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In this paper we undertake a rigorous derivation of the upscaled model for reactive flow
through a narrow and long two-dimensional pore. The transported and diffused solute par-
ticles undergo the infinite adsorption rate reactions at the lateral tube boundary. At the
inlet boundary we suppose Danckwerts’ boundary conditions. The transport and reaction pa-
rameters are such that we have dominant Peclet number. Our analysis uses the anisotropic
singular perturbation technique, the small characteristic parameter ε being the ratio between
the thickness and the longitudinal observation length. Our goal is to obtain error estimates
for the approximation of the physical solution by the upscaled one. They are presented in the
energy norm. They give the approximation error as a power of ε and guarantee the validity
of the upscaled model. We use the Laplace transform in time to get better estimates than
in our previous article [20] and to undertake the study of important Danckwerts’ boundary
conditions.
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1. Introduction

We consider the transport of a reactive solute by molecular diffusion and convec-
tion in a semi-infinite two-dimensional channel. We suppose that the characteristic
numbers are large (Peclet’s number, Damkohler’s number, . . . ) and study the dis-
persion effects.

Dispersion expresses the fluctuation of a quantity with respect to its mean behav-
ior. It is induced by motion of a transported solute in a fluid (molecular diffusion,
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présence des nombres caractéristiques dominants. ” .
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convection and their interaction) or by the chemical reactions which that solute
undergoes.

At the pore level we have a) the molecular diffusion, expressed by Fick’s law, b)
the convective dispersion, which corresponds to the spreading of particles by the
velocity field and c) the creation (or destruction) of the solute particles induced by
chemical reactions.

Next, for the solute particles subject to convection and molecular diffusion, a
complicated interaction of diffusion and convection is observed. The overall behav-
ior heavily depends on the ratios of characteristic times.

In the literature usually we find three distinct regimes: a) diffusion-dominated
mixing, b) Taylor dispersion-mediated mixing and c) chaotic advection.

Our goal is the study of reactive flows through slit channels in the regime of Tay-
lor dispersion-mediated mixing, using anisotropic singular perturbations. Contrary
to the regime a), where we could quote papers [9], [10],[11], [14], [15] and [18] and
references therein, and despite a vaste literature on the subject, with over 2000
citations here to date, mathematical results on the subject are rare. The derivation
of the model without chemical reactions is in the original paper [24] by Taylor. It
was formally justified, using the method of moments in [3]. We also mention the
mathematically rigorous paper [6] and the papers with formal asymptotic expan-
sion [17], [22] and [23]. Nevertheless, they address the mechanical dispersion in the
absence of chemical reactions. In presence of chemical reactions we mention the
following papers:

(i) Flow with chemistry, as described by equation (2), is considered by Paine,
Carbonell and Whitaker in [21]. They noted that the equation for the difference
between the physical and averaged concentrations is not closed, since it contains

a dispersive source term
∂

∂x
< qxc >. Then they multiplied the equation for

c by qx and got an equation for < qxc >. Nevertheless, a dispersive transport

term
∂

∂x
< q2

xc > is present and clearly the procedure enters the same difficulty
as the method of moments: there is an infinite system of equations. Paine et
al used the ”single-point” closure schemes of turbulence modeling by Launder
to obtain a closed model for the averaged concentration. We note that their
effective equations contain non-local terms depending of the solution and in
fact the effective coefficients are not explicitly given.
(ii) The center manifold approach of Mercer and Roberts (see the article [17]
and the subsequent article [22] by Rosencrans) allowed to calculate approxima-
tions at any order for the original Taylor’s model with no chemistry. Even if the
error estimate was not obtained, this approach gives a very plausible argument
for the validity of the effective model. This approach was applied to reactive
flows in the article [4] by Balakotaiah and Chang. A number of effective mod-
els for different Damkohler numbers were obtained. Some generalizations to
reactive flows through porous media are in [16] and the preliminary results on
their mathematical justification are in [1] .

(iii) Another approach consisting of the Liapounov-Schmidt reduction coupled
with a perturbation argument is developed in the articles [5] and [7]. It allows
developing multi-mode hyperbolic upscaled models.

(iv) For the case of reactive flows with an irreversible, first order, heterogeneous
chemical reaction with equilibrium between the liquid and the concentrations
of adsorbed solutes, we refer to [19], where the problem is rigorously solved. It
covers also the classical Taylor’s dispersion, which corresponds to absence of
the chemistry. The case of general chemical reactions was considered from the
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point of view of formal expansions in [12] and the results were justified through
numerical simulations.

In this article we continue our research from the article [20], where a slit flow
under dominant Peclet and Damkohler numbers was considered in the case when
the adsorption rate constant is infinitely large.

Let us write the precise setting of the problem: We consider the transport of a
reactive solute by diffusion and convection by Poiseuille’s velocity in a semi-infinite
2D channel. The solute particles do not react among themselves. Instead they
undergo an adsorption process at the lateral boundary. We consider the following
model for the solute concentration c∗:

a) transport through channel Ω∗ = {(x∗, y∗) : 0 < x∗ < +∞, |y∗| < H}

∂c∗

∂t∗
+ q(y∗)

∂c∗

∂x∗
−D∗ ∂2c∗

∂(x∗)2
−D∗ ∂2c∗

∂(y∗)2
= 0 in Ω∗, (1)

where q(z) = Q∗(1−(z/H)2) and where Q∗ (velocity) and D∗ (molecular diffusion)
are positive constants.

b) reaction at channel wall Γ∗ = {(x∗, y∗) : 0 < x∗ < +∞, |y∗| = H}

−D∗∂y∗c
∗ = Ke

∂c∗

∂t∗
on Γ∗, (2)

where Ke is the linear adsorption equilibrium constant.
c) infiltration with a pulse of water containing a solute of concentration c∗f ,

followed by solute-free water is stated using the Danckwerts boundary condition
from [13]

−D∗∂x∗c
∗ + q(y∗)c∗ =

{
q(y∗)c∗f , for 0 < t∗ < t∗0
0, for t > t∗0.

(3)

The natural way of analyzing this problem is to introduce appropriate scales. This
requires characteristic or reference values for the parameters in variables involved.
The obvious transversal length scale is H. For all other quantities we use reference
values denoted by the subscript R. Setting

c =
c∗

ĉ
, x =

x∗

LR
, y =

y∗

H
, t =

t∗

TR
, Q =

Q∗

QR
, D =

D∗

DR
, (4)

where LR is the ” observation distance ”, we obtain the dimensionless equations

∂c

∂t
+

QRTR

LR
Q(1− y2)

∂c

∂x
− DRTR

L2
R

D
∂2c

∂x2
− DRTR

H2
D

∂2c

∂y2
= 0 in Ω (5)

and

−DDRTR

HKe

∂c

∂y
=

∂c

∂t
on Γ, (6)

where

Ω = (0,+∞)× (−1, 1) and Γ = (0, +∞)× {−1, 1}. (7)
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The equations involve the time scales:

TL = characteristic longitudinal time scale =
LR

QR
,

TT = characteristic transversal time scale =
H2

DR
,

TC = superficial chemical reaction time scale =
LRKe

HQR
,

and the non-dimensional number Pe =
LRQR

DR
(Peclet number). In this paper we

fix the reference time by setting TR = Tc = TL and K = Ke/H = TC/TL = O(1).
We are going to investigate the behavior of the two-dimensional system (5)-(6)

with respect to the small parameter ε =
H

LR
. Specifically, as in [19], we will derive

expressions for the effective values of the dispersion coefficient and velocity, and an
effective 1-D convection-diffusion equation for small values of ε. To carry out the
analysis we need to compare the dimensionless numbers with respect to ε. For this
purpose we set Pe = ε−α. Introducing the dimensionless numbers in equations
(5)-(6) yields the problem:

∂cε

∂t
+ Q(1− y2)

∂cε

∂x
= Dεα ∂2cε

∂x2
+ Dεα−2 ∂2cε

∂y2
in Ω+ × (0, T ), (8)

−Dεα−2 ∂cε

∂y
= −D

1
ε2Pe

∂cε

∂y
= K

∂cε

∂t
on Γ+ × (0, T ), (9)

cε(x, y, 0) = 0 for (x, y) ∈ Ω+, (10)

−Dεα∂xcε + Q(1− y2)cε =
{

Q(1− y2)cf , for 0 < t < t0
0, for t > t0.

at {x = 0}, (11)

∂cε

∂y
(x, 0, t) = 0, for (x, t) ∈ (0, +∞)× (0, T ). (12)

The latter condition results from the y−symmetry of the solution. Further

Ω+ = (0, +∞)× (0, 1), Γ+ = (0, +∞)× {1},

and T is an arbitrary chosen positive number.
We study the behavior of this problem as ε ↘ 0, while keeping the coefficients

Q,D and K all O(1).
Continuing the work from [20], in this paper we prove that the correct upscaling

of the problem (8)-(12) gives the following 1D parabolic problem :

(EFF )





∂tc +
2Q

3(1 + K)
∂xc = D̃εα ∂xxc

1 + K
in (0, +∞)× (0, T ),

−Dεα∂xc|x=0 +
2Q

3
(c|x=0 − cfχt<t0) = 0, c|t=0 = 0,

∂xc ∈ L2((0, +∞)× (0, T )),

where

D̃ = D +
8

945
Q2

D
ε2−2α +

4Q2

135D

K(7K + 2)
(1 + K)2

ε2−2α. (13)
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We note that for K = 0 (absence of chemistry) this is exactly the effective model of
Taylor [24]. Taylor’s data correspond to α = 1.7 and α = 1.9. For more discussions
and numerical experiments we refer to [12].

It should be noted that the real interest is to derive dispersion equations for
reactive flows through porous media and our results are just the first step in that
direction. Our technique is strongly motivated by the paper by Rubinstein and
Mauri [23], where effective dispersion and convection in porous media is studied
using the homogenization technique. Averaging the concentration in a tube with
dissolution/precipitation occurring on the wall and with Pe= O(1), is considered
in [11].

In this paper we choose a different strategy than in [20]. We explain the differences
in the plan of the paper:

Plan of the paper is the following : Section §2 recalls some basic facts about
applications of Laplace’s transform to PDEs.

In Section §3 we study the upscaled problem. We are only interested in the
case 2 > α ≥ 1, since the case α ∈ (0, 1) does not pose difficulties. Contrary to
the particular Dirichlet boundary conditions, which were chosen in [20] and which
allow an explicit solution having the form of moving Gaussian, here we consider
the general Danckwerts boundary condition. After [13], it is very important in
application and more realistic than Dirichlet’s boundary condition. In difference
to [20], we are not able to give an explicit solution and investigate its properties
when diffusion coefficient becomes small. Consequently, we use the vector-valued
Laplace’s transform in time. It permits to calculate the Laplace transform of the
solution and to get precisely its limit behavior when ε tends to zero. The estimates
depends on the compatibility between the boundary and initial data and on the
direction of the flow.

Then in Section §4 we give a justification of a lower order approximation, using
the energy argument. In fact such approximation does not use Taylor’s dispersion
formula and, for α ≥ 2/3 gives an error of the same order as the solution to the
linear transport equation.

In Section §5, we use a formal derivation of the upscaled problem (EFF), obtained
in [20] and [12], to set up the correction. We prove that the effective concentration
satisfying the corresponding 1D parabolic problem, with Taylor’s diffusion coeffi-
cient and the reactive correction, is an approximation in C(L2) for the physical
concentration. We give the corresponding error estimate. We note that we were
able to obtain a better approximation than in [20], without using the boundary
layer correction for the Danckwerts boundary condition. Furthermore, using the
elementary parabolic theory one concludes that the problem (8)-(12) has a unique
bounded variational solution cε, with square integrable gradient in x and y. Func-
tion cε belongs to C∞ for x > 0 and it stabilizes to 0 exponentially fast when
x →∞.

Let us announce our main result.

Theorem 1.1 : Let α ≥ 1 and let cf ∈ C∞
0 (0, T ). Let c be given by (EFF). Then

we have

‖cε − c‖C([0,T ];L2(Ω+)) ≤ Cε2−α, (14)

‖∂yc
ε‖C([0,T ];L2(Ω+)) ≤ Cε3−3α/2, (15)

‖∂x

(
cε − c

)‖C([0,T ];L2(Ω+)) ≤ Cε2−3α/2. (16)

For ill-prepared data see Corollary 5.4. Note that in estimate (15) c has disap-
peared since it is only x and t dependent. This estimate is superior to estimate (16)
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because of the large O(εα−2) transversal diffusivity. Our result could be restated
in dimensional form:

Theorem 1.2 : Let us suppose that LR > max{DR/QR, QRH2/DR,H}. Then
the upscaled dimensional approximation for (1) reads

(1+K)
∂c∗,eff

∂t∗
+

2
3
Q∗∂c∗,eff

∂x∗
= D∗

(
1+(

8
945

+
4

135
K(7K + 2)
(1 + K)2

)Pe2
T

)∂2c∗,eff

∂(x∗)2
, (17)

where PeT =
Q∗H
D∗ is the transversal Peclet number and K = Ke/H is the

transversal Damkohler number.

We note that the powers of ε obtained in Theorem 1.1, are superior to the
corresponding results in [20]. Furthermore, we obtain better functional spaces in
time.

2. Vector valued Laplace transform and applications to PDEs

We start this section by recalling the basic facts about applications of Laplace’s
transform to linear parabolic equations. The Laplace’s transform method is widely
used in solving engineering problems. In applications it is usually called the oper-
ational calculus or Heaviside’s method.

For locally integrable function f ∈ L1
loc(R) such that f(t) = 0 for t < 0 and

|f(t)| ≤ Aeat as t → +∞, the Laplace transform of f , denoted f̂ , is defined as

f̂(τ) =
∫ +∞

0
f(t)e−τt dt, τ = ξ + i η ∈ C. (18)

It is closely linked with Fourier’s transform in R. We note that

f̂(τ) = F(
f(t)e−ξt

)
(−η), ξ > a, (19)

where the Fourier’s transform of a function g ∈ L1(R) is given by

F(
g(t)

)
(ω) =

∫

R
g(t)eiωt dt, ω ∈ R.

It is well-known (see e.g. [25] or [8]) that f̂ defined by (18) is analytic in the
half-plane {Re(τ) = ξ > a} and it tends to zero as Re(τ) → +∞.

