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I. INTRODUCTION

Effective deformation and filtration in a deformable porous medium is described by the

Biot-Allard equations

ρ∂ttu− Div {AHe(u)− αp}+ ∂t

∫ t

0

A(
(t− ζ)η

ρfℓ2
)(ρfF(x, ζ)

−∇p(x, ζ)− ρf∂ζζu(x, ζ)) dζ = ρF, (1)

∂t

(
Mp+ div

(
αu

))
+ div {

∫ t

0

A(
(t− ζ)η

ρfℓ2
)(F(x, ζ)− 1

ρf
∇p(x, ζ)− ∂ζζu(x, ζ)) dζ} = 0

(2)

where e(∗) stands for the symmetrized gradient (strain tensor), u is the effective solid phase

displacement, p is the effective pressure and the parameters are defined in Table I

SYMBOL QUANTITY UNITY

ρs solid grain density kg/m3

ρf pore fluid density kg/m3

φ porosity 0 < φ < 1

ρ = ρfφ+ ρs(1− φ) effective mass density kg/m3

η pore fluid viscosity kg/m sec

ℓ typical pore size m

α Biot’s pressure-storage coupling tensor dimensionless

M combined porosity and compressibility of the fluid and solid dimensionless

AH Gassman’s fourth order effective elasticity tensor Pa

ρf ℓ
2/η intrinsical characteristic time sec

A dynamic permeability tensor dimensionless

Λ characteristic Gassman’s coefficient Pa

Ef pore fluid bulk modulus Pa

TABLE I. Effective coefficients for the Biot-Allard equations

The equations (1)-(2) represent the solid displacement - pressure real time formulation of

the dynamic Biot’s equation, usually written in the frequency formulation (see the collection

of Biot’s papers1). Note that the dynamical permeability corresponds to the inverse Laplace

transform of the inverse of Biot’s viscodynamic operator.
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These equations are obtained from the linearized first principles fluid/structure pore

level interaction, using homogenization approach. We suppose small deformations, small

fluid compressibility and small Reynolds numbers, which allows us to make the following

important simplifications:

1. dropping the inertial term in the Navier-Stokes equations,

2. supposing an incompressible or a slightly compressible pore fluid,

3. using a linear elastic model (Navier’s equations) to describe the solid skeleton and

4. linearization of the fluid/solid interface coupling conditions.

Furthermore, the initial porous medium configuration is heterogeneous at the pore level but

statistically homogeneous at macroscopic level. It is supposed that there are two connected

phases, a solid and a fluid one. The solid phase is deformable.

A representative example of such geometry is the periodic porous medium with connected

fluid and solid phases. It is obtained by a periodic arrangement of the pores and effective

coefficients can be determined using periodic representative volume elements.

First we define the geometrical structure inside the unit cell Y = (0, 1)3. Following

Allaire2 we make the following assumptions on the geometry:

A1: Ys (the solid part) is a closed subset of Ȳ of strictly positive measure and Yf = Y\Ys

(the pore containing the fluid). Then Yf is supposed to be an open connected periodic

set of strictly positive measure, with a smooth boundary.

A2: We make periodic repetition of Ys over Rn and, For sufficiently small ℓ > 0, set Yℓ
Si

=

ℓ(Ys + k), k ∈ Zn. Let Tℓ = {k ∈ Z3|Yℓ
Sk

⊆ ΩL}. The construction yields a closed

solid skeleton Ωℓ
s =

∪
k∈Tℓ

Yℓ
Sk
, the fluid structure interface Γℓ = ∂Ωℓ

s \ ∂ΩL and the pore

volume filled with a fluid Ωℓ
f = Ω \ Ωℓ

s. Both Ωℓ
s and Ωℓ

f are connected and Γℓ is a

smooth surface.

Figure 1 shows a typical pore satisfying (A1).
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Solid part Fluid part

FIG. 1. The pore RVE

The linear fluid-structure equations in the reference configuration read

ρf
∂2uℓ

f

∂t2
+∇pℓ = η∆

∂uℓ
f

∂t
+ ρfF in Ωℓ

f (3)

pℓ

ρfEf

+ div uℓ
f = 0 in Ωℓ

f (4)

ρs
∂2uℓ

s

∂t2
= div(Ae(uℓ

s)) + ρsF in Ωℓ
s (5)

uℓ
s = uℓ

f on Γℓ (displacement continuity at the interface) (6)

(−pℓI + 2ηe(
∂uℓ

f

∂t
))n = Ae(uℓ

s)n on Γℓ. (7)

We note that the 4th order tensor A contains the elasticity coefficients of the solid skeleton

and that we have supposed a linear coupling, evaluated in (6)-(7) at the non-deformed

interface Γℓ.

In the references3,4,5,9,10 either Laplace’s transform in time is applied to system (3)-

(7) or the excitation by an external harmonic source with frequency ω is supposed. After

identifying the characteristic pore size ε = ℓ/L (the ratio between two length scales) as the

small parameter, the technique of homogenization4 was applied. It allowed Burridge and

Keller in3 and Sanchez-Palencia et al in4 to derive from (3)-(7) the homogenized systems

in slow variable x and the fast variable y = x/ε (see also references therein). Most of

the published work was formal, but there are rigorous homogenization derivations in the
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fundamental book4 and in the article5.

