0,+∞)×(0,1)) ≤ ε1−α/2 F 0

√
D

(58)

‖Ψ(x)∂x(cε − ceff
0 )‖L2(0,T ;L2((0,+∞)×(0,1)) ≤ ε1−α F 0

D
(59)

‖Ψ(x)∂y(cε − ceff
0 )‖L2(0,T ;L2((0,+∞)×(0,1)) ≤ ε2−α F 0

D
, (60)

where F 0 = CF
1 ‖∂xceff

0 ‖L2(OT ) + CF
2 ‖∂tc

eff
0 ‖L2(OT ) ≤ CF

3 ε−α/4 (61)

Proof It is exactly the same as the corresponding proof from [11], just F 0 is slightly different.

Corollary 2
‖cε − ceff

0 ‖L∞(0,T ;L2
loc((0,+∞)×(0,1)) ≤ Cε1−3α/4 (62)

Remark 1 For α > 4/3 the estimate (62) is of no interest.
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4 The formal 2-scale expansion leading to Taylor’s dispersion

The estimate obtained in the previous Section isn’t satisfactory. At the other hand, it is known that
the Taylor dispersion model gives a very good 1D approximation. With this motivation we briefly
explain how to obtain formally the higher precision effective models and notably the variant of Taylor’s
dispersion formula, by the 2-scale asymptotic expansion.

We start with the problem (47)-(51) and search for cε in the form

cε = c0(x, t; ε) + ε2−αc1(x, y, t) + ε2(2−α)c2(x, y, t) + . . . (63)

After introducing (63) into the equation (47) we get

ε0
{

∂tc
0 + Q(1− y2)∂xc0 −D∂yyc1

}
+ ε2−α

{
∂tc

1+

Q(1− y2)∂xc1 −Dε2(α−1)∂xxc0 −Dεα∂xxc1 −D∂yyc2
}

= O(ε2(2−α)) (64)

In order to have (64) for every ε ∈ (0, ε0), all coefficients in front of the powers of ε should be zero.
The problem corresponding to the order ε0 is

{−D∂yyc1 = −Q(1/3− y2)∂xc0 − (
∂tc

0 + 2Q∂xc0/3
)

on (0, 1),
∂yc1 = 0 on y = 0 and −D∂yc1 = K∂tc

0 on y = 1 (65)

for every (x, t) ∈ (0, +∞) × (0, T ). By Fredholm’s alternative, the problem (65) has a solution if and
only if

(1 + K)∂tc
0 + 2Q∂xc0/3 = 0 in (0, L)× (0, T ). (66)

Unfortunately our initial and boundary data are incompatible and the hyperbolic equation (66) has a
discontinuous solution. Since the asymptotic expansion for cε involves derivatives of c0, the equation
(66) doesn’t suit our needs. In [2] the difficulty was overcome by supposing compatible initial and
boundary data. We proceed by following an idea from [17] and suppose that

(1 + K)∂tc
0 + 2Q∂xc0/3 = O(ε2−α) in (0, +∞)× (0, T ). (67)

The hypothesis (67) will be justified a posteriori, after getting an equation for c0.
Hence (65) reduces to

{−D∂yyc1 = −Q(1/3− y2)∂xc0 + K∂tc
0 on (0, 1),

∂yc1 = 0 on y = 0 and −D∂yc1 = K∂tc
0 on y = 1 (68)

for every (x, t) ∈ (0, +∞)× (0, T ), and we have

c1(x, y, t) =
Q

D
(
y2

6
− y4

12
− 7

180
)∂xc0 +

K

D
(
1
6
− y2

2
)∂tc

0 + C0(x, t), (69)

where C0 is an arbitrary function.
Let us go to the next order. Then we have




−D∂yyc2 = −Q(1− y2)∂xc1 + Dε2(α−1)∂xxc0 − ∂tc

1

+Dεα∂xxc1 − εα−2
(
(1 + K)∂tc

0 + 2Q∂xc0/3
)

on (0, 1),
∂yc2 = 0 on y = 0 and −D∂yc2 = K∂tc

1 on y = 1
(70)

for every (x, t) ∈ (0, +∞)× (0, T ). The problem (70) has a solution if and only if