For real applications, Laplace’s transform of functions is not well-adapted and it
is natural to use Laplace’s transform of distributions. It is defined for distributions
with support on [a, +∞) i.e. for f ∈ D′+(a), where D′+(a) = {f ∈ D′(R); supp f ⊂
[a,+∞)}. If S ′(R) denotes the space of distributions of slow growth, then we in-
troduce S ′+(R) by

S ′+(R) = D′+(0) ∩ S ′(R) (20)

and we use the formula (19) to define Laplace’s transform for f ∈ D′+(a) such
that fe−ξt ∈ S ′+(R) for all ξ > a. This approach permits the rigorous operational
calculus. For details we refer to classical textbooks as [25] by Vladimirov.

Laplace’s transform is applier to linear ODEs and PDEs, the transform problem
is solved and its solution f̂ is calculated. Then the important question is how to
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inverse the Laplace’s transform. First we need a suitable space for image functions.
It is the algebra H(a) defined by

H(a) = { g ∈ Hol
({τ ∈ C; Re(τ) > a}) satisfying the growth condition :

for any σo > a there are real numbers C(σo) > 0 and m = m(σo) ≥ 0
such that |g(τ)| ≤ C(σo) (1 + |τ |m), Re(τ) > σo}.

(21)
For elements of H(a) we have the following classical result.

Theorem 2.1 : ([25] pp. 162-165) Let f̂ ∈ H(a) be absolutely integrable with
respect to η on R for certain ξ > a. Then the following formula holds true.

f(t) =
1

2πi

∫ ξ+i∞

ξ−i∞
f̂(z)ezt dz. (22)

These classical results are not sufficient for our purposes. We need results for
reflexive Sobolev space X valued Laplace’s transform. Furthermore we need an
inversion theorem in Lp((0, +∞);X). The corresponding theory could be found in
Arendt [2] and we give only results directly linked to our needs. For a reflexive
Banach space X we set

C∞w (R+; X) = {r ∈ C∞((0, +∞);X); ‖r‖w = sup
n∈N

sup
λ>0

λn+1

n!

∥∥ dn

dλn
r(λ)

∥∥
X

< +∞}.
(23)

Then we have the following result.

Theorem 2.2 : ([2], Chapter 2) Let X be a reflexive Banach space. Then the
(real) Laplace’s transform f 7→ f̂ is an isometric isomorphism between L∞(R+; X)
and C∞w (R+;X).

In many instances the growth condition in (23) is too difficult to check. It is
easier to use the complex Laplace’s transform. We have the sufficient condition by
Prüss:

Theorem 2.3 : ([2], Chapter 2) Let q : {Re(τ) > 0} → X be analytic. If there
exists a real number M > 0 such that ‖λq(λ)‖X ≤ M and ‖λ2q′(λ)‖X ≤ M for
Re(λ) > 0, then there exists a bounded function f ∈ C(0, +∞;X) such that

q(λ) =
∫ +∞

0
f(t)e−λt dt.

In particular q ∈ C∞w (R+; X).

Even Theorem 2.3 represents a complicated criterium and, following ideas from
[8], we will use a direct approach based on the link to Fourier’s transform. We apply
this approach in the study of the upscaled equations and then in the error estimates.
We derive estimates for the solutions of the Laplace transformed problem. We use
that if image is in L1, the original is in C.

3. Study of the upscaled diffusion-convection equation on the half-line

In Sections §4 and §5, we will prove that the original problem can be approxi-
mated by some upscaled 1-D diffusion-convection equation. The present section is
thus devoted to the study of this type of equation in the half-line. The results of
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Subsection §3.1 (respectively Subsection §3.2) are used in Section §4 (respectively
Section §5).

3.1. Danckwerts boundary condition

For Q̄, D̄ and γ > 0, we consider the problem





∂tu + Q̄∂xu = γD̄∂xxu in (0, +∞)× (0, T ),
∂xu ∈ L2((0, +∞)× (0, T )),
u(x, 0) = 0 in (0, +∞), −γD̄∂xu + Q̄u = Q̄g at x = 0.

(24)

Let Ωl = R+ × {Re(τ) > 0}. After applying the Laplace transform with respect to
the time variable we get the following equation for the Laplace transform û(x, τ)
of u:





τ û + Q̄∂xû = γD̄∂xxû in Ωl,
∂xû ∈ L2(R+), Re(τ) > 0,
−γD̄∂xû + Q̄û = Q̄ĝ at x = 0,

(25)

where τ = ξ + i η ∈ C, ξ > 0. Problem (25) allows the following explicit solution:

û(x, τ) =
2Q̄

Q̄ +
√

Q̄2 + 4γτD̄
e

−2τx

Q̄ +
√

Q̄2 + 4γτD̄ ĝ(τ). (26)

This explicit formula allows us to find the exact behavior of u with respect to γ.
For the sake of simplicity, we write

û(x, τ) =
2Q̄

l(τ)
e
−2τx

l(τ) ĝ(τ)

where





l(τ) = Q̄ +
√

Q̄2 + 4γτD̄, Re(τ) = ξ > 0,

R(τ) =
(
Q̄4 + (4γD̄)2|τ |2 + 8γD̄ξQ̄2

)1/4
,

φ ∈ [−π

2
,
π

2
]
, cosφ =

Q̄2 + 4γD̄ξ

R2(τ)
, sinφ =

4γD̄η

R2(τ)
.

(27)

Then cos(φ/2) > 0 and

{
l(τ) = Q̄ + R(τ) cos(φ/2) + iR(τ) sin(φ/2),

|l(τ)|2 = Q̄2 + R2(τ) +
√

2Q̄
√

Q̄2 + R2(τ) + 4γD̄ξ.
(28)

Consequently,

R2(τ) + Q̄2 ≤ |l(τ)|2 ≤ 3(R2(τ) + Q̄2). (29)
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Furthermore, we note that for ξ > 0

Re
( τ

l(τ)

)
= Re

( τ l(τ)
|l(τ)|2

)

=
ξQ̄ + (ξ/

√
2)

√
R2(τ) + Q̄2 + 4γD̄ξ +

√
2γD̄η2/

√
R2(τ) + Q̄2 + 4γD̄ξ

|l(τ)|2

≥ C1ξ

(R(τ)2 + Q̄2)1/2
+

C2η
2

(R(τ)2 + Q̄2)3/2
≥ C1ξ

(R(τ)2 + Q̄2)1/2
> 0. (30)

Now we compute some explicit estimates for û. First, by the maximum principle
and for 0 ≤ g(t) ≤ Cg, we have

0 ≤ u(x, t) ≤ Cg. (31)

If, in addition, ∂tg ≥ 0, then

0 ≤ u(x, t) ≤ g(t). (32)

Next we estimate the difference between ĝ exp{−τx

Q̄
} and û. We have the following

approximation result.

Lemma 3.1: Function û satisfies the estimate

∥∥ĝ exp{−τx

Q̄
} − û

∥∥
Lp((0,+∞))

≤ γ
C|ĝ(τ)|

ξ1/p

|τ |
Q̄ + γD̄|τ | , ∀1 ≤ p < +∞. (33)

Proof : It is enough to make the calculations with ĝ = 1. Let

q(x, τ) = û(x, τ)− e−τx/Q̄ =
2Q̄

l(τ)
e−2τx/l(τ) − e−τx/Q̄.

Then we have with (25)





τq(x, τ) + Q̄∂xq(x, τ) = γD̄
8τ2Q̄

l(τ)3
e−2τx/l(τ), x ∈ R+,

q(0, τ) = −4τD̄γ

l(τ)2
.