The rigorous homogenization of (3)-(7) in space and in time variables is in6 and7. The

case of an inviscid fluid filling the pores is treated in8. Furthermore in these references the

separation between slow and fast scales was undertaken, which allowed reducing the two-

scale homogenized equations to the Biot equations from1. In8 the scales separation yielded

Biot’s equation for a porous medium filled by an inviscid fluid. The viscous case is more

complicated, and in6 and7, Biot’s equations were justified but with a tensorial viscodynamic

operator.

In the case of pores filled by a viscous fluid, the result depends on the contrast of property

number C = ηT/Λ = η/(Λω). If C = O(ε2) the homogenization approach gives a diphasic

macroscopic behavior of the fluid-solid mixture, described by the diphasic Biot system. This

case was given a particular attention in3,4,5,7,9,10. This regime arises in most applications

and we suppose in text which follows that C = O(ε2). The rigorous convergence result,

for fixed frequency, and using the newly introduced two-scale convergence is in article5 by

Nguetseng. We explain the asymptotic analysis result following7, were the system (6)-(7)

was homogenized in space and in time variables and the form of the equations presented

here was given.

The technique of homogenization involves the following steps:

1. We write the unknowns uℓ
f ,u

ℓ
s and p

ℓ as functions of ε , of the slow spatial scale x/L

and of the fast spatial scale y/L = x/ℓ. Then the unknowns are expanded in a power

series in ε : 
uℓ
f = u0

f (x, y, t) + εu1
f (x, y, t) + . . . ,

uℓ
s = u0

s(x, y, t) + εu1
s(x, y, t) + . . . ,

pℓ = p0(x, y, t) + εp1(x, y, t) + . . . .

(8)

Next, in the system (6)-(7) the differential operators are expressed in both slow and

fast spatial variables and the perturbative series (8) are introduced into the rescaled

equations. After equating terms with equal powers of ε the two-scale homogenized

equations are obtained. They contain u0
f ,u

0
s,u

1
s, p

0 and p1 as unknown functions and

number of spatial variables is doubled. The scale separation is needed.
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2. We follow7 and find out that

u0
s = u(x, t), p0(x, y, t) = χYf

(y)p(x, t) and

u1
s = p(x, t)w0(y) +

3∑
i,j=1

1

2
(
∂ui
∂xj

+
∂uj
∂xi

)wij(y),

where wij correspond to the homogenization of the empty elastic deformable porous

medium and depend only on the porous medium geometry. The periodic cell average

of the corresponding stress A(ey(w
ij) + sym ei ⊗ ej) gives the positive definite 4th

order Gassman tensor AH . Biot’s tensor α is given by αij =

∫
Yf

divyw
ij dy. w0 is

displacement of the elastic solid structure of the unit pore to which the unit pressure

is applied at the fluid/solid interface. It satisfies
∫
Yf
divyw

0 dy < 0.

3. The fluid may be regarded at the leading order as incompressible at y scale. {∂tu0
f , p

1}

satisfies the non-stationary Stokes variable in y variable in the pore. The forcing term

is ρfF −∇xp(x, t). The solid-fluid interface condition is ∂tu
0
f = ∂tu. The separation

of the fast and slow variables yields

∂tu
0
f = ∂tu+

1

η

∫ t

0

Q(y,
t− ζ

ρfℓ2
η)(ρfF−∇xp(x, t)− ρf∂ζζu) dζ, (9)

where the jth column qj of the matrix Q satisfies the non-stationary incompressible

pore Stokes system (50)-(52). The dynamic permeability A(t) is defined as A(t) =∫
Yf

Q(y, t) dy. Note that the complex vector valued Laplace transform of ∂t(u
0
f − u)

satisfies Darcy’s law, with Â(ω) being the permeability.

4. The structure momentum equation (1) is obtained from the compatibility condition

for the solvability of the unit cell solid part Navier’s equations for u2. In addition to

the classical homogenization of an elastic porous structure (see4), the pore fluid applies

the contact interface force (p1I − 2ηey(∂tu
0
f ))n on the solid structure. Averaging all

terms linked to u1
s in the compatibility condition and using (9), yields equation (1).

5. The effective pressure equation (2) is obtained by averaging the next order of expansion

in the incompressibility condition. Average of divyu
1
f over Yf is equal to the average of

-divyu
1
s over Ys. Inserting the separation of scales formula for u1

s yields equation (2).

It is important to note that we have the same Biot coefficient matrix α in the term
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div(αp) in (1) and in div(α∂tu) in (2). Next, M = − 1

Λ

∫
Yf

divyw
0 dy+

φ

ρfEf

and even

for an incompressible fluid, there would be a term -(
∫
Yf
divyw

0 dy)∂tp, corresponding

to the effective compressibility of the solid-fluid mixture.

