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Abstract In this paper we study solving iteratively the cou-
pling of flow and mechanics. We demonstrate the stability
and convergence of two widely used schemes: the undrained
split method and the fixed stress split method. To our knowl-
edge this is the first time that such results have been rigor-
ously obtained and published in the scientific literature. In
addition, we propose a new stress split method, with faster
convergence rate than known schemes. These results are spe-
cially important today due to the interest in hydraulic frac-
turing ([1], [3], [4] and [5]), in oil and gas shale reservoirs.
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1 Introduction

There are three approaches frequently employed in coupling
flow and mechanics in porous media i.e. in the coupling of
fluid flow and the mechanical response of the reservoir’s
solid structure. They are referred to as fully implicit, loose
or explicit coupling and iterative coupling. The fully im-
plicit involves solving all of the governing equations simul-
taneously and requires complex and expensive solvers. The
loosely or explicitly coupled is less accurate and requires
estimates of when to update the mechanical response. Itera-
tive coupling is a sequential procedure where either the flow
or the mechanics is solved first followed by solving the other
problem using the latest solution information. At each time
step the procedure is iterated until the solution converges
within an acceptable tolerance. There are four well-known
iterative coupling procedures, referred to as the undrained
split, the fixed stress split, the drained split and the fixed
strain split iterative methods. Kim et al have shown using
a von Neumann stability analysis in [2] that the latter two
methods exhibit stability problems, whereas the undrained
split and the fixed stress split method are stable. Their re-
sults does not include convergence estimates nor rates of
convergence.

In this paper we derive stability, convergence and the rate
of convergence for the undrained split and the fixed stress
split. More precisely we prove that the two methods define
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a contraction map with respect to correctly chosen metrics.
The undrained split is shown to have the same contraction
constant as the fixed stress split. In addition, we propose a
new method, with even smaller contraction constant. Con-
vergence of discrete schemes and computational results will
appear in a forthcoming paper.

We study the simplest model of real applied importance:
the quasi-static Biot system. The important parameters and
unknowns are given in the Table 1

SYMBOL QUANTITY UNITY
u displacement m
p fluid pressure Pa
σ por total poroelasticity tensor Pa
e(u) = (∇u+∇τ u)/2 linearized strain tensor dimensionless
ϕ porosity dimensionless
K permeability Darcy
vD Darcy’s velocity m/sec
α Biot’s coefficient dimensionless
ρs solid phase density kg/m3

ρ f fluid phase density kg/m3

ρb = ϕρ f +(1−ϕ)ρs bulk density kg/m3

η fluid viscosity kg/m sec
M Biot’s modulus Pa
G Gassman rank-4 tensor Pa
m fluid mass per bulk volume kg/m3

ρ f ,0 reference state fluid density kg/m3

B f = ρ f ,0/ρ f formation volume factor dimensionless

Table 1 Unknowns and effective coefficients

The quasi-static Biot equations ([6]) are an elliptic-parabolic
system of PDEs, valid in the poroelastic cube Ω = (0,L)3,
for every t ∈ (0,T ), which reads:

σ por −σ0 = G e(u)−α(p− p0)I; (1)

− div {σ por}= ρbg; (2)

vD =
K

B f η
(ρ f g−∇p); (3)

m = m0 +ρ f ,0α div u+
ρ f ,0

M
(p− p0); (4)

∂t
( 1

M
p+ div (αu)

)
+ div {vD}= f ; (5)

p|t=0 = p0; m|t=0 = m0; u|t=0 = 0; σ por|t=0 = σ0; (6)

{u, p} is periodic in x with period L. (7)

Obviously, we can suppose without loss in generality that
p0 = 0.

For convenience we have assumed periodic boundary
conditions. Boundary conditions for the general situation in-
volving displacement and traction as well as for pressure and
flux, prescribed on portions of the boundary , respectively
, can be treated by the same analysis as presented here. We
make the following hypothesis on the effective coefficients

(H1) B f , η , M , ρ f ,0 and ρs are positive constants.