(34)

We look for the solution of (34) in the form

q(x, τ) = qH(x, τ) + qP (x, τ), (35)

with

qH(x, τ) = − 4τD̄γ

l(τ)
(
l(τ)− 2Q̄

)e−τx/Q̄, (36)

qP (x, τ) =
8τD̄Q̄γ

l(τ)2
(
l(τ)− 2Q̄

)e−2τx/l(τ). (37)
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Then we compute the Lp-norms, 1 ≤ p < +∞,

‖qH(·, τ)‖Lp(R+) = γ
4D̄|τ |

|l(τ)||l(τ)− 2Q̄|
( Q̄

pξ

)1/p
, (38)

‖qP (·, τ)‖Lp(R+) ≤ Cγ
|τ |∣∣l(τ)2

(
l(τ)− 2Q̄

)∣∣
1

(
Re(τ/l(τ))

)1/p
. (39)

Since |l(τ)| ≥
√

2/3(R(τ)+Q̄), |l(τ)−2Q̄| ≥ (1−√2/2)
√

2/3(R(τ)+Q̄), R(τ)+Q̄ ≥
CQ̄ +

√
γD̄|τ | and Re(τ/l(τ)) ≥ Cξ/(Q̄ +

√
γD̄|τ |), we infer from (35)-(39):

‖q(·, τ)‖Lp(R+) ≤
Cγ

ξ1/p

( |τ |
Q̄2 + γD̄|τ | +

|τ |
(Q̄ +

√
γD̄|τ |)3−1/p

)
. (40)

The lemma is proved. ¤

The following result follows as the consequence of Lemma 3.1.

Corollary 3.2: Let g ∈ C∞0 (R+), then

∥∥u− g(t− x

Q̄
)
∥∥
C(R+;Lp(R+))

≤ Cγ, 1 < p < +∞.

If g ∈ W 1,∞(R+) is with compact support in [0, +∞), but g(0) 6= 0, then

∥∥u− g(t− x

Q̄
)
∥∥

Lr(R+;Lp(R+))
≤ Cγ1−δ, 1 < p, r < +∞, 0 < δ < 1, r(1− δ) < 1.

Remark 1 : Presence of the contact discontinuity due to g(0) 6= 0 diminishes
precision. Furthermore, the case of g = 1 on (0, T ) is covered by Corollary 3.2,
since it could be extended to a Lipschitz function on R+, with compact support
in [0, +∞). Hence, it is easy to compare the result of Corollary 3.2 with the cor-
responding results from [19] and [20] and see that we have now a more precise
estimate.

We now aim to give explicit estimates with respect to τ for û in Hp((0, +∞)).
Since |l(τ)| ≥

√
2/3(R(τ) + Q̄), Re(τ/l(τ)) ≥ Cξ/(Q̄ +

√
γD̄|τ |) and R(τ) + Q̄ ≥

CQ̄ +
√

γD̄|τ |, we begin by noting that û(x, τ) = (2Q̄/l(τ))exp(−2τx/l(τ))ĝ(τ)
satisfies

‖û(·, τ)‖Lp(R+) ≤
C|ĝ(τ)|

ξ1/p

1

Q̄ +
√

γD̄|τ |
(Q̄ +

√
γD̄|τ |)1/p. (41)

We also compute

∂xû(x, τ) = − 4Q̄τ

l(τ)2
e−2τx/l(τ)ĝ(τ),

∂k
x û(x, τ) = 2Q̄

(−2τ

l(τ)

)k
û(x, τ), k ∈ N.

The following are then straightforward.
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Lemma 3.3: Function û satisfies the estimates

‖û(·, τ)‖L2((0,+∞)) ≤
C|ĝ(τ)|√

ξ(1 + γ1/4|τ |1/4)
, (42)

|∂xû(·, τ) |x=0 | ≤ C|τ ĝ(τ)|
1 + γ|τ | , (43)

‖∂k
x û(·, τ)‖L2((0,+∞)) ≤

C|ĝ(τ)|√
ξ(1 + γ1/4|τ |1/4)

( |τ |2
1 + γ|τ |

)k/2
k ≥ 1, (44)

with τ = ξ + i η, ξ > 0.

3.2. Perturbed Danckwerts boundary condition

For Q̄, D̄, γ > 0 and δ ∈ R such that D̄ − |δ| ≥ C0 > 0 , we consider the problem





∂tu + Q̄∂xu = γD̄∂xxu in (0, +∞),
∂xu ∈ L2((0, +∞)),
u(x, 0) = 0 in (0, +∞), −γ(D̄ + δ)∂xu + Q̄u = Q̄g at x = 0.

(45)

We have the corresponding equation for the Laplace transform û(x, τ) of u:





τ û + Q̄∂xû = γD̄∂xxû in Ωl,
∂xû ∈ L2(R+), Re(τ) > 0,
−γ(D̄ + δ)∂xû + Q̄û = Q̄ĝ at x = 0,

(46)

where τ = ξ + i η ∈ C. Problem (46) allows the following explicit solution:

û(x, τ) =
2D̄Q̄

(
√

Q̄2 + 4γτD̄ + Q̄)(D̄ + δ)− 2Q̄δ
e

Q̄−
√

Q̄2 + 4γτD̄

2γD̄
x
ĝ(τ)

=
2D̄Q̄

l(τ)(D̄ + δ)− 2Q̄δ
e

−2τx

l(τ) ĝ(τ). (47)

The explicit formula allows us to find the exact behavior of u with respect to γ.
We emphasize that we can prove similar results as in the previous subsection in
spite of the δ perturbation. We follow the lines of Subsection 3.1. We bear in mind
the auxiliary computations (27)-(30). We also note that

∣∣l(τ)(D̄ + δ)− 2Q̄δ
∣∣2

= Q̄2(D̄ − δ)2 + R(τ)2(D̄ + δ)2 +
√

2Q̄(D̄2 − δ2)
√

R(τ)2 + Q̄2 + 4γD̄ξ

≥ (D̄ − |δ|)2(Q̄2 + R(τ)2). (48)

Next we estimate the difference between ĝ exp{−τx

Q̄
} and û.

Lemma 3.4: Let δ ∈ R be such that D̄ − |δ| ≥ C0 > 0. Then û satisfies the
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estimate

‖ĝ exp{−τx

Q̄
} − û‖Lp((0,+∞))) ≤ γ

C|ĝ(τ)|
ξ1/p

|τ |
Q̄ + γD̄|τ | , ∀1 ≤ p < +∞. (49)

Proof : It is enough to make the calculations with ĝ = 1. Let

q(x, τ) = û(x, τ)− e−τx/Q̄ =
2D̄Q̄

l(τ)(D̄ + δ)− 2Q̄δ
e−2τx/l(τ) − e−τx/Q̄.

In view of (46), function q is solution of





τq(x, τ) + Q̄∂xq(x, τ) = γD̄
8τ2Q̄D̄

l(τ)2(l(τ)(D̄ + δ)− 2Q̄δ)
e−2τx/l(τ), x ∈ R+,

q(0, τ) = − 4τD̄(D̄ + δ)γ
l(τ)(l(τ)(D̄ + δ)− 2Q̄δ)

.