∂tc
0 + 2Q∂xc0/3 + K(∂tc

0 + ε2−α∂tc
1|y=1) + ε2−α∂t(

∫ 1

0

c1 dy)− εαD∂xxc0+

Qε2−α∂x(
∫ 1

0

(1− y2)c1 dy)−Dε2∂xx(
∫ 1

0

c1dy) = 0 in (0, +∞)× (0, T ). (71)

(71) is the equation for c0 . For α > 0 the last term at the left hand side is of smaller order, as we will
see when estimating the error. Consequently, we drop it.
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Next, in order to get the simplest possible equation for c0 we choose C0 such that ∂ttc
0 and ∂xtc

0

do not appear in the effective equation. After a short calculation we find that

C0(x, t) =
1

3D

K2

1 + K
∂tc

0 − 2Q

45D

K(7K + 2)
(1 + K)2

∂xc0. (72)

Now c1 takes the form

c1(x, y, t) =
Q

D
(
y2

6
− y4

12
− 7

180
− 2

45
K(7K + 2)
(1 + K)2

)∂xc0 +
K

D
(
1
6

+
1
3

K

1 + K
− y2

2
)∂tc

0. (73)

and the equation (71) becomes

(1 + K)∂tc
0 +

2Q

3
∂xc0 = εαD̃∂xxc0 in (0, +∞)× (0, T ). (74)

with

D̃ = D +
8

945
Q2

D
ε2(1−α) +

4Q2

135D

K(7K + 2)
(1 + K)2

ε2(1−α) (75)

Now the problem (70) becomes





−D∂yyc2 = −Q2

D
∂xxc0

{ 8
945

+ (1− y2)(
y2

6
− y4

12
− 7

180
)
}
+

∂xtc
0 QK

D

{ 2
45
− (1− y2)(

1
6
− y2

2
)
}

+ (−2KQ

45D

1 + 6K

1 + K
+

2QK

45D

K(7K + 2)
(1 + K)2

)∂xtc
0−

(
K2

3D
− K3

3D(1 + K)
)∂ttc

0 − (
y2

6
− y4

12
− 7

180
)∂xtc

0 Q

D
+

Q

D
(
1
3
− y2)

(2Q

45
∂xxc0 K(7K + 2)

(1 + K)2
−

K2

3(1 + K)
∂xtc

0
)− (

1
6
− y2

2
)∂ttc

0 K

D
on (0, 1), ∂yc2 = 0 on y = 0

and −D∂yc2 = (
2KQ

45D
− 2QK

45D

K(7K + 2)
(1 + K)2

)∂xtc
0 − (

K2

3D
− K3

3D(1 + K)
)∂ttc

0 on y = 1.

(76)

If we choose c2 such that
∫ 1

0
c2 dy = 0, then

c2(x, y, t) = ε2−2α
{
− Q2

D2
∂xxc0

( 281
453600

+
23

1512
y2 − 37

2160
y4 +

1
120

y6 − 1
672

y8
)
+

Q

D2
∂xtc

0
( 31

7560
− 7

360
y2 +

y4

72
− y6

360

)
− Q

D2

(− y4

12
+

y2

6
− 7

180
)(2Q

45
∂xxc0 K(7K + 2)

(1 + K)2
−

K2

3(1 + K)
∂xtc

0
)

+
QK

D2
∂xtc

0
(y6

60
− y4

18
+

11y2

180
− 11

945
)

+
K

2D2
∂ttc

0
(− y4

12
+

y2

6
− 7

180
)
+

(( KQ

45D2
− QK

45D2

K(7K + 2)
(1 + K)2

)
∂xtc

0 − ( K2

6D2
− K3

6D2(1 + K)
)
∂ttc

0

)
(
1
3
− y2)

}
(77)

5 First Correction

The estimate (62) isn’t satisfactory. In order to get a better approximation we take the correction
constructed using the formal 2-scale expansion in Section 4.

Let 0 ≤ α < 2. We start by the O(ε2) approximation and consider the function

ceff
1 (x, y, t; ε) = c(x, t; ε) + ε2−αζ(t)

(Q

D
(
y2

6
− y4

12
− 7

180
− 2

45
K(7K + 2)
(1 + K)2

)

· ∂c

∂x
(x, t; ε) +

K

D
(
1
6

+
K

3(1 + K)
− y2

2
)∂tc(x, t; ε)

)
(78)
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where c is the solution to the effective problem (74)-(75) with

c|x=0 = 0, c|t=0 = 1, ∂xc ∈ L2((0,+∞)× (0, T )), (79)

The cut-off in time ζ is given by (29) and we use to eliminate the time-like boundary layer appearing
at t = 0. These effects are not visible in the formal expansion.