Therefore the effective behavior is described by the effective solid phase displacement u and

the effective pressure p. they are defined at every point of ΩL and we do not distinguish

the solid and fluid phases any more. The filtration velocity is

∂tu+
1

η

∫ t

0

A(
t− ζ

ρfℓ2
η)(ρfF−∇xp(x, t)− ρf∂ζζu) dζ.

Concerning the approximation, it is proved in7 that

√
ρfχYf

(
x

ε
)(uℓ

f−u0
f (x,

x

ε
, t))+

√
ρs(u

ℓ
s−u)χYs(

x

ε
) → 0 in C([0, T ];L2(Ω)3), as ε =

ℓ

L
→ 0.

For mathematical considerations we need the dimensionless form of the system (1)-(2). If

the characteristic size of the Young modulus in AH is Λ and the time scale Tc, then the ob-

servation length L of Terzaghi (see3) for the problem is L = ℓ
√
ΛTc/η and the characteristic

pressure P =
√

Λη/Tc. The dimensionless form of (1)-(2) is given by

κ∂ttu
0 − Div {A0D(u0)− αp0}+ ∂t

∫ t

0

A(
t− ζ

κf
)(ψfF(x, ζ)

−∇p0(x, ζ)− κf∂ζζu
0(x, ζ)) dζ = ψF(x, t), (10)

M0∂tp
0 + div {

∫ t

0

A(
t− ζ

κf
)(
ψf

κf
F− 1

κf
∇p0 − ∂ζζu

0) dζ}+ div {α∂tu0} = 0 (11)

where M0 =MΛ, A0 = AH/Λ, ψf = TcF0

√
ρfℓ η, ψs = TcF0

√
ρsℓ η and ψ = ψfφ+ ψs(1−

φ). Contrast coefficients are κf =
ρfℓ

2

ηTc
and κs =

ρsℓ
2

ηTc
, respectively. κ = κfφ+ κs(1− φ).

II. A PRIORI ESTIMATES FOR THE DYNAMIC BIOT EQUATIONS

We study the system (10), (11) in the cube Ω = (0, 1)3, for t ∈ (0, T ). For simplicity we

assume homogeneous initial conditions and periodic boundary conditions.

For a Hilbert space X, let C∞
0 (R+;X) denotes infinitely differentiable functions defined

on R with values in X and with compact support on R+ = (0,+∞).

With notation ℜτ for the real part of τ ∈ C, we introduce the complex Laplace transform

in time of a vector valued function f and denote it f̂ . It is defined for τ ∈ C+ = {λ ∈ C :

Re λ > λ0 > 0}. We apply it to the system (10), (11) to have
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Theorem 1. Let us suppose F ∈ C∞
0 (R+;L

2(Ω)3) and

: (H1) A0 is a symmetric positive definite 4th order tensor.

: (H2) M0 is a positive constant.

: (H3) α is a symmetric matrix.

: (H4) The Laplace transform of Â of the dynamic permeability matrix A is a complex sym-

metric (but not Hermitian) matrix and satisfies

ℜ{Â(τ)ξξ} ≥ C
λ1 + ℜτ
|λ1 + τ |2

|ξ|2, ∀ξ ∈ C3, (12)

ℜ{(τ + c1)Â(τ)ξξ} ≥ C|ξ|2, for some c1 ≥ 0 and ∀ξ ∈ C3, (13)

ℜ{τ(κI − τκ2fÂ(τκf ))ξξ + Â(κfτ)ββ + (α− τκfÂ(τκf ))βξ − (α− τκfÂ(τκf ))ξβ}

≥ κs(1− φ)ℜτ |ξ|2 + C
κfℜτ

|λ1 + κfτ |2
|β|2, ∀ξ, β ∈ C3, (14)

||Â(τ)||∞ ≤ C
1

|λ1 + τ |
, (15)

for some λ1 > 0.

Then we have the following a priori estimate:

ℜτ
∫
Ω

{κs|τ û0|2 + |e(û0)|2 + |p̂0|2} dx+ ℜτκf
|λ1 + τκf |2

∫
Ω

|∇p̂0|2 dx ≤ C||(1 + |τ |)F̂||2L2(Ω). (16)

Remark 1. As discussed in the Appendix, the hypothesis (H1)-(H4) are natural. In par-

ticular, the matrix Â is not uniformly positive definite with respect to τ and (14)-(15) give

its precise behavior. It is known from the literature, that in the case ℜτ = 0, the impedance

Â(i Im τ) goes to zero for large values of Im τ . For details we refer to9 and10 .