(50)
We look for the solution of (50) in the form

q(x, τ) = qH(x, τ) + qP (x, τ), (51)

with

qH(x, τ) = − 4τD̄γ

l(τ)
(
l(τ)− 2Q̄

)e−τx/Q̄, (52)

qP (x, τ) =
8τD̄2Q̄γ

l(τ)
(
l(τ)− 2Q̄

)(
l(τ)(D̄ + δ)− 2Q̄δ

)e−2τx/l(τ). (53)

Then we compute the Lp-norms, 1 ≤ p < +∞,

‖qH(·, τ)‖Lp(R+) =
4D̄γ|τ |

|l(τ)||l(τ)− 2Q̄|
( Q̄

pξ

)1/p
, (54)

‖qP (·, τ)‖Lp(R+) ≤
Cγ|τ |∣∣l(τ)

(
l(τ)− 2Q̄

)(
l(τ)(D̄ + δ)− 2Q̄δ

)∣∣
1

(
Re(τ/l(τ))

)1/p
.(55)

Using |l(τ)| ≥
√

2/3(R(τ) + Q̄), |l(τ)− 2Q̄| ≥ (1−√2/2)
√

2/3(R(τ) + Q̄), R(τ) +
Q̄ ≥ CQ̄ +

√
γD̄|τ |, Re(τ/l(τ)) ≥ Cξ/(Q̄ +

√
γD̄|τ |) and (48), we infer from

(51)-(55):

‖q(·, τ)‖Lp(R+) ≤
Cγ

ξ1/p

( |τ |
Q̄ + γD̄|τ | +

|τ |
(D̄ − |δ|)(Q̄ +

√
γD̄|τ |)3−1/p

)
. (56)

Estimate (49) follows. ¤

Corollary 3.5: Let δ ∈ R be such that D̄ − |δ| ≥ C0 > 0. Let g ∈ C∞0 (R+). Then
we have

∥∥u− g(t− x

Q̄
)
∥∥
C(R+;Lp(R+))

≤ Cγ, 1 < p < +∞.



March 28, 2008 22:40 Applicable Analysis ArticleApplAnalHomogVolChoquetMikeliclast

Laplace transform approach to the rigorous upscaling of the reactive flow 13

If g ∈ W 1,∞(R+) is with compact support in [0, +∞), but g(0) 6= 0, then

∥∥u− g(t− x

Q̄
)
∥∥

Lr(R+;Lp(R+))
≤ Cγ1−δ, 1 < p, r < +∞, 0 < δ < 1, r(1− δ) < 1.

We now aim to give explicit estimates with respect to τ for û in Hp((0, +∞)).
Following the lines of Subsection 3.1 and using (48) we get directly the following
set of estimates.

Lemma 3.6: Function û satisfies the estimates

‖û(·, τ)‖L2((0,+∞)) ≤
C|ĝ(τ)|√

ξ(1 + γ1/4|τ |1/4)
, (57)

|∂xû(·, τ) |x=0 | ≤ C|τ ĝ(τ)|
1 + γ|τ | , (58)

‖∂k
x û(·, τ)‖L2((0,+∞)) ≤

C|ĝ(τ)|√
ξ(1 + γ1/4|τ |1/4)

( |τ |2
1 + γ|τ |

)k/2
k ≥ 1, (59)

with τ = ξ + i η, ξ > 0.

4. A simple L2 error estimate

The simplest way to average the problem (8)-(12) is to take the mean value with
respect to y. Supposing that the mean of the product is the product of the means,
which is in general wrong, we get the following problem for the ” averaged ”
concentration cL,eff

0 (x, τ):





(1 + K)τcL,eff
0 +

2Q

3
∂cL,eff

0

∂x
= εαD

∂2cL,eff
0

∂x2
in (0, +∞),

∂xcL,eff
0 ∈ L2((0,+∞)),

−Dεα∂xcL,eff
0 + 2QcL,eff

0 /3 = 2Qĉf/3, for x = 0.

(60)

This is the problem (24) with ĝ = ĉf , Q̄ =
2
3

Q

1 + K
and D̄ =

D

1 + K
. The small

parameter γ is equal to εα. We will call this problem the ”simple closure ap-
proximation”.

Let the operator Lε be given by

Lεζ = τζ + Q(1− y2)
∂ζ

∂x
−Dεα

(
∂2ζ

∂x2
+ ε−2 ∂2ζ

∂y2

)
. (61)

The non-dimensional physical concentration cε satisfies (8)-(12). Its Laplace trans-
form ĉε is thus solution of

Lεĉε = 0 in (0,+∞)× (0, 1) (62)

−Dεα∂xĉε + Q(1− y2)ĉε = Q(1− y2)ĉf , for (x, y) ∈ {0} × (0, 1), (63)

−Dεα−2∂y ĉ
ε(x, 1, τ) = Kτĉε(x, 1, τ) in (0, +∞). (64)
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We want to approximate ĉε by cL,eff
0 . Then, if

Lε(cL,eff
0 ) = −KτcL,eff

0 + Q∂xcL,eff
0 (1/3− y2) = Rε,

we have to consider

Lε(ĉε − cL,eff
0 ) = −Rε in (0, +∞)× (0, 1), (65)

−Dεα−2∂y(ĉε(x, 1, τ)− cL,eff
0 ) = Kτĉε(x, 1, τ) on (0, +∞), (66)

−Dεα∂x(ĉε − cL,eff
0 ) + Q(1− y2)(ĉε − cL,eff

0 )

= Q(1/3− y2)(ĉf − cL,eff
0 ), on {0} × (0, 1). (67)

The weak formulation for the system (65)-(67) reads: for any τ = ξ + iη, find
ĉε − cL,eff

0 = w ∈ H1(Ω+) such that

∫

Ω+

τwϕ dxdy −
∫

Ω+

Q(1− y2)∂xϕw dxdy +
∫

Ω+

Dεα(∂xw∂xϕ + ε−2∂yw∂yϕ) dxdy

+K

∫ +∞

0
τw|y=1ϕ|y=1 dx = −

∫

Ω+

Q∂xcL,eff
0 (1/3− y2)ϕ dxdy

−
∫ 1

0
Q(1/3− y2)(ĉf − cL,eff

0 |x=0)ϕ|x=0 dy

+K

∫ +∞

0
τcL,eff

0

∫ 1

0
(ϕ− ϕ|y=1) dydx, ∀ϕ ∈ H1(Ω+). (68)

Next we test (68) by ϕ = w = ĉε − cL,eff
0 . The real part of the corresponding

relation is

∫

Ω+

ξ|w|2 dxdy +
∫

Ω+

Dεα(|∂xw|2 + ε−2|∂yw|2) dxdy + K

∫ +∞

0
ξ|w|y=1|2 dx

−Re
∫

Ω+

Q(1− y2)∂xww dxdy = −Re
∫

Ω+

Q∂xcL,eff
0 (1/3− y2)w dxdy

−Re
∫ 1

0
Q(1/3− y2)(ĉf − cL,eff

0 |x=0)w |x=0 dy

+KRe
∫ +∞

0
τcL,eff

0

∫ 1

0
(w − w|y=1) dydx. (69)

We find out immediately that

−Re
∫

Ω+

Q(1− y2)∂xww dxdy =
1
2

∫ 1

0
Q(1− y2)|w |x=0 |2 dy ≥ 0.
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The terms in the right hand side of (69) are estimated as follows. Using

∫ +∞

0

∫ 1

0
Q∂xcL,eff

0 (1/3− y2)w dxdy

= −
∫ +∞

0

∫ 1

0
Q∂xcL,eff

0 (y/3− y3/3)∂yw dxdy, (70)

we obtain

∣∣∣Re
∫ +∞

0

∫ 1

0
Q∂xcL,eff

0 (1/3− y2)w
∣∣∣ ≤

∣∣∣
∫ +∞

0

∫ 1

0
Q∂xcL,eff

0 (1/3− y2)w
∣∣∣

≤ C‖εα/2−1∂yw‖L2(Ω+)ε
1−α/2‖∂xcL,eff

0 ‖L2((0,+∞)). (71)