Let Lε be the differential operator given by (46). Following the formal expansion from Section 4,
we know that Lε applied to the correction without boundary layer functions and cut-offs would give
F ε

1 + F ε
2 + F ε

3 + F ε
4 + F ε

5 , where




F ε
1 = ∂xxc

Q2

D
ε2−α

{
8

945
+ (1− y2)(

y2

6
− y4

12
− 7

180
)
}

F ε
2 = ∂xtc

QK

D
ε2−α

{
− 2

45
+ (1− y2)(

1
6
− y2

2
)
}

F ε
3 = ε2−α(

y2

6
− y4

12
− 7

180
)∂xtc

Q

D

F ε
4 = ε2−α(

1
6
− y2

2
)∂ttc

K

D

F ε
5 = −ε2−α{(2KQ

45D
− 2QK

45D

K(7K + 2)
(1 + K)2

)∂xtc
0 − (

K2

3D
− K3

3D(1 + K)
)∂ttc

0}

F ε
6 = −ε2−α{Q

D
(
1
3
− y2)

(2Q

45
∂xxc0 K(7K + 2)

(1 + K)2
− K2

3(1 + K)
∂xtc

0
)}

(80)

These functions aren’t integrable up to t = 0 and we need a cut off ζ in order to deal with them.
After applying Lε to ceff

1 , we find out that

Lε(ceff
1 ) = ζ(t)

6∑

j=1

F ε
j +

(
εα∂xxc(D̃ −D) + Q(1/3− y2)∂xc−K∂tc

)
(1− ζ(t))

+ζ ′(t)ε2−α

(
∂xc

Q

D
{y2

6
− y4

12
− 7

180
− 2

45
K(7K + 2)
(1 + K)2

}+

K

D
(
1
6

+
K

3(1 + K)
− y2

2
)∂tc

)
≡ Φε

1 and − Lε(ceff
1 ) = Lε(cε − ceff

1 ) = −Φε
1 (81)

At the lateral boundary y = 1 we have

−Dεα−2∂yceff
1 |y=1 = ζ(t)K∂tc (82)

K∂tc
eff
1 |y=1 = K∂tc + Kε2−αζ(t)

(Q

D

2
45

(1− K(7K + 2)
(1 + K)2

)∂xtc− K

3D
∂ttc

1
1 + K

)−

Kζ ′(t)ε2−α
(
∂xc

Q

D

2
45

(1− K(7K + 2)
(1 + K)2

)− K

3D
∂tc

1
1 + K

)
(83)

Now cε − ceff
1 satisfies the system

Lε(cε − ceff
1 ) = −Φε

1 in Ω+ × (0, T ) (84)

−Dεα−2∂y(cε − ceff
1 )|y=1 = K∂t(cε − ceff

1 )|y=1 + gε|y=1 on (0, +∞)× (0, T ) (85)

∂y(cε − ceff
1 )|y=0 = 0 on (0,+∞)× (0, T ) (86)

(cε − ceff
1 )|t=0 = 0 on Ω+ and (cε − ceff

1 )|x=0 = ηε
0 on (0, 1)× (0, T ). (87)
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with

gε = Kε2−αζ(t)
(Q

D

2
45

(1− K(7K + 2)
(1 + K)2

)∂xtc− K

3D
∂ttc

1
1 + K

)−

Kζ ′(t)ε2−α
(
∂xc

Q

D

2
45

(1− K(7K + 2)
(1 + K)2

)− K

3D
∂tc

1
1 + K

)
+ (1− ζ)K∂tc (88)

and ηε
0 = −ε2−αζ(t)∂xc|x=0(

y2

6
− y4

12
− 7

180
− 2

45
K(7K + 2)
(1 + K)2

)
Q

D
. (89)

Now we should estimate Φε
1 to see if the right hand side is smaller than in Section 3. We have

Proposition 3 Let OT = Ω+ × (0, T ). Let ϕ ∈ H1(OT ), ϕ = 0 at x = 0. Then we have

|
∫ t

0

∫

Ω+
ζF ε

1 ϕ dxdydτ | ≤ Cε3(2−α)/2‖ζ(τ)∂xxc‖L2(Ot))‖εα/2−1∂yϕ‖L2(Ot)