Proof. Application of the Laplace transform to (10) and (11) with τ ∈ C+ yields

− Div {A0e(û0)}+ Div {(α− τκfÂ(τκf ))p̂
0}+

(κI − τκ2fÂ(τκf ))τ
2û0 = (ψI − τκfψfÂ(τκf ))F̂(x, τ), (17)

M0τ p̂0 + div {(α− τκfÂ(τκf ))τ û
0} − div {Â(τκf )∇p̂0} = − div {Â(τκf )ψf F̂(x, τ)}. (18)

8



Now we test equation (17) with τ û0, take the complex conjugate of (18), test it with p̂0 and

sum up the obtained variational equalities, to get

τ

∫
Ω

((κI − τκ2fÂ(τκf ))τ û
0τ û0 dx+ τ

∫
Ω

A0e(û0) : e(û0) dx+ τM0

∫
Ω

|p̂0|2 dx+∫
Ω

Â(τκf )∇p̂
0∇p̂0 dx+

∫
Ω

(
(α− τκfÂ(τκf ))∇p̂0τ û0 − (α− τκfÂ(τκf ))τ û0∇p̂0

)
dx

=

∫
Ω

ψfÂ(τκf )F̂(x, τ)∇p̂0 dx+
∫
Ω

(ψI − τκfψfÂ(τκf ))F̂(x, τ)τ û0 dx. (19)

Using (14)-(15) yields

ℜτ
∫
Ω

{κs|τ û0|2 + |e(û0)|2 + |p̂0|2} dx+ ℜτκf
|λ1 + τκf |2

∫
Ω

|∇p̂0|2 dx ≤

C||F̂||L2(Ω)

(
||
√
ℜτκf∇p̂0

|λ1 + τκf |
||L2(Ω) + ||τ û0||L2(Ω)

)
. (20)

(20) implies estimate (16). �
In order to return to the original time variable we need to invert the Laplace transform.

In the vector valued setting we use the following result:

Let X be a Hilbert space, and let H2(C+, X) be the subset of the space of holomorphic

functions defined by

H2(C+, X) = {h : C+ → X such that

||h||2H2(C+,X) = sup
x>0

∫
R
||h(x+ is)||2X ds < +∞}.

Then we have

Theorem 2. (vector valued Paley-Wiener theorem from11, page 48) Let X be a Hilbert space.

Then the map f → f̂ |C is an isometric isomorphism of L2(R+, X) onto H2(C+, X).

In our situation X = L2(Ω) and by Theorem 2 estimate (16) yields

Corollary 1. We have the following a priori estimate∫ T

0

∫
Ω

{κs|∂tu0|2 + |e(u0)|2 + |p0|2} dxdt+∫ T

0

∫
Ω

|∇ 1
√
κf

∫ t

0

e−λ1(t−ζ)/κfp0(x, ζ) dζ|2 dxdt ≤ C

∫ +∞

0

∫
Ω

(|F|2 + |∂tF|2) dxdt. (21)

In order to avoid negative Sobolev norm in time for∇p0 in (21) we do further calculations.

Namely we multiply the unknowns {û0, p̂0} in (17) and (18) by (λ1+κfτ), respectively, and

apply the same argument as in Theorem 1 to them. Using estimate (16) we obtain
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Proposition 1. Under the assumptions of Theorem 1, we have∫
Ω

{κs|τ 2û0|2 + |e(τ û0)|2 + |τ p̂0|2} dx+
∫
Ω

|∇p̂0|2 dx ≤ C(κf , κs)

ℜτ
||(1 + |τ |2)F̂||2L2(Ω). (22)

and ∫ T

0

∫
Ω

(
κs|∂ttu0|2 + |e(∂tu0)|2 + |∂tp0|2

)
dxdt+

∫ T

0

∫
Ω

|∇p0|2 dxdt ≤

C(κf , κs)

∫ +∞

0

2∑
m=0

∫
Ω

|∂mt F|2 dxdt. (23)

It is important to control derivatives independently of κf . It is achieved by proving the

estimate (16) for {τ û0, τ p̂0}.

Proposition 2. Let
∫
Ω
F dx = 0, for every t > 0. Under the assumptions of Theorem 1, we

have ∫
Ω

{κs|τ 2û0|2 + |e(τ û0)|2 + |e(û0)|2 + |û0|2+

τ p̂0|2 + |p̂0|2 + |∇p̂0|2} dx ≤ C||(1 + |τ |2)F̂||2L2(Ω). (24)

and ∫ T

0

∫
Ω

{κs|∂ttu0|2 + |e(∂tu0)|2 + |e(u0)|2 + |u0|2 + |∂tp0|2 + |∇p0|2} dxdt

≤ C

∫ +∞

0

2∑
m=0

∫
Ω

|∂mt F|2 dxdt. (25)

Proof. Arguing as in the proof of Theorem 1, we obtain

ℜτ
∫
Ω

{κs|τ 2û0|2 + |e(τ û0)|2 + |e(û0)|2 + |τ p̂0|2 + |p̂0|2} dx ≤ C||(1 + |τ |2)F̂||2L2(Ω). (26)

Since

∫
Ω

F̂ dx = 0, after integrating equation (17) over Ω and using (77), we obtain∫
Ω

û0 dx = 0. Korn’s inequality implies

∫
Ω

|û0|2 dx ≤ C

∫
Ω

|e(û0)|2 dx.