(H2) K is a symmetric uniformly positive definite matrix,
with the smallest eigenvalue k and largest eigenvalue k∗.
Furthermore, for any symmetric matrix B we have

G B : B ≥ a|B|2 +Kdr(TrB)2, (8)

where Kdr is the drained bulk modulus.
(H3) m0, p0, f and σ0 are smooth L-periodic function with

respect to x.

Following [2], we further assume
(H4) ρb is independent of time and equal to

ρbg =− div σ0. (9)

We will prove the existence and uniqueness for the sys-
tem (1)-(7) using the convenient iterative methods, used in
practice.

2 Convergence of the iterative methods

2.1 ”Undrained Split” iterative method

The undrained split iterative method consists in imposing
constant fluid mass during the structure deformation. This
means that we will calculate two pressures: pn+1/2 at the
half-time step and then pn+1. We set

pn+1/2 = pn −αM div (un+1/2 −un). (10)

Then, using the hypothesis (H4), our iterative process reads
as follows

− div {G e(un+1)+Mα2 div un+1I}=
−∇{α pn +Mα2 div un}; (11)
1
M

∂t pn+1 + div { K

B f η
(ρ f g−∇pn+1)}=

− div (α∂tun+1)+ f ; (12)

{un+1, pn+1}|t=0 = 0 on Ω ; (13)

{un+1, pn+1} is periodic in x with period L. (14)

We introduce the functional spaces

VT = {z ∈C([0,T ];H1
per(Ω)3 ∩L2

0(Ω)3) | ∂te(z) ∈ L2(Ω)9}
(15)

WT = {r ∈ H1(Ω × (0,T )) | r ∈C([0,T ];H1
per(Ω))}. (16)

Theorem 1 Let us suppose hypothesis (H1)-(H4) and let S
be the operator mapping {un, pn} to {un+1, pn+1}. Th en S
admits a unique fixed point from VT ×WT satisfying (1)-(7).
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Proof Let us introduce the following notation for the fluid
mass per unit bulk volume:

mn = m0 +ρ f ,0α div un +
ρ f ,0

M
pn.

Next, let the invariant distance dus be given by

d2
us

(
(u, p),0

)
=

k
B f ηM

max
0≤t≤T

||∇p(t)||2L2(Ω)3+

2aα2

Kdr +Mα2 ||e(∂tu)||2L2(Ω×(0,T ))9 +α2|| div ∂tu||2L2(Ω×(0,T ))

+||∂t(
1
M

p+α div u)︸ ︷︷ ︸
∂t m/ρ f ,0

||2L2(Ω×(0,T )) (17)

on the closed subspace

Q = {(A,B) ∈VT ×WT |A|t=0 = 0; B|t=0 = 0 } (18)

of the functional space VT ×WT . We see that the operator
S , such that S (un, pn) = (un+1, pn+1), maps Q into itself.

Step 1. We use the notation δun
t = ∂t(un−un−1), δmn

t =

∂t(mn −mn−1) and δ pn
t = ∂t(pn − pn−1). Then (11) holds

true for the differences δun+1,δun,δ pn. We take the time
derivative of (11) and test the resulting equation by z =

δun+1
t . Applying Green’s formula we have∫

Ω
(G e(δun+1

t ) : e(δun+1
t )+Mα2| div δun+1

t |2) dx =

αM
ρ f ,0

∫
Ω

δmn
t div δun+1

t dx ≤ α2Mε
2

∫
Ω
| div δun+1

t |2 dx+

M
2ερ2

f ,0

∫
Ω
|δmn

t |2 dx, ∀ε > 0.

Using the hypothesis (H2) we obtain

a
∫

Ω
|e(δun+1

t )|2 dx+(Kdr +Mα2(1− ε
2
))
∫

Ω
| div δun+1

t |2 dx

≤ M
2ερ2

f ,0

∫
Ω
|δmn

t |2 dx.

Consequently, we conclude that the following estimate

aα2

Kdr +Mα2(1− ε
2 )

∫
Ω
|e(δun+1

t )|2 dx+α2
∫

Ω
| div δun+1

t |2 dx

≤ Mα2

2ε(Kdr +Mα2(1− ε
2 ))

∫
Ω
|δmn

t

ρ f ,0
|2 dx.