≤ C
(
ε3−5α/2H(1− α) + ε1−α/2H(α− 1)

)‖εα/2−1∂yϕ‖L2(Ot) (90)

|
∫ t

0

∫

Ω+
ζ(τ)F ε

3 ϕ dxdydτ | ≤ Cε3(2−α)/2‖ζ(τ)∂xtc‖L2(Ot)‖εα/2−1∂yϕ‖L2(Ot) ≤

C
(
ε3−5α/2H(1− α) + ε1−α/2H(α− 1)

)‖εα/2−1∂yϕ‖L2(Ot) (91)

|
∫ t

0

∫

Ω+
(1− ζ)∂xxcεα(D̃ −D)ϕ dxdydτ | ≤ Cε2−3α/2‖εα/2∂xϕ‖L2(Ot)·

‖(1− ζ)∂xc‖L2(Ot) ≤ Cε2−3α/2‖εα/2∂xϕ‖L2(Ot) (92)

|
∫ t

0

∫

Ω+
(1− ζ)Q(1/3− y2)∂xcϕ dxdydτ | ≤ Cε1−α/2‖εα/2−1∂yϕ‖L2(Ot)·

‖(1− ζ)∂xc‖L2(Ot) ≤ Cε1−α/2‖εα/2−1∂yϕ‖L2(Ot) (93)

|
∫ t

0

∫

Ω+
ζ ′(

t

Dε
)ε2−α

(
∂xc

Q

D

2
45

(1− K(7K + 2)
(1 + K)2

)− K

3D
∂tc

1
1 + K

)·

ϕ dxdydτ | ≤ Cε3−3α/2‖ζ ′∂xc‖L2(Ot)‖εα/2−1∂yϕ‖L2(Ot) ≤
C

(
ε3−5α/2H(1− α) + ε1−α/2H(α− 1)

)‖εα/2−1∂yϕ‖L2(Ot) (94)

Proof Let us note that in (90)-(91) and (93)-(94) the averages of the polynomials in y are zero. We write
them in the form P (y) = ∂yP1(y), where P1 has zero traces at y = 0, 1, and after partial integration
and applying the results from Section 2, giving us the precise regularity, obtain the estimates. Since
(1− ζ)∂xxc isn’t square integrable, we use the x-derivative in order to obtain (92). ut
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Proposition 4 Let OT = Ω+ × (0, T ). Let ϕ ∈ H1(OT ), ϕ = 0 at x = 0. Then we have

|
∫ t

0

∫

Ω+
ζF ε

2 ϕ dxdydτ | ≤ Cε3(1−α/2)‖ζ∂xtc‖L2(Ot)‖εα/2−1∂yϕ‖L2(Ot)

≤ C
(
ε3−5α/2H(1− α) + ε1−α/2H(α− 1)

)‖εα/2−1∂yϕ‖L2(Ot) (95)

|
∫ t

0

∫

Ω+
ζF ε

4 ϕ dxdydτ | ≤ Cε3−3α/2‖ζ∂ttc‖L2(Ot)‖εα/2−1∂yϕ‖L2(Ot) ≤

C
(
ε3−5α/2)H(1− α) + ε1−α/2H(α− 1)

)‖εα/2−1∂yϕ‖L2(Ot) (96)

|
∫ t

0

∫

Ω+
ζF ε

6 ϕ dxdydτ | ≤ Cε3−3α/2(‖ζ∂ttc‖L2(Ot) + ‖ζ∂xtc‖L2(Ot))‖εα/2−1∂yϕ‖L2(Ot) ≤

C
(
ε3−5α/2)H(1− α) + ε1−α/2H(α− 1)

)‖εα/2−1∂yϕ‖L2(Ot) (97)

|
∫ t

0

∫ +∞

0

ζ∂xtcε
2−α(

∫ 1

0

ϕ dy − ϕ|y=1) dxdτ | ≤ Cε2−α‖∂xtc‖L2(0,t;L2((0,+∞)))‖
∫ 1

0

ϕ dy − ϕ|y=1‖L2(Ot)

≤ C
(
ε3−5α/2H(1− α) + ε1−α/2H(α− 1)