Next, we test equation (18) with p̂
0
and use (26) and (12) to conclude that

λ1 + ℜτκf
|λ1 + τκf |2

∫
Ω

|∇p̂0|2 dx ≤ C||(1 + |τ |2)F̂||2L2(Ω). (27)
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Finally, testing equation (18) with τ p̂
0
and using (26) and (13) yields∫

Ω

|∇p̂0|2 dx ≤ C||(1 + |τ |2)F̂||2L2(Ω). (28)

�
With the estimates (21), (23) and (25) proving existence and uniqueness for the dy-

namic Biot system (10), (11) with homogeneous initial conditions and periodic boundary

conditions, is straightforward. We conclude the Section by stating our main result

Theorem 3. Under the assumptions of Theorem 1, the problem (10), (11), supplemented by

homogeneous initial conditions and periodic boundary conditions, has a unique variational

solution {u0, p0} ∈ H1((0, T )×Ω)3 ∩H2(0, T ;L2(Ω))3 ×H1(0, T ;L2(Ω)) ∩ L2(0, T ;H1(Ω)).

III. FROM THE DYNAMIC BIOT SYSTEM TO THE QUASI-STATIC

BIOT SYSTEM

In this Section we show that the quasi-static Biot equations can be used iteratively to

solve the dynamic Biot equations. We study the behavior of the system (10), (11) in the

limit κf , κs → 0. Note that κf (and consequently also κs) stands for the ratio between

the intrinsical characteristic time and the characteristic reservoir time scale. In reservoir

engineering they are small. An exemple is given at Table II. For the data from Table II

SYMBOL QUANTITY CHARACTERISTIC VALUE

Λ Young’s modulus 7e9 Pa

ρf fluid density 1e3 kg/m3

ρs solid grain density 2.65e3 kg/m3

η fluid viscosity 1e−3 kg/m sec

ℓ typical pore size 1e−5 m

L observation length 5000 m

ε small parameter ε = ℓ/L = 0.2e−8

Ef pore fluid bulk modulus 1e6 Pa

TABLE II. Typical reservoir data description
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one finds

Tc = 0.41 days , κf = 0.28e− 8, κs = 0.742e− 8, κco = O(1) = ψf = O(1) = ψs.

For more details we refer to12. We note that in simulation of the noise protection tiny

poroelastic layers κf = O(1) = κs and one has to consider the full hyperbolic-parabolic

Biot-Allard system with memory.

Formally in the singular limit κf , κs → 0 one obtains the quasi-static Biot system:

− Div {A0e(uQS)}+ Div {αpQS} = ψF(x, t), (29)

M0∂tp
QS + div {K(ψfF−∇pQS) + α∂tu

QS} = 0 (30)

with periodic boundary conditions and the homogeneous initial condition for the pressure

pQS|t=0 = 0. Appearance of the Darcy permeability tensor K =

∫ +∞

0

A(z) dz is linked to

the fact that for every t positive and a bounded continuous function g defined for t ≥ 0,

and with values in R3 one has

lim
κf→0

∫ t

0

A(
t− z

κf
)
g(z)

κf
dz = (

∫ +∞

0

A(z) dz)g(t) = Kg(t). (31)

Proving that the quasi-static Biot system has a unique solution with high regularity in time

is straightforward. We have

Lemma 1. Let F ∈ C∞
0 (R+;L

2
0(Ω)

3), A0 be a symmetric positive definite 4th order tensor

and K be a positive definite symmetric matrix. Assume M0 is a positive constant and α

be a symmetric matrix. Then the problem (29)-(30) has a unique solution {uQS, pQS} ∈

Hk(0, T ;H1
per(Ω))

4,
∫
Ω
uQS dx = 0, for all k ∈ N.

In order to obtain the iterative procedure we introduce the unknowns

uc =
u0 − uQS

κf
and pc =

p0 − pQS

κf
.

Using (10), (11) and (29), (30) we see that {uc, pc} satisfy the system

κ∂ttu
c − Div {A0D(uc)− αpc} − ∂t

∫ t

0

A(
t− z

κf
)(∇pc(x, z) + κf∂zzu

c(x, z)) dz =

− κ

κf
∂ttu

QS +
1

κf
∂t

∫ t

0

A(
t− z

κf
)

(
∇pQS + κf∂zzu

QS − ψfF(x, z)

)
dz, (32)

M0∂tp
c − div {

∫ t

0

A(
t− z

κf
)(

1

κf
∇pc + ∂zzu

c) dz}+ div {α∂tuc} =

1

κf
div {K(ψfF−∇pQS)}+ 1

κf
div {

∫ t

0

A(
t− z

κf
)(

1

κf
∇pQS + ∂zzu

QS − ψf

κf
F) dz}. (33)

with homogeneous initial conditions and periodic boundary conditions.
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Theorem 4. Let us suppose that the assumptions of Theorem 1 and Lemma 1 are satisfied

and in addition assume Â is an analytic function such that

d

dτ
Â(0) = −

∫ +∞

0

tA(t) dt. (34)