Next, let ω = ĉf − cL,eff
0 |x=0. We have

∣∣∣
∫ 1

0
Q(1/3− y2)(ĉf − cL,eff

0 |x=0)w |x=0 dy
∣∣∣

=
∣∣∣
∫

Ω+

Q(1/3− y2)ω∂x(we−x/ε) dxdy
∣∣

≤
∣∣∣
∫

Ω+

Q(1/3− y2)ω∂xwe−x/ε dxdy
∣∣∣ + ε−1

∣∣∣
∫

Ω+

Q(y/3− y3/3)ω∂ywe−x/ε dxdy
∣∣∣

≤ C|ω|ε−α/2‖e−x/ε‖L2(Ω+)

(‖εα/2∂xw‖L2(Ω+) + ‖εα/2−1∂yw‖L2(Ω+)

)
.

We bear in mind that ‖e−x/ε‖L2(Ω+) ≤ Cε1/2. We also compute ω using (26) and
obtain

|ω| = ∣∣γ−4τD̄

l(τ)2
ĉf

∣∣ ≤ Cεα|∂xcL,eff
0 |x=0 |.

We get

∣∣∣
∫ 1

0
Q(1/3− y2)(ĉf − cL,eff

0 |x=0)w |x=0 dy
∣∣∣

≤ Cε(1+α)/2|∂xcL,eff
0 |x=0 |

(‖εα/2∂xw‖L2(Ω+) + ‖εα/2−1∂yw‖L2(Ω+)

)
. (72)

The last term in the right hand side of (69) is treated as follows.

∣∣∣K
∫ +∞

0
τcL,eff

0

∫ 1

0
(w − w|y=1) dydx

∣∣∣ =
∣∣∣K

∫

Ω+

τcL,eff
0

(∫ y

1
∂yw dz

)
dxdy

∣∣∣

≤ C‖εα/2−1∂yw‖L2(Ω+)ε
1−α/2|τ | ‖cL,eff

0 ‖L2((0,+∞)). (73)
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Inserting estimates (71)-(73) in (69), we obtain

∫

Ω+

ξ|w|2 dxdy +
∫

Ω+

Dεα(|∂xw|2 + ε−2|∂yw|2) dxdy + K

∫ +∞

0
ξ|w|y=1|2 dx

+
1
2

∫ 1

0
Q(1− y2)|w |x=0 |2 dy ≤ Cε(1+α)/2|∂xcL,eff

0 |x=0 | ‖εα/2∂xw‖L2(Ω+)

+ε1−α/2
(
Cεα−1/2|∂xcL,eff

0 |x=0 |+ C|τ |‖cL,eff
0 ‖L2((0,+∞))

+C‖∂xcL,eff
0 ‖L2((0,+∞))

)‖εα/2−1∂yw‖L2(Ω+).

The terms |∂xcL,eff
0 |x=0 |, ‖cL,eff

0 ‖L2((0,+∞)) and ‖∂xcL,eff
0 ‖L2((0,+∞)) are esti-

mated through (42)-(44). We thus infer from the latter relation the following error
estimates.

Proposition 4.1:

‖ĉε − cL,eff
0 ‖L2(IR+×(0,1)) ≤ εβ C|τ ||ĉf |

1 + (εα|τ |)1/4
, (74)

‖∂x(ĉε − cL,eff
0 )‖L2(IR+×(0,1)) ≤ εβ−α/2 C|τ ||ĉf |

1 + (εα|τ |)1/4
, (75)

‖∂y(ĉε − cL,eff
0 )‖L2(IR+×(0,1)) ≤ εβ+1−α/2 C|τ ||ĉf |

1 + (εα|τ |)1/4
, (76)

where β = 1− α/2 if α ≥ 1/2 and β = (1 + α)/2 if α < 1/2.

Note that the presence of the given source term ĉf is sufficient to control the
behavior in τ of the right hand side terms.

Corollary 4.2: Let cf ∈ D(0, T ) and let ceff
0 be such that ĉeff

0 = cL,eff
0 . Let β

be defined as in Proposition 4.1. Then we have

‖cε − ceff
0 ‖C(R+;L2(Ω+)) ≤ Cεβ.

Next let cf ∈ W 1,∞(R+) with compact support in [0,+∞), such that cf (0) 6= 0.
Then for 1 < r < +∞, we have

‖cε−ceff
0 ‖Lr(R+;L2(Ω+)) ≤

{
Cε1−α/2−αδ, 2 > α ≥ 1/2, 0 < δ < 1/4, r(1− δ) < 1.

Cε(1+α)/2, 1/2 > α ≥ 0.

Remark 1 : Presence of the contact discontinuity due to cf (0) 6= 0 diminishes
precision. Furthermore, the case of cf = 1 on (0, T ) is covered by Corollary 4.2,
since it could be extended to a Lipschitz function on R+, with compact support
in [0, +∞). Hence, it is easy to compare the result of Corollary 4.2 with the cor-
responding results from [19] and [20] and see that we have now a more precise
estimate, which gives convergence for any α ∈ [0, 2). Other possible comparaison
is with the case α = 0 from [11], but they have more complex chemical reactions.

In the next section we provide another ”average” problem which leads to better
error estimates.
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5. Next order corrector

We now limit ourself to the more realistic and critical case α ≥ 1. A formal asymp-
totic expansion of a solution cε of system (8)-(12) (see [19] or [20] for the details
of the corresponding computation) leads to consider the following function for ap-
proximating ĉε:

cL,eff
1 (x, y; ε) = c0(x; ε) + ε2−α Q

D

(y2

6
− y4

12
− 7

180
− 2

45
K(7K + 2)
(1 + K)2

)
∂xc0(x; ε)

+ε2−α K

D

(1
6

+
K

3(1 + K)
− y2

2

)
τc0(x; ε) (77)

where c0 ∈ H1(Ω+) is the solution of the following effective problem





(1 + K)τc0 +
2Q

3
∂xc0 − εαD̃∂2

xxc0 = 0 in (0,+∞),

−Dεα∂xc0 +
2Q

3
c0 =

2Q

3
ĉf x = 0,

(78)

with

D̃ = D +
8

945
Q2

D
ε2(1−α) +

4Q2

135D

K(7K + 2)
(1 + K)2

ε2(1−α).

After some computations, we assert that ĉε−cL,eff
1 satisfies the following problem.