The coefficient in front of ||δmn
t /ρ f ,0||L2(Ω) is smallest for

ε = Kdr/(Mα2)+1 and the above estimate becomes

2aα2

Kdr +Mα2

∫
Ω
|e(δun+1

t )|2 dx+α2
∫

Ω
| div δun+1

t |2 dx

≤
(

Mα2

Kdr +Mα2

)2 ∫
Ω
|δmn

t

ρ f ,0
|2 dx. (19)

Step 2.
Testing (12) with δ pn+1

t and applying (H2) we get

∫ t

0

∫
Ω

δmn+1
τ

ρ f ,0
δ pn+1

τ dxdτ +
1
2

∫
Ω

k
B f η

|∇δ pn+1(t)|2 dx ≤ 0,

implying

∫ t

0

∫
Ω
|δmn+1

τ
ρ f ,0

|2 dxdτ =
∫ t

0

∫
Ω

δmn+1
τ

ρ f ,0
α div δun+1

τ dxdτ+∫ t

0

∫
Ω

δmn+1
τ

ρ f ,0

δ pn+1
τ

M
dxdτ ≤

∫ t

0

∫
Ω

δmn+1
τ

ρ f ,0
α div δun+1

τ dxdτ

−1
2

∫
Ω

k
B f ηM

|∇δ pn+1(t)|2 dx

and∫ t

0

∫
Ω
|δmn+1

τ
ρ f ,0

|2 dxdτ ≤
∫ t

0

∫
Ω
|α div δun+1

τ |2 dxdτ−∫
Ω

k
B f ηM

|∇δ pn+1(t)|2 dx. (20)

Integrating from 0 to t inequality (19) and combining it with
(20) gives

∫ t

0

∫
Ω
|∂tmn+1

ρ f ,0
|2 dxdτ +

∫
Ω

k
B f ηM

|∇pn+1(t)|2 dx+

2aα2

Kdr +Mα2

∫ t

0

∫
Ω
|e(∂tun+1)|2 dxdτ

≤
(

Mα2

Kdr +Mα2

)2 ∫ t

0

∫
Ω
|∂tmn

ρ f ,0
|2 dxdτ. (21)

Another direct consequence of (19)-(20) is the following es-
timate∫ t

0

∫
Ω
|α div δun+1

τ |2 dxdτ ≤(
Mα2

Kdr +Mα2

)2 ∫ t

0

∫
Ω
|α div δun

τ |2 dxdτ (22)

We note that (21)-(22) implies

dus

(
(un+1, pn+1)− (un, pn)

)
≤

γdus

(
(un, pn)− (un−1, pn−1)

)
(23)

with γ =
Mα2

Kdr +Mα2 < 1. Hence S is a contraction map-

ping on Q and by the contraction mapping principle, it
has a unique fixed point in Q. The theorem is proved.2

Remark 1 One can pose the question if the natural energy
norm defines a contraction.
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Again we write equations (11) and (12) for differences
δun+1,δun,δ pn and δ pn+1. We test (11) by δun+1

t , (12) by
δ pn+1 and sum up the variational formulations. It yields∫

Ω

(
G e(δun+1(t)) : e(δun+1(t))+

M
4
(δmn+1(t)

ρ f ,0

)2
)

dx

+
∫ t

0

∫
Ω

k
B f η

|∇δ pn+1|2 dxdτ ≤ 2Mα(||δmn

ρ f ,0
||L2(Ω×(0,t))

+||δmn+1

ρ f ,0
||L2(Ω×(0,t)))|| div δun+1

τ ||L2(Ω×(0,t)). (24)

Therefore, we see that the standard energy estimate is not
self-contained and requires an estimate for ∂tun+1. It was
established in Theorem 1 using the higher order derivative
estimates. It enables us to establish the fast convergence
even without having the contraction property. In the esti-
mates which follow we develop the appropriate estimate.