Then in the limit κf , κs → 0 we have

uc =
u0 − uQS

κf
→ ucor in H1((0, T )× Ω)3 (35)

and pc =
p0 − pQS

κf
→ pcor in H1((0, T )× Ω), (36)

where {ucor, pcor} is the solution for the problem

− Div {A0e(ucor)}+ Div {αpcor} = −(φ+ (1− φ)
ρs
ρf

)∂ttu
QS−

∂tK(ψfF(x, t)−∇pQS(x, t)), (37)

M0∂tp
cor + div {−K∇pcor + α∂tu

cor} = div {K∂ttuQS}

+ div {(
∫ +∞

0

zA(z) dz)∂t(ψfF(x, t)−∇pQS(x, t))}. (38)

Remark 2. Using K = Â(0), we see that (34) implies

lim
κf→0

1

κf
{
∫ t

0

A(
t− z

κf
)
g(z)

κf
dz −Kg(t)} = −(

∫ +∞

0

τA(z) dz)∂tg,

for every g ∈ H1
0 (R+).

Corollary 2. {uc, pc} = {uQS, pQS}+κf{ucor, pcor}+o(κf ) in the topology of H1((0, T )×Ω)4.

Proof: First we remark that integrating the equation (17) over Ω gives
∫
Ω
u0 dx = 0.

Application of the Laplace transform to (32) and (33) with τ ∈ C+ yields

− Div {A0e(ûc)}+ Div {(α− τκfÂ(τκf ))p̂
c}+ (κI − τκ2fÂ(τκf ))τ

2ûc =

−(
κ

κf
I − τκfÂ(τκf ))τ

2ûQS − τψfÂ(τκf )F̂(x, τ) + τ div {Â(τκf )p̂
QS}, (39)

M0τ p̂c + div {(α− τκfÂ(τκf ))τ û
c} − div {Â(τκf )∇p̂c} =

− 1

κf
div {(Â(τκf )−K)(ψf F̂(x, τ)−∇p̂QS)}+ div {Â(τκf )τ

2ûQS}. (40)

Using the arguments of Proposition 2 we conclude that∫
Ω

{κs|τ 2ûc|2 + |e(τ ûc)|2 + |e(ûc)|2 + |ûc|2 + |τ p̂c|2 + |p̂c|2+

|∇p̂c|2} dx ≤ C(1 + |τ |2)2
(
||F̂||2L2(Ω) + ||τ∇p̂QS||2L2(Ω) + ||τ 2ûQS||2L2(Ω)

)
, (41)

13



where C is independent of κf . Therefore the sequence {ûc, p̂c} contains a H2(C+, L
2(Ω))3-

weakly convergent subsequence which converges to the quadruple {ûc,0, p̂c,0} in the following

sense  τ ûc ⇀ τ ûc,0, ûc ⇀ ûc,0 and e(τ ûc)⇀ e(τ ûc,0),

∇p̂c ⇀ ∇p̂c,0, p̂c ⇀ p̂c,0 and τ p̂c ⇀ τp̂c,0,
(42)

as κf → 0.

In addition we have the following convergences in H2(C+, L
2(Ω))3 as κf → 0:

κ

κf
I − τκfÂ(τκf ))τ

2ûQS → (φ+ (1− φ)
ρs
ρf

)τ 2uQS, (43)

τψfÂ(τκf )F̂(x, τ) → ψfÂ(0)τ F̂(x, τ), (44)

τ div {Â(τκf )p̂
QS} → div {Â(0)τ p̂QS}, (45)

1

κf
div {(Â(τκf )−K)(ψf F̂(x, τ)−∇p̂QS)} → div { d

dτ
Â(0)τ(ψf F̂(x, τ)−∇p̂QS)}, (46)

div {Â(τκf )τ
2ûQS} → div {Â(0)τ 2ûQS}. (47)

Therefore {ûc,0, p̂c,0} satisfies the system (37)-(38), with homogeneous initial conditions and

periodic boundary conditions. Because of uniqueness for the quasi-static Biot system, we

conclude that {ûc,0, p̂c,0} = {ûcor, p̂cor} and the convergence of the whole sequence.

Strong convergences follows as usual, by using the solutions as test functions. �

Remark 3. We see that the quasi-static Biot equations solver could be used to solve the

dynamic Biot equations. The quasi-static Biot equations are solved efficiently using iterative

coupling procedures, where either the flow or the mechanics is solved first followed by solving

the other problem using the latest solution information. We refer to13 for presentation of

the four widely used methods and their von Neumann stability analysis. The convergence

and convergence rates for two widely used schemes, the undrained split method and the fixed

stress split method was recently proved in15.

Remark 4. It is easy to see that {uW , pW} = {uQS +κfu
cor, pQS +κfp

cor} satisfies at order

O(κf ) the system

κ∂ttu
W − Div {A0e(uW )}+ Div {αpW − κfK∂tp

W} = ψF− κfψfK∂tF, (48)

M0∂tp
W + ∂t div {αuW − κfK∂tu

W} − div {K∇pW − κf (

∫ +∞

0

zA(z) dz)∂t∇pW} =

ψf div {κf (
∫ +∞

0

zA(z) dz)∂tF−KF}. (49)
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IV. APPENDIX: ELLIPTICITY ESTIMATES FOR THE DYNAMIC

PERMEABILITY

As stated above, the Biot-Allard equations can be obtained using homogenization if one

supposes the statistical homogeneity of the pore structure. In particular we suppose a

periodic porous medium defined by (A1)-(A2).