Lε(ĉε − cL,eff
1 ) = −Φε in Ω+, (79)

−Dεα−2∂y(ĉε − cL,eff
1 ) |y=1= Kτ(ĉε − cL,eff

1 ) |y=1 +gε |y=1 in (0, +∞), (80)

∂y(ĉε − cL,eff
1 ) |y=0= 0 in (0, +∞), (81)

−Dεα∂x(ĉε − cL,eff
1 ) |x=0 +Q(1− y2)(ĉε − cL,eff

1 ) |x=0

= Q(
1
3
− y2)(ĉf − c0 |x=0) + ηε

0 |x=0, (82)

where functions Φε, gε and ηε
0 are defined by

Φε =
5∑

i=1

F ε
i − gε, (83)

F ε
1 = ε2−α∂2

xxc0
Q2

D

( 8
945

+ (1− y2)
(y2

6
− y4

12
− 7

180
))

, (84)

F ε
2 = ε2−ατ∂xc0

QK

D

(
− 2

45
+ (1− y2)

(1
6
− y2

2
))

, (85)

F ε
3 = ε2−ατ∂xc0

Q

D

(y2

6
− y4

12
− 7

180

)
, (86)

F ε
4 = ε2−ατ2c0

K

D

(1
6
− y2

2

)
, (87)
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F ε
5 = −ε2−α Q

D

(1
3
− y2

)(2Q

45
∂2

xxc0
K(7K + 2)
(1 + K)2

− K2

3(1 + K)
τ∂xc0

)
, (88)

gε = ε2−α Kτ

D

(2Q

45
∂xc0

(
1− K(7K + 2)

(1 + K)2
)− K

3(1 + K)
τc0

)
, (89)

ηε
0 = ε2−α Q2

D
(1− y2)∂xc0

(y2

6
− y4

12
− 7

180
− 2

45
K(7K + 2)
(1 + K)2

)

+ε2−α QK

D
(1− y2)τc0

(1
6
− y2

2
+

K

3(1 + K)
)

−ε2
(
Kτ∂xc0

(1
6
− y2

2
+

K

3(1 + K)
)

+Q∂2
xxc0

(y2

6
− y4

12
− 7

180
− 2

45
K(7K + 2)
(1 + K)2

))
. (90)

The variational formulation corresponding to problem (79)-(82) is

∫

Ω+

τwφ dxdy +
∫

Ω+

Dεα(∂xw∂xφ + ε−2∂yw∂yφ) dxdy

+K

∫ +∞

0
τw|y=1φ |y=1 dx +

∫

Ω+

Q(1− y2)φ∂xw dxdy

+
∫ 1

0
Q(1− y2)w |x=0 φ |x=0 dy

= −
∫ 1

0
Q(1/3− y2)(ĉf − c0 |x=0)φ |x=0 dy +

∫ 1

0
ηε
0 |x=0 φ |x=0 dy

−
∫

Ω+

5∑

i=1

F ε
i φ dxdy +

∫ +∞

0
gε

∫ 1

0
(φ− φ|y=1) dydx. (91)

We note that the source terms Φε and gε satisfy the following properties.

Lemma 5.1: Let φ ∈ H1(Ω+). The following estimates hold true.

∣∣∣
∫

Ω+

5∑

i=1

F ε
i φ dxdy

∣∣∣ ≤ Cε3(1−α/2)C(c0)‖εα/2−1∂yφ‖L2(Ω+), (92)

∣∣∣
∫ +∞

0
gε

(∫ 1

0
φ− φ |y=1 dy

)
dx

∣∣∣ ≤ Cε3(1−α/2)C(c0)‖εα/2−1∂yφ‖L2(Ω+), (93)

where the quantity C(c0) is defined by

C(c0) = ‖∂2
xxc0‖L2((0,+∞)) + (1 + |τ |)‖∂xc0‖L2((0,+∞)) + |τ |2‖c0‖L2((0,+∞)).

Proof : On the one hand, we note that
∑5

i=1 F ε
i can be written as

5∑

i=1

F ε
i = ε2−α

(
∂y(P0(y))τ2c0 + ∂y(P1(y))τ∂xc0 + ∂y(P2(y))∂2

xxc0

)
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where the polynomials Pj , 0 ≤ j ≤ 2, have zero traces in y = 0, 1. We thus have

∣∣∣
∫

Ω+

5∑

i=1

F ε
i φ dxdy

∣∣∣

=
∣∣∣
∫

Ω+

ε2−α
(
∂y(P0(y))τ2c0 + ∂y(P1(y))τ∂xc0 + ∂y(P2(y))∂2

xxc0

)
φ dxdy

∣∣∣

=
∣∣∣−

∫

Ω+

ε2−α
(
P0(y)τ2c0 + P1(y)τ∂xc0 + P2(y)∂2

xxc0

)
∂yφ dxdy

∣∣∣

≤ Cε2−α‖εα/2−1∂yφ‖L2(Ω+)ε
1−α/2

(|τ |2‖c0‖L2((0,+∞)) + |τ |‖∂xc0‖L2((0,+∞))

+‖∂2
xxc0‖L2((0,+∞))

)
.

Estimate (92) is proved. On the other hand, we write

∣∣∣
∫ +∞

0
gε

(∫ 1

0
φ− φ |y=1 dy

)
dx

∣∣∣ =
∣∣∣
∫

Ω+

gε
(∫ y

1
∂yφdz

)
dxdy

∣∣∣

≤ Cε2−α(‖∂xc0‖L2((0,+∞)) + |τ |‖c0‖L2((0,+∞)))ε
1−α/2‖εα/2−1∂yφ‖L2(Ω+).

This ends the proof of the lemma. ¤

Let us now study the terms in (91) coming from the boundary condition at x = 0.

Lemma 5.2: The following estimates hold true.

∣∣∣
∫ 1

0
Q(1/3− y2)(ĉf − c0 |x=0)φ |x=0 dy

∣∣∣

≤ Cε(1+α)/2|∂xc0 |x=0 |(‖εα/2∂xφ‖L2(Ω+) + ‖εα/2−1∂yφ‖L2(Ω+)), (94)
∣∣∣
∫ 1

0
ηε
0 |x=0 φ |x=0 dy

∣∣∣ ≤ Cε2−α‖
√

1− y2φ |x=0 ‖L2(0,1)

(|∂xc0 |x=0 |+ |τ ||c0 |x=0 |
)

+Cε2−α/4
(|∂2

xxc0 |x=0 |+ |τ ||∂xc0 |x=0 |
)(‖εα/2∂xφ‖L2(Ω+) + ‖φ‖L2(Ω+)

)
. (95)

Proof : Let ω = |ĉf − c0 |x=0 |. We have

∣∣∣
∫ 1

0
Q(1/3− y2)(ĉf − c0 |x=0)φ |x=0 dy

∣∣∣ =
∣∣∣
∫

Ω+

Q(1/3− y2) ω ∂x(φe−x/ε) dxdy
∣∣∣

≤ C|ω|
∫

Ω+

∣∣1
3
− y2

∣∣|∂xφ|e−x/ε dxdy + C|ω|
∣∣∣
∫

Ω+

ε−1
(1
3
− y2

)
φe−x/ε dxdy

∣∣∣

≤ C|ω|
(
‖εα/2∂xφ‖L2(Ω+)ε

−α/2‖e−x/ε‖L2(Ω+) +
∣∣∣
∫

Ω+

ε−1
(y

3
− y3

3
)
∂yφe−x/ε dxdy

∣∣∣
)

≤ C|ω|ε(1−α)/2
(‖εα/2∂xφ‖L2(Ω+) + ‖εα/2−1∂yφ‖L2(Ω+)

)
.

Then, using the explicit solution of problem (78) given in (3.2) with Q̄ =
2
3

Q

1 + K
,

D̄ =
D

1 + K
, ĝ = ĉf , γ = εα and δ = −ε2(1−α)(8Q2/(945D) + (4Q2/135D)K(7K +
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2)/(1 + K)2), we compute

|ω| = |ĉf − c0 |x=0 | =
∣∣∣2D̄Q̄− l(τ)(D̄ + δ) + 2Q̄δ

l(τ)(D̄ + δ)− 2Q̄δ

∣∣∣|cf | ≤ Cεα|∂xc0 |x=0 |.