We use the obvious inequality∫ t

0

∫
Ω
|δmn|2 dxdτ ≤ t2

2

∫ t

0

∫
Ω
|∂τ mn|2 dxdτ

and (17) to see that (24) implies

max
0≤t≤T

∫
Ω

(
G e(δun+1(t)) : e(δun+1(t))+

M
4
(δmn+1(t)

ρ f ,0

)2
)

dx+
∫ T

0

∫
Ω

k
B f η

|∇δ pn+1(τ)|2 dxdτ

≤ MT 2(d2
us((u

n+1, pn+1)− (un, pn))+

d2
us((u

n−1, pn−1)− (un, pn))). (25)

(25), together with Theorem 1, yields fast convergence in
the natural energy norm.

2.2 ”Fixed Stress Split” iterative method

The fixed stress split iterative method consists in imposing
constant volumetric mean total stress. This means that the
σv =σv,0+Kdr div u−α(p− p0) is kept constant at the half-
time step. Our iterative process reads as follows(

1
M

+
α2

Kdr

)
∂t pn+1 + div { K

B f η
(ρ f g−∇pn+1)}=

− α
Kdr

∂tσn
v + f = f −α div ∂tun +

α2

Kdr
∂t pn; (26)

− div {G e(un+1)}+α∇pn+1 = 0; (27)

{un+1, pn+1}|t=0 = 0 on Ω ; (28)

{un+1, pn+1} is periodic in x with period L. (29)

Remark 2 We remark that the fixed stress approach is use-
ful in employing reservoir simulators in that (26) can be ex-
tended to treat the mass balance equations arising in black
oil or compositional flows.

Theorem 2 Let us suppose hypothesis (H1)-(H4) and let S
be the operator mapping {un, pn} to {un+1, pn+1}. Then S
admits a unique fixed point from VT ×WT satisfying (1)-(7).

Proof Let us introduce the following notation for volumet-
ric mean total stress

σv = σv,0 +Kdr div u−α(p− p0).

Then (26) and (27) hold true for the differences δun+1,δun,δ pn

and δ pn+1, with f = 0 and g = 0.
Step 1. We multiply the variant of (26), valid for δ pn+1

and δ∂tσn
v , by ∂tδ pn+1 and get(

1
Mα2 +

1
Kdr

)∫ t

0

∫
Ω
|α∂τ δ pn+1|2 dxdτ+∫

Ω

k
2B f η

|∇δ pn+1(t)|2 dx ≤− α
Kdr

∫ t

0

∫
Ω

∂τ δ pn+1δ∂τ σn
v dxdτ

≤ ε
2

∫ t

0

∫
Ω
|αδ∂τ pn+1|2 dxdτ+

1
2εKdr

∫ t

0

∫
Ω
(∂τ δσn

v )
2 dxdτ, ∀ε > 0.

Again, the coefficient in front of ||δ∂tσn
v ||L2(Ω×(0,t)) is small-

est for ε = 1/Kdr + 1/(Mα2) and the above estimate be-
comes(

1
Mα2 +

1
Kdr

)∫ t

0

∫
Ω
|αδ∂τ pn+1|2 dxdτ + k

∫
Ω
|∇δ pn+1(t)|2 dx

≤ Mα2

Kdr(Mα2 +Kdr)

∫ t

0

∫
Ω
(∂τ δσ n

v )
2 dxdτ, (30)

where k =
k

B f η
.

Step 2.
Next we take the time derivative of (27), valid for {δun+1,δ pn+1},

and test the resulting equation by ∂tδun+1. It yields∫
Ω

G e(∂tδun+1) : e(∂tδun+1) = α
∫

Ω
∂tδ pn+1 div ∂tδun+1 dx,

which implies

2a(
Kdr

Mα2 +1)
∫

Ω
|e(∂tδun+1)|2 dx+

2(
1

Mα2 +
1

Kdr
)
∫

Ω
|Kdr div ∂tδun+1|2 dx ≤

2(
1

Mα2 +
1

Kdr
)
∫

Ω
α∂tδ pn+1Kdr div δ∂tun+1 dx. (31)