Proposition 3. (see7) Let us suppose (A1)-(A2). Then the hypotheses (H1)-(H3) from

Theorem 1 are valid.

We now demonstrate the properties of the dynamic permeability assumed as the hypoth-

esis (H4) in Theorem 1 are valid.

In order to calculate the dynamic permeability, we consider the permeability auxiliary

problem:

∂tq
i −∆qi +∇πi

q = 0 in Yf × (0, T ) (50)

div qi = 0 in Yf × (0, T ), qi = 0 on (∂Yf \ ∂Y)× (0, T ) (51)

{qi, πi
q} are 1-periodic in y, qi|{t=0} = ei on Yf . (52)

We note that qi depends only on the geometry. We calculate qi using the corresponding

spectral problem:

−△w +∇ρ = λw in Yf (53)

div w = 0 in Yf , w = 0 on ∂Yf\∂Y (54)

w is H1(Y)− periodic and ρ is L2(Y)− periodic. (55)

By the elementary spectral theory the eigenfunctions for (53)-(55) form an orthonormal

basis {fk}k≥1 for L2(Yf )
3 and an orthogonal basis for Vper = {z ∈ H1

per : z = 0 on ∂Yf\∂Y

and div z = 0 in Yf}. Note that H1
per = {z ∈ H1(Yf )

3 : z is H1(Y)-periodic }.

Furthermore λ1, the minimum eigenvalue of the Stokes operator (53), is positive and

λk → +∞, as k → +∞. By the elementary variational parabolic theory we have the

following separation of variables expansion for qj:

qj(y, t) =
+∞∑
k=1

e−λktfk(y)

∫
Yf

fk
j (z) dz. (56)

The series (56) converges in C([0, T ];L2(Yf )) and in L2(0, T ;Vper).
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Consequently we have

||qi(t)||L2(Yf ) ≤ φ1/2e−λ1t, 1 ≤ i ≤ 3, φ = |Yf |. (57)

The dynamic permeability matrix is defined by

Aij(t) =

∫
Yf

qij(y, t) dy (58)

and Kij = Âij(0) =

∫ +∞

0

Aij(t) dt is Darcy’s permeability. (59)

The Laplace transform of the matrix A, given by (58) is

Âij(τ) =

∫
Yf

q̂ij(y, τ) dy, with Kij = Âij(0) (60)

and

∫ +∞

0

tAij(t) dt =

∫ +∞

0

∫
Yf

qij(y, t)w
k
i (y) dydt. (61)

We have

Âij(τ) =

∫
Yf

q̂ij(y, τ) dy = τ

∫
Yf

q̂iq̂j dy +

∫
Yf

∇yq̂
i∇yq̂j dy =

τ

∫
Yf

q̂iq̂j dy +

∫
Yf

∇yq̂
i∇yq̂

j dy, 1 ≤ i, j ≤ 3, (62)

which implies that Â is a complex symmetric matrix (but not a Hermitian matrix).

Furthermore, we have

τÂij(τ) = |τ |2
∫
Yf

q̂iq̂j dy + τ

∫
Yf

∇yq̂
i∇yq̂j dy. (63)

Let ξ ∈ C3, let eξ =
∑3

j=1 ξje
j and let q̂ξ(τ) =

∑3
j=1 ξjq̂

j(τ). Then q̂ξ is the solution to

the problem

τ q̂ξ −∆q̂ξ +∇π̂ξ
q = eξ in Yf , (64)

div q̂ξ = 0 in Yf , q̂ξ = 0 on (∂Yf \ ∂Y), (65)

{q̂ξ, π̂ξ
q} are 1-periodic in y. (66)

We use the spectral basis {fk}k≥1 to write expansions for q̂
ξ, wj = q̂j(0) and for the matrices
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Â and K:

q̂ξ(y, τ) =
+∞∑
k=1

fk(y)

λk + τ

∫
Yf

eξ · fk(z) dz, (67)

wj(y) =
+∞∑
k=1

fk(y)

λk

∫
Yf

fk
j (z) dz, (68)

Â(τ)ξξ =
+∞∑
k=1

1

λk + τ
|
∫
Yf

eξ · fk(z) dz|2, (69)

and Kξξ =
+∞∑
k=1

1

λk
|
∫
Yf

eξ · fk(z) dz|2. (70)

Proposition 4. Let A be given by (58) and its Laplace transform Â by (60). Then the

estimate (15) from Theorem 1 holds true.