We thus get

∣∣∣
∫ 1

0
Q(1/3− y2)(ĉf − c0 |x=0)φ |x=0 dy

∣∣∣

≤ Cε(1−α)/2εα|∂xc0 |x=0 |(‖εα/2∂xφ‖L2(Ω+) + ‖εα/2−1∂yφ‖L2(Ω+)).

Estimate (94) is proved.
We now prove (95). We write

∣∣∣
∫ 1

0
ε2−α(1− y2)

Q

D

(
Q∂xc0

(y2

6
− y4

12
− 7

180
− 2

45
K(7K + 2)
(1 + K)2

)

+Kτc0

(1
6
− y2

2
+

K

3(1 + K)
)) |x=0 ·φ |x=0 dy

∣∣∣

≤ Cε2−α‖
√

1− y2φ |x=0 ‖L2(0,1)

(|∂xc0 |x=0 |+ |τ ||c0 |x=0 |
)
. (96)

The remaining term to estimate is

∫ 1

0
ε2

(
Kτ∂xc0

(1
6
− y2

2
+

K

3(1 + K)
)

+ Q∂2
xxc0

(y2

6
− y4

12
− 7

180

− 2
45

K(7K + 2)
(1 + K)2

)) |x=0 φ |x=0 dy

=
∫ 1

0
ε2(p1(y)τ∂xc0 + p2(y)∂2

xxc0) |x=0 φ |x=0 dy,

with

∣∣∣
∫ 1

0
ε2(p1(y)τ∂xc0 + p2(y)∂2

xxc0) |x=0 φ |x=0 dy
∣∣∣

=
∣∣∣
∫

Ω+

ε2(p1(y)τ∂xc0 + p2(y)∂2
xxc0) |x=0 ∂x(φe−x/εα/2

) dxdy
∣∣∣

≤ ε2
∣∣∣
∫

Ω+

(p1(y)τ∂xc0 + p2(y)∂2
xxc0) |x=0 ∂xφe−x/εα/2

dxdy
∣∣∣

+ε2−α/2
∣∣∣
∫

Ω+

(p1(y)τ∂xc0 + p2(y)∂2
xxc0) |x=0 φe−x/εα/2

dxdy
∣∣∣

≤ Cε2−α/4
(|∂2

xxc0 |x=0 |+ |τ ||∂xc0 |x=0 |
)(‖εα/2∂xφ‖L2(Ω+) + ‖φ‖L2(Ω+)

)
. (97)

Estimate (95) follows from (96)-(97).
¤

Now let w = ĉε − cL,eff
1 . We write the variational formulation (91) for the test
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function φ = w. We obtain

∫

Ω+

ξ|w|2 dxdy +
∫

Ω+

Dεα(|∂xw|2 + ε−2|∂yw|2) dxdy + K

∫ +∞

0
ξ|w|y=1|2 dx

+
1
2

∫ 1

0
Q(1− y2)|w |x=0 |2 dy = −Re

∫ 1

0
Q(1/3− y2)(ĉf − c0 |x=0)w |x=0 dy

+Re
∫ 1

0
ηε
0 |x=0 w |x=0 dy − Re

(∫

Ω+

5∑

i=1

F ε
i w dxdy −

∫ +∞

0
gε

∫ 1

0
(w − w|y=1) dydx

)
.

The terms in the right hand side of the latter relation are estimated in Lemmas
5.1 and 5.2. The L2 error estimate is thus

‖w‖L2(Ω+) = ‖ĉε − cL,eff
1 ‖L2(Ω+) ≤ Cε2−α

(
ε1−α/2

(‖∂2
xxc0‖L2((0,+∞))

+(1 + |τ |)‖∂xc0‖L2((0,+∞)) + |τ |2‖c0‖L2((0,+∞))

)
+ |∂xc0 |x=0 |+ |τ ||c0 |x=0 |

+ε3α/4
(|∂2

xxc0 |x=0 |+ |τ ||∂xc0 |x=0 |
))

.

The terms containing c0 are estimated in Subsection 3.2. Problem (78) is in-

deed Problem (46) where Q̄
2Q

3(1 + K)
, D̄ =

D̃

1 + K
, ĝ = ĉf , γ = εα and

δ = −ε2(1−α)
( 8
945

Q2

D
+

4Q2

135D

K(7K + 2)
(1 + K)2

)
. We thus claim the following result.

Proposition 5.3:

‖(ĉε − cL,eff
1 )(τ)‖L2(IR+×(0,1)) ≤ Cε2−α |τ2cf |

1 + (εα|τ |)1/4
, (98)

‖∂x(ĉε − cL,eff
1 )‖L2(IR+×(0,1)) ≤ Cε2−3α/2 |τ2cf |

1 + (εα|τ |)1/4
, (99)

‖∂y(ĉε − cL,eff
1 )‖L2(IR+×(0,1)) ≤ Cε3−3α/2 |τ2cf |

1 + (εα|τ |)1/4
. (100)

Corollary 5.4: Let cf ∈ D(0, T ) and let ceff
0 be such that ĉeff

0 = cL,eff
0 . Let β

be defined as in Proposition 5.3. Then we have

‖cε − ceff
0 ‖C(R+;L2(Ω+)) ≤ Cε2−α.

Next let cf ∈ W 1,∞(R+) with compact support in [0,+∞), such that cf (0) 6= 0.
Then for 1 < r < +∞, we have

‖
∫ t

0
(cε − ceff

0 ) dt‖Lr(R+;L2(Ω+)) ≤ Cε2−α−αδ, 0 < δ < 1/4, r(1− δ) < 1.

Remark 1 : As before, presence of the contact discontinuity due to cf (0) 6= 0
diminishes precision. Nevertheless, main deterioration of the approximation comes
from the boundary condition. Without inlet boundary, we would have an approxi-
mation of order ε3−3α/2. The case of cf = 1 on (0, T ) is covered by the Corollary
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5.4, since it could be extended to a Lipschitz function on R+, with compact sup-
port in [0, +∞). Hence, it is easy to compare the result of the Corollary 5.4 with
the corresponding results from [19] and [20] and see that we have now a better
estimate, even without constructing boundary layers.

Theorem 1.1 follows from Corollary 5.4.
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[20] A. Mikelić and C. Rosier: Rigorous upscaling of the infinite adsorption rate reactive flow under
dominant Peclet number through a pore, Ann Univ Ferrara Sez. VII Sci. Mat.,Vol. 53 (2007), pp.
333–359.

[21] M.A. Paine, R.G. Carbonell and S. Whitaker, Dispersion in pulsed systems – I, Heterogeneous reac-
tion and reversible adsorption in capillary tubes, Chemical Engineering Science, Vol. 38 (1983), pp.
1781-1793.

[22] S. Rosencrans, Taylor dispersion in curved channels, SIAM J. Appl. Math., Vol. 57 (1997), pp. 1216
- 1241.

[23] J. Rubinstein and R. Mauri, Dispersion and convection in porous media, SIAM J. Appl. Math., Vol.
46 (1986), pp. 1018 - 1023.

[24] G.I. Taylor, Dispersion of soluble matter in solvent flowing slowly through a tube, Proc. Royal Soc.
A, Vol. 219 (1953), pp. 186-203.

[25] V.S. Vladimirov, Equations of mathematical physics, URSS, Moscow, 1996.