After summing up (30) and (31), one has∫ t

0

∫
Ω
(∂τ δσn+1

v )2 dxdτ +K2
dr

∫ t

0

∫
Ω
| div ∂tδun+1|2 dxdτ

+2aKdr

∫ t

0

∫
Ω
|e(∂tδun+1)|2 dxdτ+

kMα2Kdr

Mα2 +Kdr

∫
Ω
|∇δ pn+1(t)|2 dx ≤(

Mα2

Mα2 +Kdr

)2 ∫ t

0

∫
Ω
(∂τ δσ n

v )
2 dxdτ. (32)
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Now we proceed as in Subsection 2.1 and obtain the result:
The expression on the left hand side defines the invariant
distance d f s by

d2
f s

(
(u, p),0

)
=

kMα2Kdr

Mα2 +Kdr
max

0≤t≤T
||∇p(t)||2L2(Ω)+

2aKdr||e(∂tu)||2L2(Ω×(0,T ))3 +K2
dr||div ∂tu||2L2(Ω×(0,T ))

+||∂t(−α p+Kdr div u)︸ ︷︷ ︸
∂t σv

||2L2(Ω×(0,T )), (33)

on the closed subspace

Q = {(A,B) ∈VT ×WT |A|t=0 = 0 and B|t=0 = 0 }. (34)

We see that that the operator S , such that S (un, pn) =

(un+1, pn+1), maps Q into itself.
We find out that

d f s

(
(un+1, pn+1)− (un, pn)

)
≤

γFSd f s

(
(un, pn)− (un−1, pn−1)

)
(35)

with γFS =
Mα2

Kdr +Mα2 < 1. Hence S is a contraction map-

ping on Q and by the contraction mapping principle, it
has a unique fixed point in Q.2

2.3 Optimized ”Fixed Stress Split” iterative method

The fixed stress split iterative method consisted in impos-
ing constant volumetric mean total stress. In this section we

work with the quantity σβ =σ0+Kdr div u− βKdr

α
(p− p0).

Our iterative process reads as follows(
1
M

+β
)

∂t pn+1 + div { K

B f η
(ρ f g−∇pn+1)}=

− α
Kdr

∂tσn
β + f = f −α div ∂tun +β∂t pn; (36)

− div {G e(un+1)}+α∇pn+1 = 0; (37)

{un+1, pn+1}|t=0 = 0 on Ω ; (38)

{un+1, pn+1} is periodic in x with period L. (39)

Remark 3 We remark that this method is new. It interesting
because it gives the fastest convergence.

Theorem 3 Let us suppose hypothesis (H1)-(H4) and β ≥
α2/(2Kdr). Let S be the operator mapping {un, pn} to
{un+1, pn+1}. Then S is a contraction and admits a unique
fixed point from VT ×WT satisfying (1)-(7). The contrac-
tion constant is smallest for β = α2/(2Kdr) and takes value

γW =
Mα2

Mα2 +2Kdr
.

Proof Let us introduce the following notation for ”artifi-
cial” volumetric mean total stress

σβ = σ0 +Kdr div u− βKdr

α
(p− p0).

Then (36) and (37) hold true for the differences δun+1,δun,δ pn

and δ pn+1, with f = 0 and g = 0.
Step 1. We multiply the variant of (36), valid for δ pn+1

and δ∂tσn
β , by ∂tδ pn+1 and get(

1
M

+β
)

α2

β 2K2
dr

∫ t

0

∫
Ω
|βKdr

α
∂τ δ pn+1|2 dxdτ+∫

Ω

k
2B f η

|∇δ pn+1(t)|2 dx ≤− α
Kdr

∫ t

0

∫
Ω

∂τ δ pn+1δ∂τ σn
β dxdτ

≤ ε
2

α2

β 2K2
dr

∫ t

0

∫
Ω
|βKdr

α
δ∂τ pn+1|2 dxdτ+

α2

2εK2
dr

∫ t

0

∫
Ω
(∂τ δσn

β )
2 dxdτ, ∀ε > 0.

Again, the coefficient in front of ||δ∂tσn
β ||L2(Ω×(0,t)) is small-

est for ε = β +1/M and the above estimate becomes∫ t

0

∫
Ω
|βKdr

α
δ∂τ pn+1|2 dxdτ + k1

∫
Ω
|∇δ pn+1(t)|2 dx

≤
(

β
β +1/M

)2 ∫ t

0

∫
Ω
(∂τ δσ n

β )
2 dxdτ, (40)

where k1 =
k

B f η
(

βKdr

α
)2 1

β +1/M
.