)‖εα/2−1∂yϕ‖L2(Ot) (98)

|
∫ t

0

∫ +∞

0

ζ(t)∂ttcε
2−α(

∫ 1

0

ϕ dy − ϕ|y=1) dxdτ | ≤ C
(
ε3−5α/2H(1− α)+

ε1−α/2H(α− 1)
)‖εα/2−1∂yϕ‖L2(Ot) (99)

|
∫ t

0

∫ +∞

0

(1− ζ(t))∂tc(
∫ 1

0

ϕ dy − ϕ|y=1) dxdτ | ≤

C
(
ε3−5α/2H(1− α) + ε1−α/2H(α− 1)

)‖εα/2−1∂yϕ‖L2(Ot) (100)

Corollary 3 Let ϕ ∈ H1(OT ), ϕ = 0 at x = 0. Let Φε
1 be given by (81) and gε by (88). Then we have

|
∫ t

0

∫

Ω+
Φε

1ϕ dxdydτ +
∫ t

0

∫ +∞

0

gε|y=1ϕ|y=1 dxdτ | ≤ C
(
ε1−α/2H(1− α)

+ε2−3α/2H(α− 1)
){‖εα/2−1∂yϕ‖L2(Ot) + ‖εα/2∂xϕ‖L2(Ot)

}
(101)

Next we should correct the values at x = 0 and apply Proposition 1. Due to the presence of the term
containing the first order derivative in x, the boundary layer corresponding to our problem doesn’t enter
into the theory from [12] and one should generalize it. The generalization in the case of the periodic
boundary conditions at the lateral boundary is in the paper [15]. In our knowledge, the generalization
to the case of Neumann’s boundary conditions at the lateral boundary, was never published. It seems
that the results from [15] apply also to this case ([16]). In order to avoid developing the new theory for
the boundary layer, we simply use the boundary layer for the Neumann problem for Laplace operator:





−∆y,zβ = 0 for (z, y) ∈ Ω+.

−∂yβ = 0 for y = 1, and for y = 0,

β =
y2

6
− y4

12
− 7

180
for z = 0.

(102)

It is known (see e.g. [12]) that there exists a constant γ0 > 0 such that the solution β for (102) satisfies
the estimates

∫ +∞

z

∫ 1

0

|∇y,zβ|2 dydz ≤ c0e
−γ0z, z > 0 (103)

|β(y, z)| ≤ c0e
−γ0z, ∀(y, z) ∈ Ω+ (104)

Then the transport term is ignored and a large error in the forcing term is created. The error is
concentrated at small times and by eliminating them we would obtain a good estimate.

In order to use this particular point, we prove the following proposition :
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Proposition 5 Let Ψ(x) = 1/(1 + x). Let gε and Φε be bounded functions such that Ψgε ∈ H1(Ω+ ×
(0, T )) and ΨΦε ∈ L2(Ω+ × (0, T )). Let ξ, Ψξ ∈ C0,α0([0, T ]; L2(Ω+)), Ψ∇x,yξ ∈ L2(Ω+ × (0, T )), be
a bounded function which satisfies the system

Lε(ξ) = −Φε in Ω+ × (0, T ) (105)

−Dεα−2∂yξ|y=1 = K∂tξ|y=1 + gε|y=1 and ∂yξ|y=0 = 0 on (0, +∞)× (0, T ) (106)

ξ|t=0 = 0 on Ω+ and ξ|x=0 = 0 on (0, 1)× (0, T ). (107)

Then we have the following energy estimate

E(tmξ, t) = t2m

∫

Ω+
Ψ(x)2ξ2(t) dxdy + Dεα

∫ t

0

∫

Ω+
Ψ(x)2τ2m

{
ε−2|∂yξ|2+

|∂xξ|2
}

dxdydτ + Kt2m

∫ +∞

0

ξ2(t)|y=1Ψ
2(x) dx ≤

C1|
∫ t

0

∫

Ω+
τ2mΨ(x)2Φεξ dxdydτ +

∫ t

0

∫ +∞

0

τ2mgε|y=1ξ|y=1Ψ
2(x) dxdτ |+

C2Dεα

∫ t

0

∫

Ω+
τ2mΨ(x)2ξ2 dxdydτ, ∀m ≥ 1. (108)