Furthermore, the matrix Â is positive definite for every τ ∈ C+ = {τ ∈ C : ℜτ > 0} in

the sense that the following estimates hold:

ℜ{Â(τ)ξξ} ≥ C
ℜτ

|λ1 + τ |2
|ξ|2+

+∞∑
k=1

λk
|λk + τ |2

|
∫
Yf

eξ · fk(z) dz|2, ∀ξ ∈ C3, (71)

ℜ{Â(τ)ξξ} ≥ C
λ1 + ℜτ
|λ1 + τ |2

|ξ|2, ∀ξ ∈ C3, (72)

ℜ{τÂ(τ)ξξ}+ ℜ{Â(τ)ξξ} ≥ Kξξ, ∀ξ ∈ C3. (73)

Proof: Estimate (15) is obvious. Next we prove (71):

ℜ{Â(τ)ξξ} =
+∞∑
k=1

λk + ℜτ
|λk + τ |2

|
∫
Yf

eξ · fk(z) dz|2 ≥

λ21ℜτ
|λ1 + τ |2

+∞∑
k=1

1

λ2k
|
∫
Yf

eξ · fk(z) dz|2 +
+∞∑
k=1

λk
|λk + τ |2

|
∫
Yf

eξ · fk(z) dz|2, ∀ξ ∈ C3. (74)

Estimate (74) implies estimate (71).

Next we have

ℜ{Â(τ)ξξ} =
+∞∑
k=1

λk + ℜτ
|λk + τ |2

|
∫
Yf

eξ · fk(z) dz|2 ≥ C
λ1 + ℜτ
|λ1 + τ |2

Kξξ. (75)

Since the permeability tensor K is positive definite, (75) implies (72).

Finally, the remaining lower bound is

ℜ{(1 + τ)Â(τ)ξξ} =
+∞∑
k=1

(
|τ |2 + λkℜτ
|λk + τ |2

+
λ2k + λkℜτ
|λk + τ |2

1

λk
)|
∫
Yf

eξ · fk(z) dz|2 ≥

+∞∑
k=1

1

λk
|
∫
Yf

eξ · fk(z) dz|2 ≥ Kξξ. (76)
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Lemma 2. Let the matrix A be given by (58) and let its Laplace’s transform Â be given by

(60). Then the matrix τκI − τκ2fÂ(κfτ)) is positive definite for every τ ∈ C+ and we have

ℜ{τ(κI − τκ2fÂ(τκf ))ξξ} ≥ κs(1− φ)ℜτ |ξ|2+

κ2f

+∞∑
k=1

λk(Im τ)2

|λk + κfτ |2
|
∫
Yf

eξ · fk(z) dz|2, ∀ξ ∈ C3. (77)

Proof: We estimate the sesquilinear form τ 2κ2fÂ(κfτ)ξξ, with τ ∈ C+:

ℜ{τ 2κ2fÂ(κfτ)ξξ} = κ2f

+∞∑
k=1

λkℜτ 2 + κfℜτ |τ |2

|λk + κfτ |2
|
∫
Yf

eξ · fk(z) dz|2 =

(ℜτκf )
+∞∑
k=1

λkκfℜτ + κ2f |τ |2

|λk + κfτ |2
|
∫
Yf

eξ · fk(z) dz|2−κ2f
+∞∑
k=1

λk(Im τ)2

|λk + κfτ |2
|
∫
Yf

eξ · fk(z) dz|2 ≤

ℜτκf
+∞∑
k=1

|
∫
Yf

eξ · fk(z) dz|2−κ2f
+∞∑
k=1

λk(Im τ)2

|λk + κfτ |2
|
∫
Yf

eξ · fk(z) dz|2

= ℜτφκf |ξ|2−κ2f
+∞∑
k=1

λk(Im τ)2

|λk + κfτ |2
|
∫
Yf

eξ · fk(z) dz|2, ∀ξ ∈ C3, (78)

which implies (77). �

Corollary 3. Estimates (12)-(15) from the hypothesis (H4) of Theorem 1 hold true.

Proof: It remains only to prove (14). Let ξ, β ∈ C3. Then we have

τÂ(τ)βξ − τÂ(τ)ξβ = 2i Im τ

∫
Yf

∇yq̂
β∇yq̂ξ dy and

ℜ{τ(κI − τκ2fÂ(τκf ))ξξ + Â(κfτ)ββ + (α− τκfÂ(τκf ))βξ − (α− τκfÂ(τκf ))ξβ} ≥

κs(1− φ)ℜτ |ξ|2 + Cκf
ℜτ

|λ1 + κfτ |2
|β|2 +

+∞∑
k=1

λk
|λk + κfτ |2

(
(κf Im τ)2|

∫
Yf

eξ · fk(z) dz|2+

|
∫
Yf

eβ · fk(z) dz|2 − 2 Im τκf |
∫
Yf

eξ · fk(z) dz||
∫
Yf

eβ · fk(z) dz|),

which yields (14).�

Remark 5. For the definition of the dynamic permeability in a general porous medium we

refer to16. Heuristic estimates for a random porous medium are in17 and18. For computation

of the dynamic permeability for periodic, random and fractal porous media we refer to9 and10.
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7Clopeau T, Ferŕın JL, Gilbert RP, Mikelić A (2001) Homogenizing the Acoustic Properties

of the Seabed ,II. Mathematical and Computer Modelling 33:821-841.
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