Step 2.
Next we take the time derivative of (37), valid for {δun+1,δ pn+1},

and test the resulting equation by ∂tδun+1. It yields∫
Ω

G e(∂tδun+1) : e(∂tδun+1) = α
∫

Ω
∂tδ pn+1 div ∂tδun+1 dx,

which implies

2a
βK2

dr
α2

∫
Ω
|e(∂tδun+1)|2 dx+

2
βKdr

α2

∫
Ω
|Kdr div ∂tδun+1|2 dx ≤

2
∫

Ω

βKdr

α
∂tδ pn+1Kdr div δ∂tun+1 dx. (41)

We note that the right hand side of (41) represents the inte-
gral of the product of the terms from the definition of ∂tσβ .
After summing up (40) and (41) and using the definition of
σβ , one has∫ t

0

∫
Ω
(∂τ δσn+1

β )2 dxdτ +(2
βKdr

α2

−1)
∫ t

0

∫
Ω
|Kdr div ∂tδun+1|2 dxdτ+

2aβK2
dr

α2

∫ t

0

∫
Ω
|e(∂tδun+1)|2 dxdτ + k1

∫
Ω
|∇δ pn+1(t)|2 dx

≤
(

β
β +1/M

)2 ∫ t

0

∫
Ω
(∂τ δσ n

β )
2 dxdτ. (42)
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The estimate (42) yields a contraction map only if β ≥α2/(2Kdr).
The contraction constant is smallest for β =α2/(2Kdr). Now
we proceed as in Subsection 2.1 and obtain the result: The
expression on the left hand side defines the invariant dis-
tance dW by

d2
W

(
(u, p),0

)
=

2aβK2
dr

α2 ||e(∂tu)||2L2(Ω×(0,T ))3+

k1 max
0≤t≤T

||∇p(t)||2L2(Ω)+(2
βKdr

α2 −1)||Kdrdiv ∂tu||2L2(Ω×(0,T ))

+||∂t(−
βKdr

α
p+Kdr div u)︸ ︷︷ ︸
∂t σβ

||2L2(Ω×(0,T )), (43)

on the closed subspace

Q = {(A,B) ∈VT ×WT |A|t=0 = 0 and B|t=0 = 0 }. (44)

We see that that the operator S , such that S (un, pn) =

(un+1, pn+1), maps Q into itself.
We find out that

dw

(
(un+1, pn+1)− (un, pn)

)
≤

γFSW d f s

(
(un, pn)− (un−1, pn−1)

)
(45)

with γFSW =
β

β +1/M
< 1. Hence S is a contraction map-

ping on Q and by the contraction mapping principle, it
has a unique fixed point in Q.2

Acknowledgements The authors would like to thank the (anonymous)
referee for careful reading of the paper and for the hint about getting
the optimal contraction constant in Subsection 2.1.

References

1. R.H. Dean, J.H. Schmidt, Hydraulic-Fracture Predictions with a
Fully Coupled Geomechanical Reservoir Simulator, SPE Journal,
Vol. 14 (2009), p. 707-714.

2. J. Kim, H.A. Tchelepi, R. Juanes, Stability, Accuracy and Effi-
ciency of Sequential Methods for Coupled Flow and Geomechanics,
SPE International, SPE 119084, p. 1-19.

3. L. Ji, A. Settari, R.B. Sullivan, A Novel Hydraulic Fracturing
Model Fully Coupled With Geomechanics and Reservoir Simulation,
SPE Journal, Vol. 14 (2009), 423–430.

4. P. Samier, S. De Gennaro, Iterative Coupling of Geomechanics
With Reservoir Simulation, SPE Reservoir Simulation Symposium,
26-28 February 2007, Houston, Texas, U.S.A.

5. A. Settari, F. Maurits, Coupled reservoir and geomechanical simu-
lation system, SPE J, Vol. 3 (1998), 219-226.

6. I. Tolstoy, ed. Acoustics, elasticity, and thermodynamics of porous
media, Twenty-one papers by M. A. Biot, Acoustical Society of
America, New York (1992).