Proof It is along the same lines as the corresponding proof from [11] . ut

Next, in order to use this estimate we should refine the estimates from Propositions 3 and 4 . First we
note that the estimate (34) changes to

‖tm∂ttc‖Lq((0,T )×(0,+∞)) + ‖tm∂txc‖Lq((0,T )×(0,+∞)) + ‖tm∂xxc‖Lq((0,T )×(0,+∞))

≤ Cq(m)(γD̄)1/(2q)−1. (109)

Hence one gains εα/4 (respectively ε1/2−α/4) for the L2-norm. In analogy with Propositions 3 and 4
we have

Proposition 6 Let OT = Ω+ × (0, T ). Let ϕ ∈ H1(OT ), ϕ = 0 at x = 0 and m > 1. Then we have

|
∫ t

0

∫ ∞

0

∫ 1

0

τmζF ε
1 ϕ dxdydτ | ≤ Cε3(2−α)/2‖τm∂xxc‖L2(Ot)‖εα/2−1∂yϕ‖L2(Ot)

≤ C
(
ε3−9α/4H(1− α) + ε3/2−3α/4H(α− 1)

)‖εα/2−1∂yϕ‖L2(Ot) (110)

|
∫ t

0

∫ ∞

0

∫ 1

0

τmζF ε
3 ϕ dxdydτ | ≤ Cε3(2−α)/2‖τm∂xtc‖L2(Ot)‖εα/2−1∂yϕ‖L2(Ot) ≤

C
(
ε3−9α/4H(1− α) + ε3/2−3α/4H(α− 1)

)‖εα/2−1∂yϕ‖L2(Ot) (111)

|
∫ t

0

∫

Ω+
ζτmF ε

2 ϕ dxdydτ | ≤ Cε3(1−α/2)‖τmζ∂xtc‖L2(Ot)‖εα/2−1∂yϕ‖L2(Ot)

≤ C
(
ε3−9α/4H(1− α) + ε3/2−3α/4H(α− 1)

)‖εα/2−1∂yϕ‖L2(Ot) (112)
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|
∫ t

0

∫

Ω+
ζτmF ε

6 ϕ dxdydτ | ≤ Cε3−3α/2

(
‖ζτm∂ttc‖L2(Ot) + ‖ζτm∂xxc‖L2(Ot)

)
‖εα/2−1∂yϕ‖L2(Ot) ≤

C
(
ε3−9α/4)H(1− α) + ε3/2−3α/4H(α− 1)

)‖εα/2−1∂yϕ‖L2(Ot) (113)

|
∫ t

0

∫

Ω+
ζτmF ε

4 ϕ dxdydτ | ≤ Cε3−3α/2‖ζτm∂ttc‖L2(Ot)‖εα/2−1∂yϕ‖L2(Ot) ≤

C
(
ε3−9α/4)H(1− α) + ε3/2−3α/4H(α− 1)

)‖εα/2−1∂yϕ‖L2(Ot) (114)

|
∫ t

0

∫ +∞

0

ζτm∂xtcε
2−α(

∫ 1

0

ϕ dy − ϕ|y=1) dxdτ | ≤ Cε2−α‖τm∂xc‖L2(Ot)‖
∫ 1

0

ϕ dy − ϕ|y=1‖L2(Ot)

≤ C
(
ε3−9α/4H(1− α) + ε3/2−3α/4H(α− 1)

)‖εα/2−1∂yϕ‖L2(Ot) (115)

|
∫ t

0

∫ +∞

0

ζ(t)τm∂ttcε
2−α(

∫ 1

0

ϕ dy − ϕ|y=1) dxdτ | ≤

Cε3(1−α/2)‖εα/2−1∂yϕ‖L2(Ot) (116)

Proof These estimates are straightforward consequences of Propositions 3 and 4 . ut

We gain more with other terms:

Proposition 7 Let ϕ ∈ H1(OT ), ϕ = 0 at x = 0. Then we have

|
∫ t

0

∫ ∞

0

∫ 1

0

(1− ζ)τm∂xxcε2−αϕ dxdydτ | ≤ Cε2−3α/2‖(1− ζ)τm∂xc‖L2(Ot)‖εα/2∂xϕ‖L2(Ot)

≤ C
(
εmα+2−3α/2H(1− α) + εm(2−α)+2−3α/2H(α− 1)

)‖εα/2∂xϕ‖L2(Ot) (117)

|
∫ t

0

∫ ∞

0

∫ 1

0

(1− ζ)τmQ(1/3− y2)∂xcϕ dxdydτ | ≤ Cε1−α/2‖(1− ζ)τm∂xc‖L2(Ot)‖εα/2−1∂yϕ‖L2(Ot) ≤

C
(
εmα+1−α/2H(1− α) + εm(2−α)+1−α/2H(α− 1)

)‖εα/2−1∂yϕ‖L2(Ot) (118)

|
∫ t

0

∫

Ω+
ζ ′(

t

Dε
)τmε2−α

{
∂xc

Q

D
{y2

6
− y4

12
− 7

180
} − K

2D
(
1
3
− y2)∂tc

}·

ϕ dxdydτ | ≤ Cε3−3α/2(‖ζ ′τm∂xc‖L2(Ot) + ‖ζ ′τm∂tc‖L2(Ot)‖εα/2−1∂yϕ‖L2(Ot) ≤
C

(
ε3−3α/2+α(m−1)H(1− α) + ε3−3α/2+(2−α)(m−1)H(α− 1)

)‖εα/2−1∂yϕ‖L2(Ot) (119)

Before applying Proposition 5 and getting the final estimate, we should correct the trace at x = 0. It
is done by adding

c̄eff
1 = −ε2−αζ(t)(βε + Be−x/ε)∂xc

Q

D
, (120)

where βε(x, y) = β(x/ε, y) is the boundary layer function given by (102) and B = − 2
45

K(7K + 2)
(1 + K)2

.

Then for ξε = cε − ceff
1 − c̄eff

1 we have

Lε(ξ) = −Φε = −Φε
1 + ∂tζε2−α∂xc

Q

D
βε + ε2−αβεζ(t)

{
∂xtc

Q

D
−

εα∂xxxcQ
}

+ ∂xβε Q2

D
(1− y2)ζε2−α∂xc− ε2−αQ∂xxcζ(t)

(
2εα∂xβε−

βε(1− y2)
Q

D

)
+ ε2−α Q

D
Lε(Be−x/ε∂xc) in Ω+ × (0, T ) (121)

−Dεα−2∂yξε|y=1 = K∂tξ|y=1 + gε|y=1 −Kε2−αζ
Q

D
∂xtc(βε + Be−x/ε)|y=1 (122)

and ∂yξε|y=0 = 0 on (0, +∞)× (0, T ) (123)

ξε|t=0 = 0 on Ω+ and ξε|x=0 = 0 on (0, 1)× (0, T ). (124)
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We need an estimate for new terms. The estimates are analogous to those in [11] and we just remark
that all new terms are of order O(εm−2) and, consequently, we can simply ignore them. In order to
explain why they are of lower order we estimate a typical term:

∫ T

0

∫ +∞

0

|τm∂xcβε|2 dxdτ ≤ C

∫ T

0

∫ +∞

0

τ2m exp{−2γ0x

ε
} exp{− (x− τQ̄)2

2γD̄τ
} dxdτ

γτD̄

≤ C

∫ T

0

τ2m(εDτ)−1/2 exp{−C0τ/ε} dxdτ ≤ Cε2m−4. (125)

Now the application of Proposition 5 is straightforward and after considering various powers we
get

Theorem 3 Let c be given by (79), let ceff
1 be given by (78) and c̄eff

1 by (120). Then we have

‖t3(cε − ceff
1 (x, t; ε)− c̄eff

1 )‖L∞(0,T ;L2
loc(Ω

+)) ≤ C
(
ε3−9α/4H(1− α)+

ε3(1−α/2)/2H(α− 1)
)

(126)

‖t3∂y

(
cε − ceff

1 (x, t; ε)− c̄eff
1

)‖L2(0,T ;L2
loc(Ω

+)) ≤
Cε1−α/2

(
ε3−9α/4H(1− α) + ε3(1−α/2)/2H(α− 1)

)
(127)

‖t2∂x

(
cε − ceff

1 (x, t; ε)− c̄eff
1

)‖L2(0,T ;L2
loc(Ω

+)) ≤
Cε−α/2

(
ε3−9α/4H(1− α) + ε3(1−α/2)/2H(α− 1)

)
(128)

Proving Corollary 1 follows the lines of the analogous construction form the article [11] and it is a
direct consequence of Theorem 3.
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